
CHAPTER 2

Vector bundles

In this chapter we prove Frobenius Theorem about integrability of vector fields
and use this construction to motivate and study vector bundles on manifolds.

2.1. One parameter vector fields

Let M be a manifold. We already encountered vector fields, they can be either
seen as derivations on C∞(M) or sections of the tangent bundle, recall Proposition
1.7.24. In this section we want to focus on slightly different perspective. Let
C ⊂ M be a submanifold of dimension 1, that is a curve on M . Then through
any point p ∈ C we have a tangent space TpC ⊂ TpM and also the tangent vector
induced by a parametrization of C. Let now X be a vector field. Then at any
point p ∈ M , X(p) ∈ TpM is a tangent vector. Restrict to a local chart (Up,ϕ)
then X =

�
ai(x1, . . . , xn)∂i, and consider a differentiable function f : J → ϕ(Up),

with f(t) = (x1(t), . . . , xm(t)). When we think of f as a curve in Up, the function

f �(t) := df
dt (t) = Dft(1) describes its tangent vectors. It is natural to ask whether

there is such a f with f �(t) = X(f(t)). In other words if there is a curve whose
tangent vectors are described by the vector field. Such a curve is called an integral
curve of the vector field X.

Definition 2.1.1. Let X be a vector field on M . A curve f : J → M is an
integral curve of X if for any t ∈ J , f �(t) = Dft(1) = Xf(t).

By definition integral curves are solutions of the following equation

(6) Dft(1) = X(f(t)).

In a chart (Up,ϕ), with ϕ(p) = (0, . . . , 0) we have ϕ ◦ f(t) = (x1(t), . . . , xm(t)),
Dϕ(X) =

�
ai(x1, . . . , xm)∂i, therefore Equation (6) translates in the following

system of ordinary differential equations

dxi(t)

dt
= ai(x1, . . . , xm),

together with initial condition (ϕ ◦ f)(0) = (0, . . . , 0). Therefore, thanks to Cauchy
existence result, integral curves always exists locally.

Remark 2.1.2. Note that even if integral curves always exists they do not
need to be submanifolds. For example, consider M = S1×S1 ⊂ R2

(x1,x2)
×R2

(y1,y2)
.

Fix any irrational number a, the integral manifold of the non-vanishing vector field
Xa = (x2∂x1

− x1∂x2
) + a(y2∂y1

− y1∂y2
) is dense in M.

This allows to give a geometric point of view on differential equations. Moreover
we may also consider vector fields depending on a parameter t.
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Definition 2.1.3. Let M be a m-manifold and J ⊂ R an interval, with 0 ∈ J .
A one parameter vector field is a map

X : M × J → TM,

such that for any t ∈ J , the assignment X(p, t) is a vector field on M . A curve f(t)
is integral for X(p, t) if

df(t)

dt
= X(f(t), t),

for any t ∈ J . Let us indicate with X (M)J the set of one parameter vector fields
on M defined on M × J .

Example 2.1.4. This is an evolution of Example 1.7.25. ConsiderM = R3. Fix
coordinates (x, y, z) on R3 and the canonical basis (∂i(p)) for each TpM � R3. Let
f : R → R3, with f(t) = (x(t), y(t), z(t)) be a smooth function with f(0) = (0, 0, 0).
Let X : M \ f(R)× R → T (M \ f(R)) be the vector field defined as

X((x, y, z), t) = −G((x− x(t))/r(t)3, (y − y(t))/r(t)3, (z − z(t))/r(t)3),

with r(t) =
�
(x− x(t))2 + (y − y(t))2 + (z − z(t))2. This is the gravitational field

of an object of unit mass that moves along the curve f(t). We had to exclude f(R)
to ensure that X is well defined on the manifold.

