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1 Introduction

This is a course on projective geometry. Probably your idea of geometry in the past
has been based on triangles in the plane, Pythagoras’ Theorem, or something more
analytic like three-dimensional geometry using dot products and vector products. In
either scenario this is usually called Euclidean geometry and it involves notions like
distance, length, angles, areas and so forth. So what’s wrong with it? Why do we
need something different?

Here are a few reasons:

• Projective geometry started life over 500 years ago in the study of perspective
drawing: the distance between two points on the artist’s canvas does not rep-
resent the true distance between the objects they represent so that Euclidean
distance is not the right concept.

The techniques of projective geometry, in particular homogeneous coordinates,
provide the technical underpinning for perspective drawing and in particular
for the modern version of the Renaissance artist, who produces the computer
graphics we see every day on the web.

• Even in Euclidean geometry, not all questions are best attacked by using dis-
tances and angles. Problems about intersections of lines and planes, for example
are not really metric. Centuries ago, projective geometry used to be called “de-
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scriptive geometry” and this imparts some of the flavour of the subject. This
doesn’t mean it is any less quantitative though, as we shall see.

• The Euclidean space of two or three dimensions in which we usually envisage
geometry taking place has some failings. In some respects it is incomplete and
asymmetric, and projective geometry can counteract that. For example, we
know that through any two points in the plane there passes a unique straight
line. But we can’t say that any two straight lines in the plane intersect in a
unique point, because we have to deal with parallel lines. Projective geometry
evens things out – it adds to the Euclidean plane extra points at infinity, where
parallel lines intersect. With these new points incorporated, a lot of geometrical
objects become more unified. The different types of conic sections – ellipses,
hyperbolas and parabolas – all become the same when we throw in the extra
points.

• It may be that we are only interested in the points of good old R2 and R3 but
there are always other spaces related to these which don’t have the structure of
a vector space – the space of lines for example. We need to have a geometrical
and analytical approach to these. In the real world, it is necessary to deal with
such spaces. The CT scanners used in hospitals essentially convert a series
of readings from a subset of the space of straight lines in R3 into a density
distribution.

At a simpler level, an optical device maps incoming light rays (oriented lines)
to outgoing ones, so how it operates is determined by a map from the space of
straight lines to itself.
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Projective geometry provides the means to describe analytically these auxiliary
spaces of lines.

In a sense, the basic mathematics you will need for projective geometry is something
you have already been exposed to from your linear algebra courses. Projective ge-
ometry is essentially a geometric realization of linear algebra, and its study can also
help to make you understand basic concepts there better. The difference between
the points of a vector space and those of its dual is less apparent than the difference
between a point and a line in the plane, for example. When it comes to describing the
space of lines in three-space, however, we shall need some additional linear algebra
called exterior algebra which is essential anyway for other subjects such as differential
geometry in higher dimensions and in general relativity. At this level, then, you will
need to recall the basic properties of :

• vector spaces, subspaces, sums and intersections

• linear transformations

• dual spaces

After we have seen the essential features of projective geometry we shall step back
and ask the question “What is geometry?” One answer given many years ago by Felix
Klein was the rather abstract but highly influential statement: “Geometry is the
study of invariants under the action of a group of transformations”. With this point
of view both Euclidean geometry and projective geometry come under one roof. But
more than that, non-Euclidean geometries such as spherical or hyperbolic geometry
can be treated in the same way and we finish these lectures with what was historically
a driving force for the study of new types of geometry — Euclid’s axioms and the
parallel postulate.

2 Projective spaces

2.1 Basic definitions

Definition 1 Let V be a vector space. The projective space P (V ) of V is the set of
1-dimensional vector subspaces of V .

Definition 2 If the vector space V has dimension n + 1, then P (V ) is a projective
space of dimension n. A 1-dimensional projective space is called a projective line, and
a 2-dimensional one a projective plane.
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For most of the course, the field F of scalars for our vector spaces will be either the
real numbers R or complex numbers C. Our intuition is best served by thinking of
the real case. So the projective space of Rn+1 is the set of lines through the origin.
Each such line intersects the unit n-sphere Sn = {x ∈ Rn+1 :

∑
i x

2
i = 1} in two

points ±u, so from this point of view P (Rn+1) is Sn with antipodal points identified.
Since each line intersects the lower hemisphere, we could equally remove the upper
hemisphere and then identify opposite points on the equatorial sphere.

