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The coordinated and accurate segregation of paired chromatids is 
critical to somatic cell division in mitosis and the genesis of germ 
cells in meiosis. Timely disjunction of coherent chromatids is achieved 
through the removal of centromeric cohesin, mediated by the separase-
catalyzed proteolysis of the kleisin subunit of cohesin complexes1–3. 
Accurate chromatid disjunction is crucial to prevent chromosome mis-
segregation, which can contribute to aneuploidy and tumorigenesis4,5. 
To ensure genome stability, separase activity is tightly regulated by 
binding to its inhibitory chaperone securin6–8, a natively unfolded 
protein9,10 that is present in excess relative to separase in the cell and 
associates with separase during translation6–8,11. Paradoxically, in 
addition to its inhibitory function, securin plays an important role in 
promoting separase activity12–14. This is probably the result of stabiliz-
ing effects, as securin-deficient human HCT116 cells exhibit a roughly 
four-fold reduction in separase levels12, and, conversely, overexpres-
sion of separase results in elevated levels of securin15. Stabilizing effects 
of securin on separase are also observed in other species, including 
the nematode C. elegans16. In vertebrates, a small proportion of sep-
arase activity is also inhibited through CDK-cyclin B1-dependent 
phosphorylation and binding15,17,18. Separase activation is triggered 
by the anaphase-promoting complex (APC/C)-dependent ubiquitin- 
mediated proteolysis of securin and cyclin B1 (refs. 19–21).

Separase is a caspase-family protease comprising a C-terminal sep-
arase protease domain (SPD) with specificity for cleaving substrates 
C-terminal to an Arg residue (P1) within an (S/D)xExxR motif3,7,22. 
In budding yeast, polo kinase-dependent phosphorylation of Scc1 
(Pds1) at the Ser residue at P6 regulates Scc1 cleavage and thus sister- 
chromatid separation23. A large N-terminal domain contributes to 

securin and substrate interactions14,22,24. Crystallographic studies of 
the SPD with inhibitory peptides explained the basis for substrate 
selection25; however, the molecular mechanisms underlying separase 
regulation have not yet been defined.

To understand the dual mechanisms of activation and repression 
of separase activity by securin, we used single-particle cryo-EM to 
determine a near-atomic-resolution structure of the C. elegans sep-
arase–securin complex. We also determined a medium-resolution 
reconstruction of the human separase–securin complex, thus reveal-
ing the evolutionary conservation of separase’s triangular shape. Our 
analyses provide insight into the overall architecture of separase, 
explain the substrate-occlusion inhibitory mechanism of securin, 
and rationalize the strict necessity of an arginine residue in the P1 
binding pocket to mediate substrate-assisted cleavage. We also dem-
onstrate the applicability of cryo-EM for the resolution of structures of  
macromolecules ~150 kDa in size that are difficult to crystallize.

RESULTS
Cryo-EM	structure	of	separase–securin	at	3.8-Å	resolution
To optimize the contrast of a relatively small complex in cryo-electron 
micrographs, and to overcome the preferred molecular orientations 
of this complex encountered in vitreous ice, we used graphene-oxide-
coated electron microscopy (EM) grids26 (Supplementary Fig. 1). 
We determined a reconstruction of the asymmetric separase–securin 
complex at 3.8-Å resolution (Fig. 1, Table 1, and Supplementary 
Figs. 1 and 2). Most of the complex, particularly the larger separase 
subunit, was well defined in terms of EM density. Side chain density 
was unambiguously assigned for more than 95% of all structured 
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Separase	is	a	caspase-family	protease	that	initiates	chromatid	segregation	by	cleaving	the	kleisin	subunits	(Scc1	and	Rec8)		
of	cohesin,	and	regulates	centrosome	duplication	and	mitotic	spindle	function	through	cleavage	of	kendrin	and	Slk19.		
To	understand	the	mechanisms	of	securin	regulation	of	separase,	we	used	single-particle	cryo-electron	microscopy	(cryo-EM)	
to	determine	a	near-atomic-resolution	structure	of	the	Caenorhabditis elegans	separase–securin	complex.	Separase	adopts	a	
triangular-shaped	bilobal	architecture	comprising	an	N-terminal	tetratricopeptide	repeat	(TPR)-like	α-solenoid	domain	docked	
onto	the	conserved	C-terminal	protease	domain.	Securin	engages	separase	in	an	extended	antiparallel	conformation,	interacting	
with	both	lobes.	It	inhibits	separase	by	interacting	with	the	catalytic	site	through	a	pseudosubstrate	mechanism,	thus	revealing	
that	in	the	inhibited	separase–securin	complex,	the	catalytic	site	adopts	a	conformation	compatible	with	substrate	binding.	
Securin	is	protected	from	cleavage	because	an	aliphatic	side	chain	at	the	P1	position	represses	protease	activity	by	disrupting		
the	organization	of	catalytic	site	residues.	
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amino acids, which allowed complete ab initio model-building of 
separase. Securin, which forms an extended structure that interacts 
mainly with the periphery of separase, was well resolved around the 
substrate-binding site but less well defined elsewhere (Supplementary 
Fig. 2 and Table 1).