Proposition 2.1.5. Let X(p, t) ∈ X (M)J be a one parameter vector field.
Then there is an open subset WM×{0} ⊂ M×J and a smooth function G : W → M ,
such that

• for any x ∈ M the curve f(t) := G(x, t) is integral for X
• f(0) = x, G(x, 0) = x

Proof. Fix p ∈ M and let (Up,ϕ) be a local chart, after maybe shrinking
Up, we may assume, by Cauchy theorem, that the solution exists and is unique in
Up×(−δp, δp), for some δp > 0. That is there exists a function Gp : Up×(−δp, δp) →
M with the required properties. We have now to glue these local solutions. This
can be done thanks to the uniqueness part of Cauchy theorem. To conclude observe
that ∪p∈MUp × (−δp, δp) is an open neighborhood of M × {0}. �

Definition 2.1.6. The function G produced in proposition 2.1.5 is called the
flow of the one parameter vector field.

Remark 2.1.7. Note that the flow is such that G(x, t) is an integral curve of
the vector field for any t, and G(x, 0) = x. Hence we may rewrite the differential
equation of the field via the following equations of the flow:

(7) DG(x,0)(∂i) = ∂i, DG(x,t)(
d

dt
) = X(x, t)

If W ⊃ M × (−δ, δ) and s ∈ (−δ, δ), then by uniqueness we have

(8) G(p, s) = G(G(p, s), 0).

Let θs : M → M be defined as

θs(p) := G(p, s).

Then by Equations (7), (8) we have that θs is a local diffeomorphism. Moreover
θs is a bijection by uniqueness of solutions. Therefore θs is a diffeomorphism and
it is homotopy equivalent to the identity. In other words the flow describes the
manifold M has a dynamical system whose points are moved according to the one
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parameter vector field. This opens our arguments to dynamics on the manifolds.
We refer the interested reader to [1].

If M is compact we only need a finite number of local charts, then there is a
positive δ such that the flow is defined on M × (−δ, δ), but something even better
is at hand.

Proposition 2.1.8. Let M be a compact manifold and X(p, t) ∈ X (M)R a one
parameter vector field then there is a flow G : M × R → M . Moreover

G(p, s1 + s2) = G(G(p, s1), s2),

therefore there is a morphism of groups

R → Diff(M,M),

all diffeomorphisms built in this way are homotopy to the identity. Finally this
produces a map

X (M)R → Hom(R, Diff(M,M)).

Proof. Let f : (a, b) → M be an integral curve and assume that f(0) = p. For
the first statement it is enough to show that we may prolong f to an integral curve
f̃ : (a− δ, b+ δ) → M , such that f(t) = f̃(t) for t ∈ (a, b). M is compact therefore
the flow G : M × (−δ, δ) → M is well defined, for some δ > 0. Choose t ∈ (a, a+ δ)
and define the integral curve G(f(t), t) on (t− δ, t+ δ). By Equation (8) we have

G(p, t+ t) = G(f(t), t),

hence by uniqueness of solution it has to agree with f and it prolongs it.
Since the flow G : M × R → M is well defined then, again by uniqueness of

solutions we have that

G(p, s1 + s2) = G(G(p, s1), s2).

�
On non compatc manifold it is in general not true that a vector field X ∈

X (M)R defines a flow on M × R. This naturally leads to the following definition

Definition 2.1.9. Let X ∈ X (M)R be a one paramenter vector field. Then X
is called complete if there exists a flow G : M × R → TM associated to X.

As observed before to a complete vector field is associated a one paramenter
group of diffeomorphism homotopically equivalent to the identity.

Remark 2.1.10. Note that the theory of one paramenter vector fields contains
that of vector fields, simply defining X(p, t) = X(p), for any p ∈ M .

2.2. Frobenius Theorem

It is quite natural in our set up to ask for integral submanifolds of higher
dimension. That is we talked about integral curves associated to a vector field on a
manifold M , but what happens if we choose two or more vector fields? Is it possible
to “integrate” them? In other words is it possible to describe submanifolds N ⊂ M
such that at any point TpN is spanned by the chosen vector fields?

Let us start with a simple example. Let W ⊂ R3 be open and consider a system
of partial differential equations

∂z/∂x = g(x, y, z), ∂z/∂y = h(x, y, z).
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Given (a, b, c) ∈ W , a solution, if any, will be a function z = f(x, y) such that

c = f(a, b), fx(x, y) = g(x, y, f(x, y)), fy(x, y) = h(x, y, f(x, y)).