When n = 1 this is just identifying the end points of a semicircle which gives a circle,
but when n = 2 it becomes more difficult to visualize:

If this were a course on topology, this would be a useful starting point for looking at
some exotic topological spaces, but it is less so for a geometry course. Still, it does
explain why we should think of P (Rn+1) as n-dimensional, and so we shall write it
as P n(R) to make this more plain.

A better approach for our purposes is the notion of a representative vector for a point
of P (V ). Any 1-dimensional subspace of V is the set of multiples of a non-zero vector
v ∈ V . We then say that v is a representative vector for the point [v] ∈ P (V ). Clearly
if λ 6= 0 then λv is another representative vector so

[λv] = [v].

Now suppose we choose a basis {v0, . . . , vn} for V . The vector v can be written

v =
n∑

i=0

xivi

and the n + 1-tuple (x0, . . . , xn) provides the coordinates of v ∈ V . If v 6= 0 we write
the corresponding point [v] ∈ P (V ) as [v] = [x0, x1, . . . , xn] and these are known as
homogeneous coordinates for a point in P (V ). Again, for λ 6= 0

[λx0, λx1, . . . , λxn] = [x0, x1, . . . , xn].

Homogeneous coordinates give us another point of view of projective space. Let
U0 ⊂ P (V ) be the subset of points with homogeneous coordinates [x0, x1, . . . , xn]
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such that x0 6= 0. (Since if λ 6= 0, x0 6= 0 if and only if λx0 6= 0, so this is a
well-defined subset, independent of the choice of (x0, . . . , xn)). Then, in U0,

[x0, x1, . . . , xn] = [x0, x0(x1/x0), . . . , x0(xn/x0)] = [1, (x1/x0), . . . , (xn/x0)].

Thus we can uniquely represent any point in U0 by one of the form [1, y1, . . . , yn], so

U0
∼= F n.

The points we have missed out are those for which x0 = 0, but these are the 1-
dimensional subspaces of the n-dimensional vector subspace spanned by v1, . . . , vn,
which is a projective space of one lower dimension. So, when F = R, instead of
thinking of P n(R) as Sn with opposite points identified, we can write

P n(R) = Rn ∪ P n−1(R).

A large chunk of real projective n-space is thus our familiar Rn.

Example: The simplest example of this is the case n = 1. Since a one-dimensional
projective space is a single point (if dim V = 1, V is the only 1-dimensional subspace)
the projective line P 1(F ) = F ∪ pt. Since [x0, x1] maps to x1/x0 ∈ F we usually call
this extra point [0, 1] the point∞. When F = C, the complex numbers, the projective
line is what is called in complex analysis the extended complex plane C ∪ {∞}.

Having said that, there are many different copies of F n inside P n(F ), for we could
have chosen xi instead of x0, or coordinates with respect to a totally different basis.
Projective space should normally be thought of as a homogeneous object, without
any distinguished copy of F n inside.

2.2 Linear subspaces

Definition 3 A linear subspace of the projective space P (V ) is the set of 1-dimensional
vector subspaces of a vector subspace U ⊆ V .

Note that a linear subspace is a projective space in its own right, the projective space
P (U).

Recall that a 1-dimensional projective space is called a projective line. We have the
following two propositions which show that projective lines behave nicely:
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Proposition 1 Through any two distinct points in a projective space there passes a
unique projective line.

Proof: Let P (V ) be the projective space and x, y ∈ P (V ) distinct points. Let u, v
be representative vectors. Then u, v are linearly independent for otherwise u = λv
and

x = [u] = [λv] = [v] = y.

Let U ⊆ V be the 2-dimensional vector space spanned by u and v, then P (U) ⊂ P (V )
is a line containing x and y.

Suppose P (U ′) is another such line, then u ∈ U ′ and v ∈ U ′ and so the space spanned
by u, v (namely U) is a subspace of U ′. But U and U ′ are 2-dimensional so U = U ′

and the line is thus unique. 2

Proposition 2 In a projective plane, two distinct projective lines intersect in a
unique point.