Overall	architecture	of	the	C. elegans	separase–securin	complex
The C. elegans separase–securin complex adopts a triangular-shaped 
bilobal architecture that measures 110 Å in its longest dimension 
and about 70 Å in its two other dimensions. Separase is composed 
of an N-terminal α-solenoid domain adjoined to the C-terminal 
SPD25 (Fig. 1). A clearly defined cleft is situated at the interface of 
these two domains. The α-solenoid domain comprises 25 α-helices, 
mainly arranged as a right-handed superhelix that resembles a TPR  
superhelix, as predicted27. In contrast to a canonical TPR superhe-
lix, however, compression of the helix and the irregular length of its 
constituent α-helices create a compact globular structure that lacks 
the deep surface grooves typical of TPR proteins (Supplementary  
Fig. 3). The C terminus of the α-solenoid interacts with the SPD, 
whereas its N terminus is capped by securin, which could explain 
how securin contributes to separase stability12–14 (Figs. 1b and 2a). 
The α-solenoid domain accommodates two disordered insertions. 
Insert 1 includes the site of regulatory CDK phosphorylation of 
human separase17,28, whereas insert 2 incorporates the autocleav-
age sites2,29,30 and the cyclin B1 (refs. 15,18) and PP2A31 binding 
sites of vertebrate separase (Fig. 1 and Supplementary Fig. 4). Both 
inserts project toward the separase catalytic site, located within reach 
of the tips of both inserts (Fig. 1b and Supplementary Fig. 4a,b). 

Insert 2 of human separase is markedly longer than its counterpart in  
C. elegans separase, such that all three autocleavage sites are acces-
sible to the catalytic site. The marked positive electrostatic potential 
on one surface of separase (Fig. 1c) might be related to its activation 
by DNA32 and the stimulation of Rec8 cleavage in meiosis by multi-
site phosphorylation of Rec8, thus facilitating high-affinity binding  
of the substrate27.

The SPD of C. elegans separase, like the Chaetomium thermophilum 
SPD (CtSPD)25, is divided into two subdomains, one of which is the C-
terminal active protease domain (APD) (Fig. 1a,b and Supplementary 
Fig. 5). The APD belongs to the caspase/gingipain family of cysteine 
proteases and incorporates an essential Cys-His catalytic dyad1,17,33. 
The APD comprises a central β-sheet flanked on both sides by α-helices  
(Fig. 1b, left). The adjacent pseudoprotease domain (PPD) extends 
the APD β-sheet, in a manner reminiscent of the architecture of cas-
pase dimers formed from active and inactive catalytic subunits33.  
An α-helical insertion within the PPD stretches out over the PPD and 
the APD, forming extensive contacts with the APD (Fig. 1b, right). 
This long α-helical insertion is indispensible for protease activity, 
presumably because of its roles in substrate recognition, as discussed 
below, and in contributing to the structural integrity of the protein25. 
It is followed by a four-helix bundle, which forms at the periphery of 
the APD (Fig. 1b, left).