From a geometric point of view if we let let F (x, y, z) = z−f(x, y) then V := {F =
0} is a surface in W ⊂ R3. Recall that (∂x, ∂y, ∂z) is a basis for derivations on W ,
hence, by Lemma 1.7.3, we have

T(x,y,z)V = (∂xF, ∂yF, ∂zF )⊥ = (−fx,−fy, 1)
⊥ = �∂x + g(x, y, z)∂z, ∂y + h(x, y, z)∂z�.

In other words if we consider the two vector fields X and Y , given by

X = ∂x + fx∂z, Y = ∂y + fy∂z

then V is an integral submanifold for {X,Y }. Note further that for this particular
choice of vector fields, since fxy = fyx we have

[X,Y ] = XY − Y X = 0

This shows that, in this set up, our initial question has a necessary condition,
namely [X,Y ] = 0, and it reflects the independence on the order of partial deriva-
tives. It is therefore easy to guess that some condition on integrability are needed
in this more general framework. It is time to introduce some definitions.

Definition 2.2.1. Let M be a manifold, a distribution D of rank k is the
assignment of a subspace Dp ⊂ TpM such that:

a) dimDp = k for any p ∈ M ,
b) for any p ∈ M there is a chart (Up,ϕ) and k vector fields {X1, . . . , Xk} ⊂

X (Up) such that for any q ∈ Up Dp = �X1(q), . . . , Xk(q)�. Such a set
{X1, . . . , Xk} is called a local basis at q

We say that a vector field Y ∈ X (M) belongs to the distribution D,

Y ∈ D,

if for any p ∈ M Y (p) ∈ Dp. A distribution is said involutive if for any pair of
vector fields X,Y ∈ D we have [X,Y ] ∈ D. A distribution is integrable at p if
there exists an open Wp ⊂ M and a submanifold F � p such that for any q ∈ W ∩F

TqF = Dq,

such a F is called a leaf of the distribution. Integrable distributions are also called
foliations.

Example 2.2.2. Let M = Rn+k and Dp := {∂i(p)}i=1,...n ⊂ TpM . Let D be
the distribution defined by the Dp. Then D is clearly involutive and the leaves of
D are the fibers of the projection onto the last k coordinates π : M → Rk. Despite
this may seem a very special case we will prove that any foliation is locally of this
type.

Remark 2.2.3. The notion of integrable distribution extends that of integral
curve. Note that a distribution of rank 1 is a single vector field, hence is always
involutive since [X,X] = XX − XX = 0. The result on integral curves in the
preceding section can be rephrased saying that a rank 1 distribution is always
involutive and a foliation.

We aim to study foliations. The first step is to prove that Example 2.2.2 locally
describes any rank 1 foliation. The following is just a rephrasing of the existence
of integral curves with a local change of variables.
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Lemma 2.2.4. Let D = {X} be a rank 1 distribution, i.e. a non vanishing
vector field, on M . Let p ∈ M a point then there is a local chart (Up,ϕ) such that
for any q ∈ Up, X(q) = ∂1(q).

Proof. The statement is local therefore we may assume, after shrinking M ,
that M � B�(0) ⊂ Rm, moreover we may assume that X(0) = ∂1(0). Let X =�m

1 ai∂i, with ai smooth functions, a1(0) �= 0, for all q ∈ M , and ai(0) = 0 for
i ≥ 2. Consider the following system of ordinary differential equations

(9)
dxi

dx1
=

ai(x1, . . . , xm)

a1(x1, . . . , xm)
for i = 2, . . . ,m.

Then for any (z2, . . . , zm) the system has a unique solution

xi = f i(x1, . . . , xm),

with initial data
xi(0, z2, . . . , zm) = zi,

for i = 2, . . . ,m. Moreover the xi are smooth functions in the variables (x1, z2, . . . , zm).
Consider the following sistem

x1 = z1, x2 = x2(z1, . . . , zm), . . . , xm = xm(z1, . . . , zm).