Proof: Let the projective plane be P (V ) where dim V = 3. Two lines are defined
by P (U1), P (U2) where U1, U2 are distinct 2-dimensional subspaces of V . Now from
elementary linear algebra

dim V ≥ dim(U1 + U2) = dim U1 + dim U2 − dim(U1 ∩ U2)

so that
3 ≥ 2 + 2− dim(U1 ∩ U2)

and
dim(U1 ∩ U2) ≥ 1.

But since U1 and U2 are 2-dimensional,

dim(U1 ∩ U2) ≤ 2

with equality if and only if U1 = U2. As the lines are distinct, equality doesn’t occur
and so we have the 1-dimensional vector subspace

U1 ∩ U2 ⊂ V

which is the required point of intersection in P (V ). 2
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Remark: The model of projective space as the sphere with opposite points identified
illustrates this proposition, for a projective line in P 2(R) is defines by a 2-dimensional
subspace of R3, which intersects the unit sphere in a great circle. Two great circles
intersect in two antipodal points. When we identify opposite points, we just get one
intersection.

Instead of the spherical picture, let’s consider instead the link between projective lines
and ordinary lines in the plane, using the decomposition

P 2(R) = R2 ∪ P 1(R).

Here we see that the real projective plane is the union of R2 with a projective line
P 1(R). Recall that this line is given in homogeneous coordinates by x0 = 0, so
it corresponds to the 2-dimensional space spanned by (0, 1, 0) and (0, 0, 1). Any 2-
dimensional subspace of R3 is defined by a single equation

a0x0 + a1x1 + a2x2 = 0

and if a1 and a2 are not both zero, this intersects U0
∼= R2 (the points where x0 6= 0)

where
0 = a0 + a1(x1/x0) + a2(x2/x0) = a0 + a1y1 + a2y2

which is an ordinary straight line in R2 with coordinates y1, y2. The projective line
has one extra point on it, where x0 = 0, i.e. the point [0, a2,−a1]. Conversely, any
straight line in R2 extends uniquely to a projective line in P 2(R).

Two lines in R2 are parallel if they are of the form

a0 + a1y1 + a2y2 = 0, b0 + a1y1 + a2y2 = 0
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but then the added point to make them projective lines is the same one: [0, a2,−a1],
so the two lines meet at a single point on the “line at infinity” P 1(R).

2.3 Projective transformations

If V, W are vector spaces and T : V → W is a linear transformation, then a vector
subspace U ⊆ V gets mapped to a vector subspace T (U) ⊆ W . If T has a non-
zero kernel, T (U) may have dimension less than that of U , but if ker T = 0 then
dim T (U) = dim U . In particular, if U is one-dimensional, so is T (U) and so T gives
a well-defined map

τ : P (V ) → P (W ).

Definition 4 A projective transformation from P (V ) to P (W ) is the map τ defined
by an invertible linear transformation T : V → W .

Note that if λ 6= 0, then λT and T define the same linear transformation since

[(λT )(v)] = [λ(T (v))] = [T (v)].

The converse is also true: suppose T and T ′ define the same projective transformation
τ . Take a basis {v0, . . . , vn} for V , then since

τ([vi]) = [T ′(vi)] = [T (vi)]

we have
T ′(vi) = λiT (vi)

for some non-zero scalars λi and also

T ′(
n∑

i=0

vi) = λT (
n∑

i=0

vi)

for some non-zero λ. But then

n∑
i=0

λT (vi) = λT (
n∑

i=0

vi) = T ′(
n∑

i=0

vi) =
n∑

i=0

λiT (vi).

Since T is invertible, T (vi) are linearly independent, so this implies λi = λ. Then
T ′(vi) = λT (vi) for all basis vectors and hence for all vectors and so

T ′ = λT.
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Example: You are, in fact, already familiar with one class of projective transfor-
mations – Möbius transformations of the extended complex plane. These are just
projective transformations of the complex projective line P 1(C) to itself. We de-
scribe points in P 1(C) by homogeneous coordinates [z0, z1], and then a projective
transformation τ is given by

τ([z0, z1]) = ([az0 + bz1, cz0 + dz1])

where ad− bc 6= 0. This corresponds to the invertible linear transformation

T =

(
a b
c d

)
.

It is convenient to write P 1(C) = C∪{∞} where the point∞ is now the 1-dimensional
space z1 = 0. Then if z1 6= 0, [z0, z1] = [z, 1] and

τ([z, 1]) = [az + b, cz + d]

and if cz + d 6= 0 we can write

τ([z, 1]) = [
az + b

cz + d
, 1]

which is the usual form of a Möbius transformation, i.e.

z 7→ az + b

cz + d
.