Loop	L4	conformation	is	constrained	in	the	full-length	protein
The SPD of the C. elegans separase–securin complex and the CtSPD25 
superimpose closely, with r.m.s. deviation of 3.5 Å over 365 Cα atoms, 
and 1.6 Å over 121 Cα atoms for the APD (Supplementary Fig. 5). 
The four-helix bundle is shifted in the C. elegans structure toward the 
N terminus of the molecule by 9 Å and is rotated by 7°. His1014Sep and 
Cys1040Sep of the catalytic dyad are located in loops L3 and L4, respec-
tively (superscript labels “Sep” and “Sec” denote separase and securin 
residues, respectively). Caspases are regulated by the conformation of 
the L4 loop33, and in the context of the securin–separase complex, the 
L4 loop adopts an active conformation, although the position of its tip 
differs from that of its counterpart in CtSPD25 (Fig. 2).

The C terminus of the α-solenoid domain is capped by the SPD. An 
extensive hydrophobic interface is created primarily by docking of the 
H23 and H24 α-helices of the α-solenoid onto the central β-sheet of 
the PPD (Fig. 1b). Its large size suggests a stable interaction. The tip 
of the L4 loop projects into the groove of the α-solenoid superhelix 
(Fig. 2a,b). Phe1052Sep, a conserved hydrophobic residue in separase 
(Supplementary Fig. 6), is located at the tip of L4 and is buried within a 
hydrophobic pocket of the α-solenoid domain (Fig. 2c). Mutations of the 
L4 loop in CtSPD modulate Scc1 cleavage rates25, which shows that the 
conformation of the L4 loop contributes slightly to catalytic activity.

Securin	acts	as	a	noncleavable	pseudosubstrate
Securin is an intrinsically disordered protein9,10 that functions as an 
inhibitory chaperone to both stabilize separase12–14 and, through a 
pseudosubstrate mechanism, inhibit protease activity14,29. Our struc-
ture shows that when bound to separase, securin forms an extended 
conformation that interacts along the entire length of separase in 
an antiparallel orientation (Fig. 1b,c). The N-terminal 116 resi-
dues, including the APC/C degron recognition and ubiquitination 
sites, are unstructured (Fig. 1a). The separase-binding motif (SBM) 
encompasses residues 118–199 and is part of a previously identified 
inhibitory segment of securin34 that is evolutionarily well conserved 
(Supplementary Fig. 7). The N terminus of the SBM blocks the sep-
arase catalytic site filling a 16-Å-wide cleft between the α-solenoid 
domain and the SPD (Figs. 1 and 2c). The SBM’s C terminus curls 
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Figure 1 Overview of the C. elegans separase–securin complex.  
(a) Schematic of separase and securin. IDR, intrinsically disordered 
region. (b) Two views of the separase–securin complex. The catalytic  
site includes the catalytic dyad of His1014 and Cys1040, and the  
L4 loop. The positions of insert 1 and insert 2 relative to the catalytic  
site (corresponding to the Cα atom of the P1 Met of securin) are shown  
as yellow spheres. The distances between the insert boundaries and  
the Cα atom of the P1 residue of securin (Met126Sec) are shown.  
(c) Two views of the molecular surface of separase, showing electrostatic 
potential, with securin in stick representation. The positively charged 
surface is outlined (left).
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along a hydrophobic path on the outside of the α-solenoid domain, 
with two short α-helices anchored within adjacent hydrophobic 
grooves (Figs. 1b,c and 2a). This is in agreement with biochemi-
cal studies indicating that the C terminus of securin contacts the 
α-solenoid domain of separase14,24. A C-terminal fragment of the 
Scc1 substrate remains bound to separase even in the absence of 
the cleavage site residues22, which indicates the importance of the  
N-terminal α-solenoid domain in conferring high-affinity binding 
to both substrate and inhibitor.

