lab 7_RHO inference
Lab 7_LRM and RHO.txt
—
Plain Text,
1 kB (1390 bytes)
Contenuto del file
###Simple Linear Regression Model using R
###UNIFE
###Spring Semester
###Mini V. 27-02-2019
#recall the prev analysis:
#we already performed our regression analysis 1-6
getwd()
cake=read.csv2("cake_reg lin.csv")
attach(cake)
View(cake)
y=sold_cakes
x=unit_price
reg_lin=lm(y~x)
#TOPIC: the strength of the correlation between x and y within the population
#we test the system of hypothesis based on the correlation coefficient RHO (?) #
#H0: RHO=0 (no correlation)
#H1: RHO dif. from 0 (correlazione �with given intensity)
#if t-statr > v.c. --> we reject H0 --> thus, it exists a correlation �with a given intensity � within the reality between x and y
#tstat.r=(r-RHO)/root.sq of ((1-r^2)/n-2)) c.v.: a/2 and d.f = n-2
dev.tot=sum((y-mean(y))^2) #total residuals SST
dev.disp=sum(reg_lin$residuals^2) #residuals SSE
dev.reg=dev.tot-dev.disp #regression�s residuals SSR
r=sqrt(dev.reg/dev.tot)
r #there is a "moderate/strong" positive correlation
num=r #numerator of tstat.r
den=sqrt((1-(dev.reg/dev.tot))/32) # denominator of tstat.r
tstat.r=num/den
tstat.r #5.208465
vc.r=qt(0.025,32)
vc.r #-2.037
# (ABS VALUE!): tstat.r>C.V.r --> we reject H0 --> it exists a correlation �whit that given strenght- within the reality
# significant correlation between x and y #