The advantage of projective geometry is that the point ∞ = [1, 0] plays no special
role. If cz + d = 0 we can still write

τ([z, 1]) = [az + b, cz + d] = [az + b, 0] = [1, 0]

and if z = ∞ (i.e. [z0, z1] = [1, 0]) then we have

τ([1, 0]) = [a, c].

Example: If we view the real projective plane P 2(R) in the same way, we get some
less familiar transformations. Write P 2(R) = R2 ∪ P 1(R) where the projective line
at infinity is x0 = 0. A linear transformation T : R3 → R3 can then be written as
the matrix

T =

 d b1 b2

c1 a11 a12

c2 a21 a22
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and its action on [1, x, y] can be expressed, with v = (x, y) ∈ R2, as

v 7→ 1

b · v + d
(Av + c)

where A is the 2 × 2 matrix aij and b, c the vectors (b1, b2), (c2, c2). These are the
2-dimensional versions of Möbius transformations. Each one can be considered as a
composition of

• an invertible linear transformation v 7→ Av

• a translation v 7→ v + c

• an inversion v 7→ v/(b · v + d)

Clearly it is easier here to consider projective transformations defined by 3 × 3 ma-
trices, just ordinary linear algebra.

Example: A more geometric example of a projective transformation is to take two
lines P (U), P (U ′) in a projective plane P (V ) and let K ∈ P (V ) be a point disjoint
from both. For each point x ∈ P (U), the unique line joining K to x intersects P (U ′)
in a unique point X = τ(x). Then

τ : P (U) → P (U ′)

is a projective transformation.

To see why, let W be the 1-dimensional subspace of V defined by K ∈ P (V ). Then
since K does not lie in P (U ′), W ∩ U ′ = 0. This means that

V = W ⊕ U ′.

Now take a ∈ U as a representative vector for x. It can be expressed uniquely as
a = w + a′, with w ∈ W and a′ ∈ U ′. The projective line joining K to x is defined
by the 2-dimensional vector subspace of V spanned by w and a and so a′ = a− w is
a representative vector for τ(x). In linear algebra terms the map a 7→ a′ is just the
linear projection map P : V → U ′ restricted to U . It has zero kernel since K does
not lie in P (U), and hence W ∩U = 0. Thus T : U → U ′ is an isomorphism and τ is
a projective transformation.

If we restrict to the points in R2, then this is what this projection from K looks like:
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A linear transformation of a vector space of dimension n is determined by its value on
n linearly independent vectors. A similar statement holds in projective space. The
analogue of linear independence is the following

Definition 5 Let P (V ) be an n-dimensional projective space, then n + 2 points in
P (V ) are said to be in general position if each subset of n+1 points has representative
vectors in V which are linearly independent.

Example: Any two distinct points in a projective line are represented by linearly
independent vectors, so any three distinct points are in general position.

Theorem 3 If X1, . . . , Xn+2 are in general position in P (V ) and Y1, . . . , Yn+2 are
in general position in P (W ), then there is a unique projective transformation τ :
P (V ) → P (W ) such that τ(Xi) = Yi, 1 ≤ i ≤ n + 2.

Proof: First choose representative vectors v1, . . . , vn+2 ∈ V for the points X1, . . . , Xn+2

in P (V ). By general position the first n + 1 vectors are linearly independent, so they
form a basis for V and there are scalars λi such that

vn+2 =
n+1∑
i=1

λivi (1)

If λi = 0 for some i, then (1) provides a linear relation amongst a subset of n + 1
vectors, which is not possible by the definition of general position, so we deduce that
λi 6= 0 for all i. This means that each λivi is also a representative vector for xi, so
(1) tells us that we could have chosen representative vectors vi such that

vn+2 =
n+1∑
i=1

vi (2)
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Moreover, given vn+2, these vi are unique for

n+1∑
i=1

vi =
n+1∑
i=1

µivi

implies µi = 1 since v1, . . . , vn+1 are linearly independent.

[Note: This is a very useful idea which can simplify the solution of many problems ].