Separase substrates share a common [D/E/S]xExxR motif (posi-
tions P6–P1) and are cleaved immediately C-terminal to the P1 Arg 
residue3,7,22 (Supplementary Fig. 7). Polo kinase phosphorylation of 
yeast Scc1 at the P6 serine stimulates separase cleavage23. A DIExxΦ 

motif in securin mimics substrate recognition, with the P1 Arg sub-
stituted by a hydrophobic residue (Met126Sec in C. elegans securin)34 
(Supplementary Fig. 7). Notably, the P1 Arg of separase substrates 
is critical for cleavage7,22,35–37. Replacing Arg with Ala, Asp or Glu 
eliminates proteolysis3,7,13,22, whereas the securin pseudosubstrate 
motif is cleaved when an Arg is substituted for the hydrophobic  
residue at its P1-binding pocket25,34.

Our structure reveals that the mode of interaction of the  
securin pseudosubstrate motif with C. elegans separase is remark-
ably similar to the interactions between the CtSPD and a covalently 
linked peptide mimicking Scc1 (Fig. 3a,b and Supplementary  
Fig. 8)25. This confirms the concept that securin acts as a pseu-
dosubstrate inhibitor14,29,34 and, importantly, indicates that in 
the inhibited C. elegans separase–securin complex, the separase 
catalytic site architecture adopts a conformation compatible with 
substrate recognition. In the C. elegans separase–securin complex, 
Ile122Sec (P5) forms hydrophobic interactions with Phe783Sep, a 
strictly conserved aromatic residue of the α-helical insert (Fig. 3c 
and Supplementary Fig. 6). This interaction rationalizes the strong 
conservation of residues with nonpolar character at the P5 site of 
separase substrates (Supplementary Fig. 7). Glu123Sec at P4 forms 
electrostatic interactions with the highly conserved Arg1083Sep, thus 
mimicking Scc1-CtSPD interactions25. Amino acid side chains at 
variable positions P3 and P1′ (ref. 22) are solvent exposed. C-ter-
minal to the pseudosubstrate motif, securin inserts into the cleft 
that separates the SPD and the α-solenoid domain, contacting the 
L4 loop (Fig. 2a,c).

Similarly to the P1 Arg of the Scc1 peptide bound to CtSPD25, 
Met126Sec is anchored by the P1-binding pocket of C. elegans separ-
ase (Fig. 3c–e). This deep pocket is lined by a mixture of conserved 
hydrophobic and polar residues, including His1014Sep of the catalytic 
dyad (Supplementary Fig. 6). Through conformational flexibility, the 

Table 1 Data-processing statistics and model refinement
C. elegans  

separase–securin  
(EMD-3583,  
PDB 5MZ6)

Homo sapiens  
separase–securin  

(EMD-3584)

Data collection

Microscope FEI Titan Krios FEI Titan Krios

Voltage (kV) 300 300

Electron dose (e Å−2) 40 40

Detector Gatan K2 Summit Gatan K2 Summit

Pixel size (Å) 1.43 1.05

Defocus range (µm) 1.0–3.0 1.0–3.0

Reconstruction (RELION)

Particles 103,696 152,374

Box size (pixels) 180 240

Accuracy of rotations (°) 1.960 3.283

Accuracy of translations (pixels) 0.492 1.994

Map-sharpening B factor (Å2) –130 –  

Final resolution (Å) 3.8 6.8

Model composition

Protein residues 1,097

Refinement

Resolution (Å) 3.8

FSCaverage 0.82

R factor 36.53

R.m.s. deviation

Bond length (Å) 0.007

Bond angle (°) 1.012

Validation

Clashscore, all atoms 11.12

Rotamer outliers (%) 0.57

Ramachandran plot

Favored (%) 93.73

Allowed (%) 6.09

Outliers (%) 0.18

Disordered regions

Separase 1–10, 391–446, 

590–628, 894–899, 

1,095–1,104, 

1,141–1,262

Securin 1–117, 193–244

Side chains fitted (%)

