Corso di Laurea in Matematica a.a. 2009/2010

- (1) Il numero $(\sqrt{5})^4$ è uguale a:
 - $(a)^* 25$

 - (b) $\sqrt[8]{5}$ (c) 5 (d) $\sqrt[4]{5^2}$
- (2) Il numero $\log_4 16$ è uguale a:
 - (a) 4
 - (b) 8
 - $(c)^* 2$
 - (d) 1/2
- (3) È vero che: (a) $\frac{2}{5} > \frac{3}{4}$
 - (b)* $\frac{2}{5} > \frac{8}{25}$
 - (c) $\frac{2}{5} > \frac{2}{3}$
 - (d) $\frac{4}{8} > \frac{3}{5}$
- (4) Il risultato di $\frac{7}{5} + \frac{2}{3}$ è: (a) $\frac{9}{8}$

 - (b) $\frac{9}{15}$
 - (c) $\frac{14}{8}$
 - (d)* $\frac{31}{15}$
- (5) L'espressione $\frac{3^{-1}}{\frac{2}{25^{1/2}}}$ è uguale a:
 - (a) $\frac{4}{5}$
 - (b)* $\frac{5}{6}$
 - (c) $\frac{6}{5}$

(d)
$$\frac{6^2}{25}$$

- (6) Il numero $2^2 \cdot 4^3$ è uguale a:
 - (a)* 2^8
 - (b) 2^{12}
 - (c) 8^6
 - (d) 8^5
- (7) Il valore della seguente espressione:

$$(2, 4 - 12/5)^6 : (13/5) - (5/3 - 5/6) \cdot 0, 3 + 1/2$$

- è uguale a:
- (a) -1/2.
- $(b)^* 1/4.$
- (c) 0, 7.
- (d) 0.
- (8) L'uguaglianza

$$x^2 - 1 = (x - 1)(x + 1)$$

- è vera:
- (a)* sempre.
- (b) mai.
- (c) solo per x = 1 oppure x = -1.
- (d) solo per x > 0.
- (9) Dire per quali x è vera la seguente uguaglianza:

$$x^2 - 4x + 4 = 0$$

- (a) $x = \pm 2$
- (b)* x = 2
- (c) x = -2
- (d) per ogni $x \neq 0$
- (10) La disuguaglianza $(x-1)^2 > 0$ è vera:
 - (a) sempre.
 - (b) solo per x > 1.
 - (c)* per ogni $x \neq 1$.
 - (d) per ogni $x \ge 1$.
- (11) L'uguaglianza |x| = |-x| è vera:
 - (a) mai.
 - (b) solo per x = 0.
 - $(c)^*$ sempre.
 - (d) solo per x > 0.

(12) Le soluzioni dell'equazione

$$x^2 - 5x + 6 = 0$$

sono:

- (a)* x = 2, x = 3
- (b) x = 1, x = 2
- (c) x = 1, x = 3
- (d) x = 5, x = 6

(13) Trovare tutte le x per cui è vera la seguente disuguaglianza:

$$\frac{x+1}{x+2} > 0$$

- (a) $x > -2 \land x > -1$
- (b) $x > -2 \lor x > -1$
- (c) x > -1.
- $(d)^* x < -2 \lor x > -1$

(14) Trovare tutte le x per cui è vera la seguente disuguaglianza:

$$x^2(x+1) > 0$$

- (a) x > -1
- (b)* $x > -1 \land x \neq 0$
- (c) $x < -1 \lor x > 0$
- (d) $x < -1 \land x > 0$

(15) Trovare tutte le x per cui è vera la seguente disuguaglianza:

$$\frac{x}{x-1} \le 0$$

- (a) 0 < x < 1
- (b) $0 \le x \le 1$
- (c) $0 < x \le 1$
- (d)* 0 < x < 1

(16) L'espressione

$$\frac{x+1}{x-2} + \frac{2x}{x-1}$$

vale:
(a)*
$$\frac{3x^2 - 4x - 1}{x^2 - 3x + 2}$$

(b)
$$\frac{3x+1}{2x-3}$$

(c)
$$\frac{3x+1}{(x-2)(x-1)}$$

(d)
$$\frac{2x(x+1)}{2x-3}$$

(17) Si consideri l'equazione

$$2^x = 16^{\frac{1}{x}}$$
.