Now do the same for the points Y1, . . . Yn+2 in P (W ) and choose representative vectors
such that

wn+2 =
n+1∑
i=1

wi (3)

Since v1, . . . , vn+1 are linearly independent, they form a basis for V so there is a
unique linear transformation T : V → W such that Tvi = wi for 1 ≤ i ≤ n + 1. Since
w1, . . . , wn+1 are linearly independent, T is invertible. Furthermore, from (2) and (3)

Tvn+2 =
n+1∑
i=1

Tvi =
n+1∑
i=1

wi = wn+2

and so T defines a projective transformation τ such that τ(Xi) = Yi for all n + 2
vectors vi.

To show uniqueness, suppose T ′ defines another projective transformation τ ′ with the
same property. Then T ′vi = µiwi and

µn+2wn+2 = T ′vn+2 =
n+1∑
i=1

T ′vi =
n+1∑
i=1

µiwi.

But by the uniqueness of the representation (3), we must have µi/µn+2 = 1, so that
T ′vi = µn+2Tvi and τ ′ = τ . 2

Examples:

1. In P 1(C) take the three distinct points [0, 1], [1, 1], [1, 0] and any other three distinct
points X1, X2, X3. Then there is a unique projective transformation taking X1, X2, X3

to [0, 1], [1, 1], [1, 0]. In the language of complex analysis, we can say that there is a
unique Möbius transformation taking any three distinct points to 0, 1,∞.

2. In any projective line we could take the three points [0, 1], [1, 1], [1, 0] and then
for X1, X2, X3 any permutation of these. Now projective transformations of a space
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to itself form a group under composition, so we see that the group of projective
transformations of a line to itself always contains a copy of the symmetric group S3.
In fact if we take the scalars to be the field Z2 with two elements 0 and 1, the only
points on the projective line are [0, 1], [1, 1], [1, 0], and S3 is the full group of projective
transformations.

As an example of the use of the notion of general position, here is a classical theorem
called Desargues’ theorem. In fact, Desargues (1591-1661) is generally regarded as the
founder of projective geometry. The proof we give here uses the method of choosing
representative vectors above.

Theorem 4 (Desargues) Let A, B, C,A′, B′, C ′ be distinct points in a projective space
P (V ) such that the lines AA′, BB′ CC ′ are distinct and concurrent. Then the three
points of intersection AB ∩ A′B′, BC ∩B′C ′, CA ∩ C ′A′ are collinear.

Proof: Let P be the common point of intersection of the three lines AA′, BB′, CC ′.
Since P, A, A′ lie on a projective line and are distinct, they are in general position, so
as in (2) we choose representative vectors p, a, a′ such that

p = a + a′.

These are vectors in a 2-dimensional subspace of V . Similarly we have representative
vectors b, b′ for B, B′ and c, c′ for C, C ′ with

p = b + b′ p = c + c′.

It follows that a + a′ = b + b′ and so

a− b = b′ − a′ = c′′

and similarly
b− c = c′ − b′ = a′′ c− a = a′ − c′ = b′′.

But then
c′′ + a′′ + b′′ = a− b + b− c + c− a = 0

and a′′, b′′, c′′ are linearly independent and lie in a 2-dimensional subspace of V . Hence
the points A′′, B′′, C ′′ in P (V ) represented by a′′, b′′, c′′ are collinear.

Now since c′′ = a − b, c′′ lies in the 2-dimensional space spanned by a and b, so C ′′

lies on the line AB. Since c′′ also equals b′ − a′, C ′′ lies on the line A′B′ and so c′′

represents the point AB ∩ A′B′. Repeating for B′′ and A′′ we see that these are the
three required collinear points. 2
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Desargues’ theorem is a theorem in projective space which we just proved by linear
algebra – linear independence of vectors. However, if we take the projective space
P (V ) to be the real projective plane P 2(R) and then just look at that part of the
data which lives in R2, we get a theorem about perspective triangles in the plane:

Here is an example of the use of projective geometry – a “higher form of geometry”
to prove simply a theorem in R2 which is less accessible by other means. Another
theorem in the plane for which these methods give a simple proof is Pappus’ theorem.
Pappus of Alexandria (290-350) was thinking again of plane Euclidean geometry, but
his theorem makes sense in the projective plane since it only discusses collinearity
and not questions about angles and lengths. It means that we can transform the
given configuration by a projective transformation to a form which reduces the proof
to simple linear algebra calculation:

Theorem 5 (Pappus) Let A, B, C and A′, B′, C ′ be two pairs of collinear triples of
distinct points in a projective plane. Then the three points BC ′∩B′C, CA′∩C ′A, AB′∩
A′B are collinear.