By construction the Jacobian (∂xi/∂zj) evaluated in (0, . . . , 0) is the identity there-
fore by the inverse function theorem we may change coordinates from (x1, . . . , xm)
to (z1, . . . , zm). In these coordinates, by Equation (9), we may rewrite

X =
�

ai
∂

∂xi
=

�
(a1

∂xi

∂z1
)
∂

∂xi
= a1

∂

∂z1
.

To conclude it is then enough to normalize the first coordinate with

x1(z1, . . . , zn) :=

� z1

0

dt

a1(t, x2, . . . , xm)
.

�
Theorem 2.2.5 (Frobenius Theorem). Let M be a m-manifold and D a dis-

tribution of rank k. Then D is integrable if and only if it is involutive.

One direction of the Frobenius is clear. If D is integrable then the vector fields
X,Y ∈ D belong to TF ⊂ TM therefore [X,Y ] ∈ TF = D. To prove Frobenius
Theorem we start with a local version of it.

Proposition 2.2.6. Let D be an involutive distribution of rank k on M . Let
p ∈ M be a point, then there is a local chart (Up,ϕ) such that for all q ∈ Up we
have

Dq = �∂1(q), . . . , ∂k(q)�.
Proof. Let {X1, . . . , Xk} be a local basis for the distribution, after eventually

shrinking the open neighborhood of p. We prove the Proposition by induction on
k. The first step is Lemma 2.2.4. Then we may assume the Proposition is true
for distributions of rank k − 1. By Lemma 2.2.4 we have M � B�(0) ⊂ Rm and
Xk = ∂k. Define, for j ≤ k − 1 the vector fields

Yj = Xj −Xj(xk)Xk,

then Yj(xk) = 0, for j ≤ k − 1 and Xk(xk) = 1. Moreover by definition

D = �Y1, . . . , Yk−1, Xk�,
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and evaluating the bracket on xk we see that

0 = [Yi, Yj ](xk) = (
�

bijhYh)(xk) + aijXk(xk) = aij

hence

DY = �Y1, . . . , Yk−1�
is involutive. By induction hypothesis we have a coordinate system, say (y1, . . . , ym)
such that

{ ∂

∂yi
}i=1,...,k−1 = DY .

Since ∂
∂yi

, for i = 1, . . . , k− 1, is a linear combination of Yj , for i = 1, . . . , k− 1 we

still have
∂

∂yi
(xk) = 0,

for i = 1, . . . , k − 1. Let

(10) [
∂

∂yi
, Xk](xk) = (

k−1�

1

cikh
∂

∂yh
+ ciXk)(xk),

then, as before, evaluating on the function xk we get ci = 0. That is

(11) [
∂

∂yi
, Xk] =

k−1�

1

cikh
∂

∂yh
.

Let Xk =
�n

1 bj
∂

∂yj
, since ( ∂

∂yj
) is a local basis then plugging in Equation (11) we

get
∂bj
∂yi

= 0,

for i ≤ k − 1 and k ≤ j ≤ n. That is bj = bj(yk, . . . , ym) for j ≥ k. Let

Yk =
�m

j=k bj
∂

∂yj
, then

D = {Y1, . . . , Yk}.
Moreover by Lemma 2.2.4 there is a coordinate change, (y1, . . . , ym) to (z1, . . . , zm)
such that

yi = zi, for i = 1, . . . , k − 1,

and

Yk =
∂

∂zk
.

Hence in this coordinate system Yi =
∂
∂zi

, For i = 1, . . . k. �

We are now in the condition to conclude Frobenius Theorem.

Proof of Frobenius Theorem. We need to produce the leaves of a rank k
distribution D. Fix p ∈ M a point. Then by Proposition 2.2.6 there is a local chart
(Up,ϕ) such that D = �∂i�, for i ≤ k. Let π : Rm → Rm−k the projection onto the
last m− k coordinates then π ◦ ϕ is a smooth function of constant rank k and

ker(D(π ◦ ϕ)q) = Dq,

for any q ∈ Up. Therefore for any (zk+1, . . . , zm) ⊂ im(π ◦ ϕ), the subset (π ◦
ϕ)−1(zk+1, . . . , zm) is a k-manifold and it is the required leaf. �
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Remark 2.2.7. With some more effort, but no new ideas, one can prove that
the leaf passing through a point p is

Fp := {q ∈ M |there exists a piece-wise smooth integral curve of D joining p and q}.
We may use Frobenius Theorem to produce a new point of view on coordinates.