Separase (of ordered region) 96.3

Securin (of ordered region) 84

FSC, Fourier shell correlation.
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Figure 2 The α-solenoid domain stabilizes the L4 loop. (a) Overview 
of separase–securin, showing the molecular surface of the separase 
α-solenoid domain. (b) Details of the L4 loop’s interactions with the α-
solenoid domain. (c) View of the L4 loop docking into the L4-loop-binding 
pocket of the α-solenoid domain, shown as a hydrophobic surface color-
coded from white to green to indicate increasing hydrophobicity. (d) The 
L4 loops of C. elegans SPD and CtSPD adopt an active conformation, with 
differences confined to the tip of the loop. Securin contacts the L4 loop.
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P1 pocket accommodates both nonpolar residues of securin and the 
P1 Arg residue of separase substrates (Fig. 3d,e and Supplementary 
Video 1). Importantly, the interactions of an Arg side chain at the P1 
pocket organize the configuration of catalytic site residues required 
for peptide cleavage. In the CtSPD structure, the invariant Asp2151 
residue, equivalent to Asp1082Sep that is rotated out of the P1-binding 
pocket in C. elegans separase, forms a stable bidentate salt bridge with 
the substrate P1 Arg guanidinium group25 (Fig. 3e). This interaction 
allows the Nε atom of the P1 Arg guanidinium group to donate a 
hydrogen bond to the main chain carbonyl of Gly2082Sep that orients 
the catalytic His2083Sep side chain to create the oxyanion hole for the 
carbonyl oxygen at P1 (Fig. 3e). In the C. elegans separase–securin 
complex, the P1-binding pocket widens to accommodate the non-
polar Met126Sec side chain. Relative to their counterparts in CtSPD, 
Gly1013Sep and the imidazole ring of His1014Sep move away from 
Met126Sec by almost 2 Å (Fig. 3d and Supplementary Fig. 8a,b). 
Thus, an Arg at P1 functions to mediate catalysis by orienting the 
catalytic His to create the oxyanion hole, necessary for cleavage of 
the scissile bond1,17.

The	triangular	shape	of	separase	is	conserved	throughout	evolution
Although the SPD is conserved across eukaryotes (Supplementary 
Fig. 5), sequence similarities within the α-solenoid domain are dif-
ficult to discern (Supplementary Fig. 4c). However, we can confirm 
that the triangular shape of separase–securin is evolutionarily con-
served, because the structure of C. elegans separase–securin is similar  
to a medium-resolution cryo-EM reconstruction of the human 

complex (Fig. 4 and Supplementary Fig. 1), and consistent with a 
previous negative-stain EM reconstruction24. C. elegans separase– 
securin resembles the ‘whale’-like domain described in the human 
separase–securin structure24. The flexible ‘tail’-like feature at 
the N terminus of human separase–securin is not present in our 
structure of the C. elegans complex. This probably represents the  
N-terminal 650 residues of human separase27 that are absent from  
C. elegans (Supplementary Fig. 4). A recently reported EM structure 
of C. elegans separase–securin complex at 24-Å resolution16 revealed 
a bilobal architecture that has similar overall dimensions to and is 
generally compatible with our cryo-EM structure, despite the lower 
resolution and use of negative stain.

DISCUSSION
The substrate Arg P1 residue that participates in organizing the cata-
lytic site has a role that is reminiscent of those of other enzymes that 
derive specificity through substrate-assisted catalysis38,39. It explains 
the requirement for an Arg at P1 for substrate cleavage3,7,22, and 
why securin is capable of engaging the separase substrate-binding 
site, in competition with Scc1, without itself being cleaved22. Thus, 
securin inhibits separase through a competitive mechanism that inter-
feres with substrate recognition, and represses its intrinsic protease  
activity through small conformational rearrangements of its catalytic 
site. This inhibition mechanism contrasts with XIAP’s inhibition of 
caspases, in which XIAP blocks access to the substrate-binding cleft 
by binding in the reverse orientation40,41.