Proof: Without loss of generality, we can assume that A, B, C ′, B′ are in general
position. If not, then two of the three required points coincide, so the conclusion is
trivial. By Theorem 3, we can then assume that

A = [1, 0, 0], B = [0, 1, 0], C ′ = [0, 0, 1], B′ = [1, 1, 1].

The line AB is defined by the 2-dimensional subspace {(x0, x1, x2) ∈ F 3 : x2 = 0}, so
the point C, which lies on this line, is of the form C = [1, c, 0] and c 6= 0 since A 6= C.
Similarly the line B′C ′ is x0 = x1, so A′ = [1, 1, a] with a 6= 1.
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The line BC ′ is defined by x0 = 0 and B′C is defined by the span of (1, 1, 1) and
(1, c, 0), so the point BC ′ ∩ B′C is represented by the linear combination of (1, 1, 1)
and (1, c, 0) for which x0 = 0, i.e.

(1, 1, 1)− (1, c, 0) = (0, 1− c, 1).

The line C ′A is given by x1 = 0, so similarly CA′ ∩ C ′A is represented by

(1, c, 0)− c(1, 1, a) = (1− c, 0,−ca).

Finally AB′ is given by x1 = x2, so AB′ ∩ A′B is

(1, 1, a) + (a− 1)(0, 1, 0) = (1, a, a).

But then
(c− 1)(1, a, a) + (1− c, 0,−ca) + a(0, 1− c, 1) = 0.

Thus the three vectors span a 2-dimensional subspace and so the three points lie on
a projective line. 2

2.4 Duality

Projective geometry gives, as we shall see, a more concrete realization of the linear
algebra notion of duality. But first let’s recall what dual spaces are all about. Here
are the essential points:

• Given a finite-dimensional vector space V over a field F , the dual space V ′ is
the vector space of linear transformations f : V → F .
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• If v1, . . . , vn is a basis for V , there is a dual basis f1, . . . fn of V ′ characterized
by the property fi(vj) = 1 if i = j and fi(vj) = 0 otherwise.

• If T : V → W is a linear transformation, there is a natural linear transformation
T ′ : W ′ → V ′ defined by T ′f(v) = f(Tv).

Although a vector space V and its dual V ′ have the same dimension there is no
natural way of associating a point in one with a point in the other. We can do so
however with vector subspaces:

Definition 6 Let U ⊆ V be a vector subspace. The annihilator U o ⊂ V ′ is defined
by U o = {f ∈ V ′ : f(u) = 0 for all u ∈ U}.

The annihilator is clearly a vector subspace of V ′ since f(u) = 0 implies λf(u) = 0
and if also g(u) = 0 then (f + g)(u) = f(u) + g(u) = 0. Furthermore, if U1 ⊆ U2 and
f(u) = 0 for all u ∈ U2, then in particular f(u) = 0 for all u ∈ U1, so that

U o
2 ⊆ U o

1 .

We also have:

Proposition 6 dim U + dim U o = dim V .

Proof: Let u1, . . . , um be a basis for U and extend to a basis u1, . . . , um, v1, . . . , vn−m

of V . Let f1, . . . , fn be the dual basis. Then for m+1 ≤ i ≤ n, fi(uj) = 0 so fi ∈ U o.
Conversely if f ∈ U o, write

f =
n∑

i=1

cifi

Then 0 = f(ui) = ci, and so f is a linear combination of fi for m + 1 ≤ i ≤ n. Thus
fm+1, . . . , fn is a basis for U o and

dim U + dim U o = m + n−m = n = dim V.

2

If we take the dual of the dual we get a vector space V ′′, but this is naturally isomor-
phic to V itself. To see this, define S : V → V ′′ by

Sv(f) = f(v).
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This is clearly linear in v, and ker S is the set of vectors such that f(v) = 0 for all
f , which is zero, since we could extend v = v1 to a basis, and f1(v1) 6= 0. Since
dim V = dim V ′, S is an isomorphism. Under this transformation, for each vector
subspace U ⊆ V , S(U) = U oo. This follows since if u ∈ U , and f ∈ U0

Su(f) = f(u) = 0

so S(U) ⊆ U oo. But from (6) the dimensions are the same, so we have equality.