Corollary 2.2.8. Let M be a manifold assume that {X1, . . . , Xm} are vector
fields such that [Xi, Xj ] = 0 for any pair i, j and {X1(p), . . . , Xm(p)} is a local basis
for TpM . Then the Xi define local coordinates in a neighborhood of p.

Proof. By hypothesis {X1, . . . , Xm} is a distribution of rank m in a neigh-
borhood of p and by Frobenius it is integrable. Moreover, following the proof of
Proposition 2.2.6, this yields a change of coordinate change such that Xi =

∂
∂zi

, for
i = 1, . . . ,m. �

The above Corollary shifts the attention from coordinates to vector fields. This
is sometimes useful when treating special structures, coming from theoretical de-
scriptions, where it is difficult or even not possible to introduce explicit local coor-
dinates.

2.3. Vector bundles

We already realized how useful could be the Tangent bundle of a manifold. Let
M be a m-manifold and {Ui,ϕi} a DS, then

TM|Ui
� Rm × Ui.

In particular locally any manifold of dimension m has isomorphic tangent bundle
and the geometry of M encoded in TM only depends on the way we glue together
these pieces.

This suggests the possibility to define in an abstract way some gluing condition
and attach to a manifold M various type of objects like TM . Before plunging in
the abstract description let us work out a special example.

2.3.1. Cotangent bundle. Let M be a manifold of dimension m and f ∈
C∞(M) a smooth function. Then we have f : M → R and Df : TM → R. In
particular for any p ∈ M let

df(p) := Dfp : TpM → R.
Then df(p) is a linear map, that is a linear functional on TpM . Therefore we may
consider

df(p) ∈ TpM
∗.

As we did for the tangent bundle we define the set

TM∗ = ∪p∈MTpM
∗,

there is a natural projection π : TM∗ → M , and df is just a section of π. As we
did for TM let us work out a DS to produce a manifold.

Let {Ui,ϕi} be a DS on M , with local coordinates (x1(p), . . . , xm(p)). Then,
keep in mind Remark 1.7.16, define

(dxi(p), . . . , dxm(p))

the dual basis of TpM
∗. It is worthwhile to spend a couple of lines on this dual

basis.
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Remark 2.3.1. We know that TUi = Ui×Rm and {∂1, . . . , ∂m} are vector fields
such that for any p ∈ Ui, the set {∂1(p), . . . , ∂m(p)} is a basis of TpM . Therefore
we may define

dxi : Ui → Ui × (Rm)∗

as

dxi(p)(∂j(p)) = δij .

The dxi are sections of the map

π : ∪p∈Ui
TpM

∗ → Ui

and {dx1(p), . . . , dxm(p)} is a basis of TpM
∗ for any p ∈ Ui.

Since Ui is a local chart it is easy to see that dxi are smooth morphism with
the usual DS of the product. This also offers a closer look on the differential of a
function f ∈ C∞(Ui). For any vector X(p) ∈ TpM the element dxi(p) assigns a
number dxi(p)(X(p)) that is the ith component of X(p) in the base {∂i(p)}. For
f ∈ C∞(Ui) we have by definition

∂f

∂xi
(p) = Dfp(∂i(p)).

Hence we may rewrite df in the local base {dxi} as

df =
�

i

∂f

∂xi
dxi.

Since df(p) is a linear form on TpM we may apply it to a vector field X ∈ X (M).
We defined df(p) = Dfp hence we have

df(p)(Xp) = Xp(f),

for Xp ∈ D(M)p a derivation. This shows that we may apply df to a vector field
X ∈ X (Ui) to get a an element in C∞(M)

df(X)(p) := X(p)(f).

Thus df is a field of linear functions and df(X(p)) is a linear approximation of f in
the direction of X(p) In particular in the local expression we found we have

df(X)(p) =
�

i

∂f

∂xi
(p)dxi(p)(X(p)).