Here we have shown how securin inhibits separase through a sub-
strate-occlusion mechanism. Additionally, securin destruction and 
displacement from the TPR lobe may promote a conformational 
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Figure 3 The interactions between the securin pseudosubstrate 
motif and separase resemble interactions with Scc1. (a) The securin 
pseudosubstrate motif at the C. elegans SPD. (b) Scc1-mimicking peptide 
at the CtSPD25. (c) The molecular surface of C. elegans separase, showing 
the securin pseudosubstrate sequence engaging the peptide-substrate 
binding site of separase. (d) Details of the Met126 (P1) residue at the  
P1-binding site, and its corresponding EM density. (e) P1 Arg of the  
Scc1-mimicking peptide at the P1 site of CtSPD, showing the oxyanion 
hole formed from the catalytic His2083 (from ref. 25). The guanidinium 
side chain of the P1 Arg residue donates a hydrogen bond to the main 
chain carbonyl of Gly2082, positioning the imidazole side chain of 
His2083 to create the oxyanion hole and donate a hydrogen bond to the 
main chain carbonyl of Arg(P1). In contrast, Met126(P1) of C. elegans 
Scc1 widens the P1-binding pocket of C. elegans separase such that the 
main chain of Gly1012 and side chain of His1014 (equivalent to Gly2082 
and His2083, respectively, of CtSPD) are displaced by ~2 Å.
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change of separase that affects the catalytic site and L4 loop that stim-
ulates catalytic activity. Future structural studies of securin-free sep-
arase are required to address this question, and also to elucidate other 
regulatory mechanisms, including the mutually exclusive CDK1– 
cyclin B1-dependent repression of vertebrate separase that involves  
a phospho-dependent Pin1-catalyzed peptidyl prolyl cis/trans-isomer-
ization28, leading to cyclin B1 association and separase inhibition.

Mutation, overexpression or mislocalization of separase leads to an 
elevated incidence of tumor development42,43, and thus inhibition of 
separase is a tempting pharmacological target. This structure will pro-
vide a rational molecular basis for the design of small-molecule drugs 
to inhibit uncontrolled separase activity in certain cancer types.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE	METhODS
Cloning and expression of C. elegans and Homo sapiens genes related to the 
separase–securin complex. The cDNAs encoding the C. elegans and H. sapiens  
separase and securin genes were ordered as gene-optimized versions for 
expression in insect cells, and synthesized cDNAs (GeneArts/Thermo Fisher) 
were subsequently cloned into pU1 (separase) and pF1 (securin) vectors44. 
A double StrepII tag followed by a TEV (tobacco etch virus) site was fused  
N-terminal to the separase gene. An N-terminal truncation of 139 residues of  
C. elegans securin was generated by mutagenesis PCR, and a TEV-cleavable 
MBP tag was added C-terminal to securin in the human construct. The result-
ant plasmids were transformed into MultiBacDH10α Cre cells to generate  
bacmids through in vivo recombination44. A single recombinant vector was used 
for recombinant baculovirus generation.

Separase–securin overexpression. Recombinant P3 baculoviruses were used to 
infect High Five insect cells (Invitrogen) at a cell density of roughly 2.0 × 106 cells 
per ml. The cells were incubated for 72 h at 27 °C at 150 r.p.m., harvested at a cell 
viability rate of ~80%, flash-frozen in liquid nitrogen and stored at −80 °C.

Purification of separase–securin complexes. Purification of the protein com-
plexes was performed at 4 °C. Cells were resuspended in lysis buffer (50 mM 
Tris-HCl, pH 8.3, 250 mM NaCl, 1 mM EDTA, 1 mM DTT, protease inhibitor 
cocktail tablets (Complete EDTA-free; Roche Diagnostics GmbH), 0.1 mM PMSF, 
5 units/ml benzonase (Novagen)), sonicated, and centrifuged for 1 h at 48,000g. 
The soluble fraction was slowly (1 ml/min flow rate) applied to a 5-ml StrepTactin 
Superflow Cartridge (Qiagen) and washed with wash buffer (lysis buffer without 
protease inhibitor cocktail, PMSF and benzonase) until stable UV absorption 
could be observed. Peak fractions were incubated with TEV protease at 4 °C 
overnight, and wash buffer without NaCl (buffer A) was used for a two-fold dilu-
tion before loading onto a ResourceQ anion-exchange column (GE Healthcare) 
the next day. After a washing step, the complexes were eluted with a gradient of 
buffer B (20 mM Tris-HCl, pH 8.0, 1 M NaCl, 1 mM DTT). A final size-exclusion 
step on a Superose 6 Increase 10/300 GL column with 20 mM HEPES-NaOH, 
pH 7.8, 200 mM NaCl and 1 mM DTT was performed.