Thus to any vector space V we can naturally associate another vector space of the
same dimension V ′, and to any projective space P (V ) we can associate another one
P (V ′). Our first task is to understand what a point of P (V ′) means in terms of the
original projective space P (V ).

From the linear algebra definition of dual, a point of P (V ′) has a non-zero represen-
tative vector f ∈ V ′. Since f 6= 0, it defines a surjective linear map

f : V → F

and so
dim ker f = dim V − dim F = dim V − 1.

If λ 6= 0, then dim ker λf = dim ker f so the point [f ] ∈ P (V ′) defines unambiguously
a vector subspace U ⊂ V of dimension one less than that of V , and a corresponding
linear subspace P (U) of P (V ).

Definition 7 A hyperplane in a projective space P (V ) is a linear subspace P (U) of
dimension dim P (V )− 1 (or codimension one).

Conversely, a hyperplane defines a vector subspace U ⊂ V of dimension dim V − 1,
and so we have a 1-dimensional quotient space V/U and a surjective linear map

π : V → V/U

defined by π(v) = v + U . If ν ∈ V/U is a non-zero vector then

π(v) = f(v)ν

for some linear map f : V → F , and then U = ker f . A different choice of ν changes
f to λf , so the hyperplane P (U) naturally defines a point [f ] ∈ P (V ′). Hence,

Proposition 7 The points of the dual projective space P (V ′) of a projective space
P (V ) are in natural one-to-one correspondence with the hyperplanes in P (V ).
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The surprise here is that the space of hyperplanes should have the structure of a
projective space. In particular there are linear subspaces of P (V ′) and they demand
an interpretation. From the point of view of linear algebra, this is straightforward:
to each m + 1-dimensional vector subspace U ⊆ V of the n + 1-dimensional vector
space V we associate the n−m-dimensional annihilator U o ⊆ V ′. Conversely, given
W ⊆ V ′, take W o ⊂ V ′′ then W o = S(U) for some U and since S(U) = U oo, it follows
that

W = U o.

Thus taking the annihilator defines a one-to-one correspondence between vector sub-
spaces of V and vector subspaces of V ′. We just need to give this a geometrical
interpretation.

Proposition 8 A linear subspace P (W ) ⊆ P (V ′) of dimension m in a dual projective
space P (V ′) of dimension n consists of the hyperplanes in P (V ) which contain a fixed
linear subspace P (U) ⊆ P (V ) of dimension n−m− 1.

Proof: As we saw above, W = U o for some vector subspace U ⊆ V , so f ∈ W is
a linear map f : V → F such that f(U) = 0. This means that U ⊂ ker f so the
hyperplane defined by f contains P (U). 2

A special case of this is a hyperplane in P (V ′). This consists of the hyperplanes in
P (V ) which pass through a fixed point X ∈ P (V ), and this describes geometrically
the projective transformation defined by S

P (V ) ∼= P (V ′′).

All these features are somewhat clearer in low dimensions. A hyperplane in a pro-
jective line is just a point, so there is a natural isomorphism P (V ) ∼= P (V ′) here
and duality gives nothing new. In a projective plane however, a hyperplane is a line,
so P (V ′) is the space of lines in P (V ). The space of lines passing through a point
X ∈ P (V ) constitutes a line Xo in P (V ′). Given two points X, Y there is a unique
line joining them. So there must be a unique point in P (V ′) which lies on the two lines
Xo, Y o. Duality therefore shows that Proposition 2 is just the same as Proposition 1,
if we apply the latter to the dual projective plane P (V ′).
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Here is another example of dual configurations:

three collinear points three concurrent lines

In general, any result of projective geometry when applied to the dual plane P (V ′) can
be reinterpreted in P (V ) in a different form. In principle then, we get two theorems
for the price of one. As an example take Desargues’ Theorem, at least in the way
we formulated it in (4). Instead of applying it to the projective plane P (V ), apply
it to P (V ′). The theorem is still true, but it says something different in P (V ). For
example, our starting point in P (V ′) consists of seven points, which now become
seven lines in P (V ). So here is the dual of Desargues’ theorem:

Theorem 9 (Desargues) Let α, β, γ, α′, β′, γ′ be distinct lines in a projective plane
P (V ) such that the points α ∩ α′, β ∩ β′, γ ∩ γ′ are distinct and collinear. Then the
lines joining α ∩ β, α′ ∩ β′ and β ∩ γ, β′ ∩ γ′ and γ ∩ α, γ′ ∩ α′ are concurrent.