Let us go back to the DS. Note that for any smooth function F : M → N we
have the differential DF : TM → TN . Since DFp : TpM → Tf(p)N is a linear map
we have the transposed linear map DF ∗

p : TF (p)N
∗ → TpM

∗ where

DF ∗
p (h)(v) = h(DFp(v)),

and, with the choice of canonical dual basis, DF ∗
p is given by the transpose matrix

of DFp. Hence fix a local chart ϕi : Ui → V and dual basis {dxi}. Then we define
a local chart on TU∗

i by

(ϕi, (D(ϕ−1
i )t)) : TU∗

i → Ui × Rm.

In particular, recalling Equation (5) at page 20, the change of coordinates is
given by

(ϕi ◦ ϕ−1
j , (D(ϕ−1

i ◦ ϕj)
t).

We proved the following
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Proposition 2.3.2. Let M be a m-manifold. Then the cotangent bundle
TM∗ is a 2m-manifold and π : TM∗ → M is a smooth map.

As in the Tangent bundle case, sections of cotangent bundle have a geometric
meaning.

Definition 2.3.3. A section of π : TM∗ → M is called a differential 1-form.
The space of differential 1-forms is called Ω1(M).

Remark 2.3.4. One forms are given, locally, by

�
aj(x1, . . . , xm)dxj ,

for aj ∈ C∞(Ui). In particular for any f ∈ C∞(M) we may write

df =
� ∂f

∂xi
dxi ∈ Ω1(M)

this defines the (external) differentiation

d : C∞(M) → Ω1(M).

The image of this map is the set of exact forms.

Differential 1-forms, and their friends k-forms obtaining wedging the former,
are related to integration on manifolds and Riemannian geometry, see [2] for an
excellent introduction.

An important, and quite surprising, difference between vector fields and 1-forms
is the behaviour with respect to morphisms. We observed that in general it is not
possible to define a vector field through a morphism, recall Remark 1.7.26. On the
other hand let F : M → N be a morphism and α ∈ Ω1(N) a 1-form. Then we may
define

F ∗α(v) = α(DF (v)),

for v ∈ TpM , and it is a straightforward check, left to the reader, that F ∗α is a
1-form. This produces the pull-back map for 1-forms

F ∗ : Ω1(N) → Ω1(M).

Further note that this operation commutes with differentiation of functions, that
is d(F ∗(f)) = F ∗(df), where F ∗(f) := f ◦ F .

Via the pull-back it is possible to produce 1-forms on submanifolds of a manifold
M . Indeed let N ⊂ M be a submanifold and α ∈ Ω1(M). Then i∗α ∈ Ω1(N), where
i : N → M is an embedding. In particular via the 1-forms of RN we produce 1-
forms on a submanifold N ⊂ RN . In general the behaviour of i∗α form may be
different from that of α.

Example 2.3.5. Let M ⊂ RN be a submanifold, and α = dx1 ∈ Ω1(RN ).
Then α is never zero, that is α(p) is not the zero form for any p ∈ RN . On the
other hand if q ∈ M is such that TqM ⊂ (1, 0, . . . , 0)⊥, then i∗α(p) is zero. This
suggests that pull-back form may be used to study the geometry of submanifolds.
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2.3.2. Vector bundles. It is time to provide an abstract description, and
hence a generalization, of the bundles we introduced so far.

Definition 2.3.6. Let M and F be manifolds. A (smooth) fibration on M
with fiber F is

a) a manifold E
b) a morphism π : E → M
c) an open covering {Ui}
d) diffeomorphisms fi : π

−1Ui → Ui × F that commutes with π

The diffeomorphisms fi are called trivializations. We may, and will, assume that
{Ui,ϕi} are a DS on M .

Note that the diffeomorphism fi forces π
−1(x) � F for any x ∈ M . Moreover

we have the transition function fij = fi ◦ f−1
j that are diffeomorphisms on

Uij × F , where Uij = Ui ∩ Uj . In particular for any x ∈ Uij the map fij|{x}×F is
a diffeomorphism of F . The commutation in d) forces also the following cocycle
conditions

fij = f−1
ji fijfjk = fik.