Preparation of graphene-oxide-support-covered grids. A graphene oxide dis-
persion (Sigma-Aldrich; 2 mg/mL in H2O) was diluted ten-fold with ddH2O to 
a final concentration of 0.2 mg/ml and subsequently spun down at 300g for ~15 s  
to remove large aggregates of graphene oxide flakes (pellet formation could be 
observed occasionally) (as described in ref. 26). After incubation for 1 min with 
graphene oxide dispersion, Quantifoil grids were glow-discharged for 1 min 
with an Edwards Sputter Coater S150B. After incubation, the graphene oxide 
solution was removed by brief blotting with Whatman No. 1 filter paper and 
washed by absorbance of 20 µl of ddH2O onto the graphene-oxide-coated side 
twice and once on the back side of the grid, with blotting steps in between (for a 
detailed video and protocol, see https://figshare.com/articles/Graphene_Oxide_
Grid_Preparation/3178669). The tendency of biological molecules to adopt pre-
ferred orientations in thin vitreous ice probably results from interactions at the 
hydrophobic air-water interface. Presumably these interactions favor the largest 
exposed hydrophobic surface and thus select specific molecular orientations. 
Immobilization of the sample on a carbon, graphene or graphene oxide support 
substrate reduces interactions at the air-water interface. In contrast to the air-
water interface, graphene oxide is hydrophilic, and thus will interact with different 
surfaces of separase–securin, thus promoting different orientations.

Electron microscopy data collection. Purified separase–securin complexes 
from C. elegans and H. sapiens were applied to graphene-oxide-covered gold 
300 square mesh Quantifoil R1.2/1.3 holey carbon grids (Quantifoil Micro Tools 
GmbH) at a concentration of ~100 nM (waiting time, 30 s; blotting time, 8 s) 
and flash-frozen in liquid ethane, using a custom-fabricated manual plunger at 
4 °C. C. elegans separase specimens were imaged manually on an FEI Titan Krios 
electron microscope operating at 300 kV accelerating voltage. Zero-energy-loss 
micrographs were recorded with a Gatan K2 Summit direct electron detector 
executed in super-resolution counting mode at the end of a Gatan GIF Quantum 
energy filter with a slit width of 20 eV. The calibrated magnification was 34,965, 
corresponding to a pixel size of 1.43 Å, and images were collected at a dose rate of 
~2.5 electrons/Å2/s. Exposures (16 s each) were dose-fractionated into 20 movie 

frames with a total dose of ~40 electrons per Å2. Defocus values in the final data 
set ranged from −1.0 to −3.3 µm. Automated data acquisition with the same 
exposure time and total dose as described for the C. elegans separase–securin 
complex was used for data collection of the human separase–securin complex at 
Diamond Light Source with a calibrated magnification of 47,619, corresponding 
to a pixel size of 1.05 Å.