È vero che:

- (a) x = 1 è soluzione.
- (b)* $x = \pm 2$ sono le uniche soluzioni.
- (c) non ci sono soluzioni.
- (d) ci sono infinite soluzioni.
- (18) Il perimetro del quadrato la cui area è $64m^2$ è uguale a:
 - (a) 16m.
 - (b)* 32m.
 - (c) 40m.
 - (d) 64m.
- (19) Nel piano cartesiano quanti sono i punti distanti 3 dal punto P = (-1, 4)?
 - (a) Uno solo.
 - (b) Sono esattamente due.
 - (c) Un'infinità e sono tutti i punti di una retta.
 - (d)* Un'infinità.
- (20) Due rette dello spazio sono sghembe se:
 - (a) Giacciono in piani diversi.
 - (b) Non s'incontrano.
 - (c) Non s'incontrano e giacciono in piani diversi.
 - (d)* Non sono complanari.
- (21) Siano R, L, D tre rette nello spazio, due a due sghembe. Sia p un punto di R. È sempre possibile trovare una retta passante per p che interseca L e D?
 - (a) Sì e una tale retta è unica.
 - (b) Non è mai possibile.
 - (c)* Dipende.
 - (d) Sì e ci sono un'infinità di rette che soddisfano queste condizioni.
- (22) L'area della superficie compresa tra due circonferenze concentriche, una di raggio 2cm e l'altra di raggio 3cm, vale:
 - (a)* $5\pi cm^2$.
 - (b) $\pi^2 cm^2$.
 - (c) $5\pi^2 cm^2$.
 - (d) $5\pi^2 cm$.
- (23) Siano nello spazio R, D due rette parallelle distinte.
 - (a)* Esiste un ed un'unico piano contenente $R \in D$.
 - (b) Non esiste nessun piano contenente $R \in D$.

- (c) Esistono infiniti piani contenenti $R \in D$.
- (d) Dipende dalle rette, certe volte sono complanari, altre volte non lo sono.
- (24) Siano nello spazio due rette R e D che s'intersecano nel punto p. Sia L una retta che interseca $R: L \cap R = \{q\} \text{ con } p \neq q \text{ (fare un disegno)}.$
 - (a)* Le rette L e D possono essere parallelle.
 - (b) Le rette L e D non sono parallelle.
 - (c) Le rette L e D non possono essere complanari.
 - (d) Le rette L e D sono necessariamente complanari.
- (25) Qual'è la negazione logica della frase: "Tutte le macchine sono rosse"?
 - (a) Non esistono macchine rosse.
 - (b) Esiste una ed un'unica macchina non rossa.
 - (c)* Esiste almeno una macchina non rossa.
 - (d) Qualche macchina è rossa.
- (26) Supponiamo che su un campione di 100 studenti, 80 possiedano un cellulare e 65 un computer. Supponendo che ogni studente possegga almeno un cellulare o un computer, allora
 - (a)* 45 studenti possiedono sia un cellulare che un computer.
 - (b) 15 studenti possiedono un computer ma non un cellulare.
 - (c) 45 studenti possiedono un cellulare ma non un computer.
 - (d) 65 studenti possiedono sia un cellulare che un computer.
- (27) Supponiamo che gli studenti del Corso di Laurea in Matematica iscritti al primo anno siano 40 e che 25 di essi seguano il corso di Algebra, 35 il corso di Geometria e che ogni studente segua almeno uno di questi due corsi. Allora:
 - (a) 25 studenti seguono sia il corso di Algebra che quello di Geometria.
 - (b)* 5 studenti seguono il corso di Algebra, ma non quello di Geometria.
 - (c) Al più 10 studenti hanno seguito solamente uno dei due corsi.
 - (d) 25 studenti hanno seguito solamente uno dei due corsi.
- (28) Il quoziente q(X) ed il resto r(X) della divisione del polinomio $X^6 + 2$ per il polinomio $X^2 - 5$ sono:
 - (a) $q(X) = X^3 + 5X^2 + 25$, r(X) = 25X + 2.
 - (b) $q(X) = X^4 5X^2 + 65, r(X) = 35X + 4.$
 - (c)* $q(X) = X^4 + 5X^2 + 25, r(X) = 127.$ (d) $q(X) = X^3 + X^2 + 2, r(X) = 2.$
- (29) Il numero $10^{11} + 17$ è:
 - (a) Un numero primo.
 - (b) Non è primo perchè è divisibile per 5.
 - (c)* Non è primo.
 - (d) Un numero pari.