A section of a fibration π : E → M is a smooth map s : M → E such that
π ◦ s = idM .

We will not develop the theory of fibrations in full generality, for this the
interested reader may refer to [3]. We restrict to vector bundles where both the
fibers and the diffeomorphisms are particularly simple.

Definition 2.3.7. A rank k (real) vector bundle is a fibration π : E → M
with F � Rk and diffeomorphism

fij|{x}×Rk ∈ GL(k,R), for any x ∈ Uij .

Remark 2.3.8. The manifold M × Rk is naturally a vector bundle, called the
trivial vector bundle. We may use the DS {(Ui,ϕi)} to define a DS on M ×Rk via

(ϕi, idRk) ◦ fi : π−1(Ui) → Rm × Rk.

TM and TM∗ are m-vector bundles with trivialization given, respectively, by
(ϕi, Dϕi) and (ϕi, (Dϕ−1

i )t).
Examples of fibrations, different from vector bundles, are:

• any diffeomorphism is a fibration with fiber a connected 0-manifold,
• the antipodal map a : Sn → Pn

R as a fibration with F = {p,−p},
• the Hopf fibration

h : S3 → S2 (a, b, c, d) �→ (a2 + b2 − c2 − d2, 2(ad+ bc), 2(bd− ac)).

an S1 fibration over S2. A way to see this is to consider it on complex
numbers, there it can be defined as h(z0, z1) = (|z0|2− |z1|2, 2z0z1), where
we realize S3 := {(z0, z1) ∈ C2||z0|2 + |z1|2 = 1} and S2 := {(x,w) ∈
R×C||w|2+x2 = 1}. Then it is not difficult to see that h(z0, z1) = h(z2, z3)
if and only if there is a λ ∈ C with |λ|2 = 1 such that z2 = λz0 and
z3 = λz1. This shows that the fibers are S1. With more effort one can
prove that it is a fibration.

Note that the geometric information carried by a vector bundle are all encoded
in its transition functions.

There are some operations we may perform on vector bundles.
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2.3.2.1. Restriction. Let π : E → M be a k-vector bundle and N ⊂ M a
submanifold. Then π|π−1(N) : π−1(N) → N is a k-vector bundle on N and the
trivialization functions are exactly the same fiberwise.

2.3.2.2. Product. Let E → M and G → N be rank a and b vector bundles.
Then E × G → M × N is naturally a (a + b)-vector bundle. When M = N we
may go a bit further. Let Δ ⊂ M ×M be the diagonal. Then it is easy to see that
Δ � M , by projection on one of the factors, therefore we may define, by restriction,
E×G as a rank (a+b) vector bundle on M , this is usually called either the product
vector bundle or the direct sum.

2.3.2.3. Dual, tensor, wedge, sym. All standard operations on vector spaces
can be carried out on vector bundles. We already encountered the dual during the
construction of the cotangent bundle. In a similar fashion we may define E ⊗ G,�r

G and Syms(E) using as transition functions the corresponding matrices.
2.3.2.4. Morphisms. Let πE : E → M and πG : G → N be two rank a and b

vector bundles. Let h : E → G, be a smooth map such that it induces a smooth
function h̃ : M → N , that is h̃◦πE = πG ◦h. Then hx := h|Fx

: Fx � Ra → Fh̃(x) �
Rb is a map for any x ∈ M .

Definition 2.3.9. We say that h is a vector bundle morphism if hx is a
linear map for any x ∈ M and we will say it is *-jective if hx is *-jective. The
map h is a vector bundle isomorphism if h̃ is a diffeomorphism and hx is a linear
isomorphism, for any x ∈ M .

Remark 2.3.10. The differential of a smooth function Df : TM → TN is a
vector bundle morphism. Given a manifold M and two vector bundles E → M and
G → M of rank a and b. A vector bundle morphism that commutes with idM is
simply given by a smooth function ψ : M → Ma,b(R).

Note that for any vector bundle morphism h(Fx) ⊂ Fh̃(x) is a vector subspace.

The sum and scalar multiplication on a vector bundle E are vector bundle
morphisms.