Image processing. Super-resolution micrograph movies with a pixel size of 0.715 Å  
were binned to 1.43 Å. Micrograph movie frame stacks were first aligned with 
MOTIONCORR45 before further processing. The contrast transfer function 
parameters were determined with GCTF46, and RELION47 was used for most 
other image-processing steps. Initial particle picking was done with e2boxer.py in 
EMAN2 (ref. 48), using only a subset of the data set, and particles were extracted 
with a 180-pixel by 180-pixel box. Reference-free 2D classification yielded initial 
2D classes that were subsequently used as references (a low-pass filter of 20 Å 
was applied to avoid reference bias) for automatic particle picking49. A high-pass 
filter of 400 Å with a 50-Å width of the raised cosine on the high-pass filter edge 
was applied to all micrographs to correct for the ice gradient present on most of 
the micrographs, in order to reduce false positive picking of particles. In total,  
2.4 million particles were picked from 2,793 micrographs and extracted from 
original unmodified micrographs. Reiterative reference-free two-dimensional 
class averaging and strict selection of classes that showed distinct/strong struc-
tural features resulted in a particle subset of 665,331 particles. An ab initio 3D 
reconstruction was created with SIMPLE-PRIME50 and used as an initial model 
for a first 3D refinement. Correction of beam-induced motion of individual par-
ticles and B-factor weighting of single frames to treat radiation damage prob-
lems were done in the particle-polishing step51 in RELION. Auto-refinement 
of polished particles with a soft mask (with 5-pixel fall-off) around the entire 
molecule led to a density map of 4.2-Å resolution. This particle subset was sub-
jected to two rounds of 3D classifications to separate structural heterogeneity and 
dispose of remaining bad particles (Supplementary Fig. 9). In a final step, all 
micrographs with a resolution of >4.0 Å according to the resolution estimation 
of GCTF were discarded, which resulted in a final data set of 103,696 particles 
that refined to a map with a resolution of 3.8 Å. All resolution estimations were 
derived from Fourier shell correlation (FSC) calculations between reconstructions 
from two independently refined half-sets, and reported resolutions are based on 
the FSC = 0.143 criterion52,53. Local resolution was estimated with ResMap54. 
Images collected at the Diamond Light Source were collected in counting mode  
and processed as described for the C. elegans data set, with the exception of a  
240-pixel × 240-pixel box size, owing to the larger particle size. Auto-refinement 
of particles with a soft mask (with 5-pixel fall-off) around the entire molecule 
led to a density map of 6.8-Å resolution. It is likely that this resolution is overes-
timated owing to the strong preferred orientation of the particles.

Model-building and refinement of the C. elegans separase–securin complex.  
Ab initio modeling of the entire C. elegans separase–securin complex was per-
formed in COOT55. A recently published crystal structure of the C-terminal lobe 
of the C. thermophilum separase25 was fitted into the density with Chimera56 and 
used as a template and validation tool for modeling the SPD. The final model of 
separase lacks the N-terminal ten residues, two long unstructured loop regions 
(insert 1 and insert 2) present in the α-solenoid domain (residues 391–446 and 
residues 590–626), and the C-terminal 122 residues that are predicted to be 
unstructured and for which no density could be observed. The model was refined 
with Refmac v.5.8 (ref. 57) and PHENIX58. Secondary structure restraints were 
created by PROSMART59.

Structure-based sequence alignment of separase TPR domains. The N- 
terminal sequence of human separase (residues 1–1,692, N-terminal to the SPD) 
was analyzed for predicted secondary structure elements and disordered regions 
with PHYRE2 (ref. 60). This indicated an α-helical segment interspersed with 
two predicted disordered regions (residues 1,070–1,040 and 1,307–1,561). The 
positions of these two disordered regions approximately matched those of insert 1  
and insert 2 of C. elegans separase (residues 390–442 and 597–618). Residues 
1–390 of C. elegans separase were aligned with residues 651–1,070 of human 
separase, on the basis of matching of predicted α-helices of human separase with 
observed α-helices of C. elegans separase, and also guided by a published multiple 
sequence alignment of part of the N-terminal domain of separase27. Residues 
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442–597 and 618–700 of C. elegans separase aligned with residues 1,140–1307 and 
1,561–1641 of human separase, respectively. The multiple sequence alignment in 
Supplementary Figure 4 was generated using ALSCRIPT61.

Data availability. EM maps for the securin–separase complexes have been depos-
ited in the EMDB with accession codes EMD-3583 (C. elegans) and EMD-3584  
(H. sapiens). Atomic coordinates for C. elegans separase–securin have been depos-
ited in the PDB with accession code 5MZ6. Other data and materials related to 
this paper are available on request.
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