- (30) Si considerino i tre numeri 56,54 e 12. E' vero che:
 - (a) 3 è il massimo comun divisore di tali numeri.
 - (b) 6 è il massimo comun divisore di tali numeri.
 - (c)* 2 è il massimo comun divisore di tali numeri.
 - (d) Sono primi tra loro.
- (31) Si considerino i tre numeri 56, 54 e 12. E' vero che:
 - (a) 1215 è il minimo comune multiplo di tali numeri.
 - (b)* 1512 è il minimo comune multiplo di tali numeri.
 - (c) 1212 è il minimo comune multiplo di tali numeri.
 - (d) 36288 è il minimo comune multiplo di tali numeri.
- (32) Siano n ed m due numeri naturali maggiori di 1 e si supponga che $n \cdot m$ divida 36. Allora si può dedurre che:
 - (a) almeno uno dei due numeri è multiplo di 3.
 - (b) se n è pari, m è multiplo di 3.
 - (c)* almeno uno fra i numeri 2 e 3 divide n.
 - (d) se n è divisibile per 3, allora m è pari.
- (33) Un ciclista vuole percorrere in 14 giorni 450 chilometri, percorrendo nella prima settimana la metà della distanza percorsa nella seconda. Quanti chilometri percorrerà nella seconda settimana?
 - (a) 150 km.
 - $(b)^* 300 \text{ km}.$
 - (c) 225 km.
 - (d) 400 km.
- (34) Dire quale dei seguenti numeri è il più grande:
 - (a) $\sqrt[3]{8}$
 - (b) $\sqrt{4}$
 - $(c)^* 2^2$
 - (d) $\sin(25\pi)$
- (35) Trovare tutte le x per cui vale l'uguaglianza $\sin x = 1$:
 - (a) $x = \frac{\pi}{2}$
 - (b)* $x = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$
 - (c) $x = -\frac{\pi}{2}$
 - (d) x = 0
- (36) La disuguaglianza $\sin x < 1$ è vera:
 - (a) sempre
 - (b) per ogni $x < \frac{\pi}{2}$

- (c) per ogni $x \neq \frac{\pi}{2}$
- (d)* per ogni $x \neq \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$
- (37) L'equazione $\cos x = x$ ha:
 - $(a)^*$ 1 soluzione.
 - (b) 2 soluzioni.
 - (c) infinite soluzioni.
 - (d) nessuna soluzione.
- (38) Il numero $\cos \frac{\pi}{4}$ è uguale a:
 - (a) $\frac{\sqrt{3}}{2}$
 - (b) $\frac{1}{2}$
 - (c)* $\frac{\sqrt{2}}{2}$
 - (d) $-\frac{\sqrt{2}}{2}$
- (39) Dire quali delle seguenti uguaglianze è vera per ogni x:
 - (a) $\cos(2x) = 2\cos x$
 - (b)* $\cos(2x) = \cos^2 x \sin^2 x$
 - (c) $\cos(2x) = \sin(2x)$ (d) $\cos(2x) = \cos^2 x$
- (40) La disuguaglianza $\cos^2 x > 0$ è vera:
 - (a) sempre.
 - (b) mai.
 - (c) per ogni $x \neq \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$.
 - (d)* per ogni $x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$