Definition 2.3.11. Let h : E/M → G/M be an injective vector bundle mor-
phism inducing the identity, then h(E) ⊂ G may be seen in a natural way as a
subvector bundle A vector subbundle is the image of an injective vector bundle
morphism, that induces the identity on the base.

Let E ⊂ G be a vector subbundle of rank a ≤ b. Then it is natural to consider
its quotient Q. Fiberwise the associated vector space is just Qx = Gx/Ex. To define
it globally observe that E ⊂ G is given by a smooth function q : M → Ma,b(R)
and for any x ∈ M the matrix q(x) has a independent columns. Since we may
work locally we assume that the first a columns are independent on W ⊂ M and
therefore we may identify Qx with {x1 = . . . = xa = 0} ⊂ Rb, define locally
Q = ∪Qx together with a map

W × Rb−a → Q (p, (x1, . . . , xb−a)) �→ (p, (0, . . . , 0, x1, . . . , xb−a)).

This defines the quotient bundle. There is a quotient bundle that is particularly
interesting for us. Let X ⊂ M be a submanifold. Then we have the inclusion
embedding i : X → M that gives as a bundle morphism Di : TX → TM , it is easy
to check that it is an injective morphism and moreover if we take the restriction
Di(TX)|X we may look at it as a subbundle of TM|X . Therefore we have a well
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defined quotient
NX := TM|X/Di(TX),

the normal bundle ofX inM . Note thatNX is a vector bundle of rankm−dimX.

Remark 2.3.12. We can now reinterpret the notion of distribution. A rank k
distribution D on a manifold M is a vector subbundle E ⊂ TM of rank k. The
integrability condition is just to say that for any point p ∈ M there is k-submanifold
Np ⊂ M such that D|Np

= TN .

2.4. Exercises

Exercise 2.4.1. Let X1 = y2∂x and X2 = x2∂y be two vector field on R2.
Prove that X1 and X2 are complete but X1 +X2 is not complete.

Exercise 2.4.2. Let {X1, . . . , Xs} be a local basis for a distribution D. Prove
that D is involutive if [Xi, Xj ] ∈ D.

Exercise 2.4.3. Determine which of the following local bases produce an in-
tegrable distribution on an open subset of R3:

- {∂x + ∂y, ∂z}
- {5∂x, 7∂z}
- {y∂x + cos(x)∂z − 77 sin(z + y2)∂y}
- {∂x − ∂y, ∂z − ∂x, ∂y − ∂x}
- {∂x + y∂z, ∂y}
- {y∂x, x∂y}

Exercise 2.4.4. Let D be the distribution on R3 associated to the local basis
{x1∂2 − x2∂1, ∂3}. Prove that it is integrable and find the leaf of the foliation.

Exercise 2.4.5. Let F : M → N be a surjective map of constant rank. Show
that for any p ∈ N the sets F−1(p) are the leaves of a foliation.

Exercise 2.4.6. Show that on R any 1-form is exact. Produce a non exact one
form on S1.

Exercise 2.4.7. Let π : E → M be a rank a vector bundle. Let f : N → M
be a smooth map. Let

f∗E := {(x, v) ∈ N × E|f(x) = π(v)} ⊂ N × E

be the pull-back vector bundle. Prove that the projection on the first factor has a
natural structure of vector bundle and the projection on the second factor produces
a commutative diagram

f∗E
F ��

π1

��

E

π

��
N

f �� M

.

Show that if E is trivial then f∗E is trivial.

Exercise 2.4.8. LetG := {([x], v) ∈ P1
R×R2|v ∈ x}, prove that it is a manifold.

Prove that the canonical projection on the first factor is a vector bundle. Prove
that it is not the trivial vector bundle. (same for Pn

R)

Exercise 2.4.9. Determine the normal bundle of a plane P ⊂ R3 and of
S2 ⊂ R3
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Exercise 2.4.10. Let π : E → M be a rank k-vector bundle. Assume that
there are k sections {s1, . . . sk} such that {s1(x), . . . , sk(x)} are linearly independent
for any x ∈ M . Prove that E = M × Rk.