Here the dual theorem starts with three points lying on a line and ends with three
lines meeting in a point – looked at the right way, we have the converse of Desargues’
Theorem.

Now look at Pappus’ theorem. Instead of two triples of collinear points, the dual
statement of the theorem gives two triples of concurrent lines α, β, γ passing through
A and α′, β′, γ′ passing through A′. Define B on α to be α ∩ γ′ and C to be α ∩ β′.
Define B′ on α′ to be α′ ∩ β and C ′ to be α′ ∩ γ.

The dual of Pappus says that the lines joining {β ∩ γ′, β′ ∩ γ}, {γ ∩ α′, γ′ ∩ α}, {α ∩
β′, α′ ∩ β} are concurrent at a point P . By definition of B, B′, C, C ′, the last two are
{BC ′, B′C}, which therefore intersect in P . Now A lies on β and by definition so
does B′ so β is the line AB′. Similarly A′B is the line γ′. Likewise A lies on γ and
by definition so does C ′ so AC ′ is γ and A′C is β′.

Thus the intersection of {AB′, A′B} is β ∩ γ′ and the intersection of {AC ′, A′C} is
β′ ∩ γ. The dual of Pappus’ theorem says that the line joining these passes through
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P , which is the intersection of {BC ′, B′C}. These three points are thus collinear and
this is precisely Pappus’ theorem itself.

Finally, we can use duality to understand something very down-to-earth – the space
of straight lines in R2. When we viewed the projective plane P 2(R) as R2∪P 1(R) we
saw that a projective line not equal to the line at infinity P 1(R) intersected R2 in an
ordinary straight line. Since we now know that the lines in P 2(R) are in one-to-one
correspondence with another projective plane – the dual plane – we see that we only
have to remove a single point from the dual plane, the point giving the line at infinity,
to obtain the space of lines in R2. So in the sphere model, we remove the north and
south poles and identify antipodal points.

Concretely parametrize the sphere in the usual way:

x1 = sin θ sin φ, x2 = sin θ cos φ, x3 = cos θ

then with the poles removed the range of values is 0 < θ < π, 0 ≤ φ < 2π. The
antipodal map is

θ 7→ π − θ, φ 7→ φ + π.

We can therefore identify the space of lines in R2 as the pairs

(θ, φ) ∈ (0, π)× [0, π]

where we identify (θ, 0) with (π − θ, π):

and this is the Möbius band.
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2.5 Exercises

1. Let U1, U2 and U3 be the 2-dimensional vector subspaces of R3 defined by

x0 = 0, x0 + x1 + x2 = 0, 3x0 − 4x1 + 5x2 = 0

respectively. Find the vertices of the “triangle” in P 2(R) whose sides are the projec-
tive lines P (U1), P (U2), P (U3).

2. Let U1, U2 be vector subspaces of V . Show that the linear subspace

P (U1 + U2) ⊆ P (V )

is the set of points obtained by joining each X ∈ P (U1) and Y ∈ P (U2) by a projective
line.

3. Prove that three skew (i.e. non-intersecting) lines in P 3(R) have an infinite number
of transversals (i.e. lines meeting all three).

4. Find the projective transformation τ : P 1(R) → P 1(R) for which

τ [0, 1] = [1, 0], τ [1, 0] = [1, 1], τ [1, 1] = [0, 1]

and show that τ 3 = id.

5. Let T : V → V be an invertible transformation. Show that if v ∈ V is an
eigenvector of T , then [v] ∈ P (V ) is a fixed point of the projective transformation τ
defined by T . Prove that any projective transformation of P 2(R) has a fixed point.

6. Let V be a 3-dimensional vector space with basis v1, v2, v3 and let A, B, C ∈ P (V )
be expressed in homogeneous coordinates relative to this basis by

A = [2, 1, 0], B = [0, 1, 1], C = [−1, 1, 2].

Find the coordinates with respect to the dual basis of the three points in the dual
space P (V ′) which represent the lines AB, BC and CA.
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