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CHAPTER 1

Manifolds

1.1. Intuitive notions

Recall that a n dimensional topological variety is a Hausdorff topological space
locally homeomorphic to Rn with a countable basis of open sets (the latter condition
is not always required but it is useful for what follows).

Example 1.1.1. The first examples are clearly Rn and its open subsets. The
circle S1 ⊂ R2 is a 1 dimensional topological variety that is not homeomorphic to
any open subset of R1 (check it as a rust removal exercise). We may also consider
Sn ⊂ Rn+1 and even pick a circle in R3 and let it revolve around a line to produce
a torus S1 × S1.

In these latter examples the condition required may be checked noticing that
in any point of the topological space there is a “normal” vector to our space and
we may use it to locally project onto R2 in a homeomorphic way. Further note
that, either intuition or rigor, suggests that the local parametrizations are given by
functions that are not only continuous but also differentiable.

More generally letX ⊂ RN be a topological n-variety. We have local parametriza-
tions f : U → X ⊂ RN that are homeomorphism onto the image. On the other
hand f is a continuous function from an open U ⊂ Rn to RN therefore we may ask
whether this function is either differentiable (smooth) or analytic.

All the examples we described, till now, are subsets of some RN . This is the
easiest way to describe and visualize topological spaces. But we may get interesting
examples even without this property.

Example 1.1.2 (Projective space). The real projective space

PnR :=
Rn−1 \ {0}
∼

,

where v ∼ w if there exists λ ∈ R∗ such that v = λw. These spaces are not seen
usually, even if they are, as subsets of some RN but still are topological varieties.

Remember that PnR can be equivalently thought of as the parameter space
of 1-dimensional vector subspaces of Rn+1. We could equivalently consider the
parameter space of k-dimensional vector spaces of Rn, in a while we will be able to
recognize also this as a topological variety and even more.

Another example that deserves attention is the following

Example 1.1.3 (Tangent bundle to a sphere). Let S2 := {x2 + y2 + z2 = 1} ⊂
R3 be a sphere. For any point p = (x, y, z) ∈ S2 we may consider the vector (x, y, z)
and its orthogonal TpS

2 := (x, y, z)⊥, the tangent space at the point p. We have
not defined the tangent space, yet. But for spheres it is simple to guess it should
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4 1. MANIFOLDS

be the direction of the unique plane passing through p and intersecting the sphere
only in p.

Then we define T (S2) := ∪p∈S2TpS
2. This is the union of all tangent vectors

to the sphere and we may naively define two vectors close if the points p and q
are close and the vectors are close. This suggests that T (S2) could be considered
as a topological variety. Note that despite it is defined via R3 does not admit any
embedding there because intuition tells us that it is a 4-dimensional topological
space.

The latter examples are defined in an abstract way, not depending on an em-
bedding in some RN , and for this reason it is more difficult, at first sight, to think
about higher regularities of the parametrization functions.

At this point we have two options. The first one is to discard the abstract
examples and study only topological spaces that live in some RN . The second is
to develop a theory that allows us to define differentiability also for our abstract
construction.

You do know what I am doing to do next! Let us define differentiable manifolds.

Remark 1.1.4. In short we will be able to prove that the two classes are
exactly the same. That is we will be able to prove that any (abstract) differentiable
manifold admits an embedding in some RN , cfr. Whitney Theorem 1.7.28.

1.2. Bump functions and differentiable manifolds

Let Rn and Rm denote two Euclidean spaces of dimensions n and m, respec-
tively. Let U ⊂ Rn and U1 ⊂ Rm be two open subsets and f : U → U1 a map.

Definition 1.2.1. The map f is called differentiable or smooth if

f(x1, . . . , xn) = (y1(x1, . . . , xn), . . . , ym(x1, . . . , xn))

and the yi : U → R are differentiable functions (i.e. infinitely differentiable). The
morphism f is called analytic if the yi are analytic functions (i.e. they have a local
expansion in power series in a neighborhood of any point x ∈ U).

A differentiable map f : U → U1 is a diffeomorphism if it is bijective and the
inverse is a differentiable map.

Let us start with some gymnastic with differentiable functions.

Example 1.2.2. Note that an analytic function that vanishes on an open set
is identically zero (the 0 function is already a power series!). For differentiable
functions the situation is completely different. There are smooth functions that
join the constant function 1 with the constant function 0.
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More generally we have the following result.

Lemma 1.2.3. Let A,B ⊂ Rn be two disjoint subsets. Assume that A is com-
pact and B is closed. Then there is a non negative differentiable function that is
identically 1 on A and identically 0 on B. These functions are usually called bump
functions.

Proof. Let 0 < a < b be real numbers and define the function

f(x) =

{
exp( 1

x−b −
1

x−a ) for a < x < b

0 otherwise

Then f is differentiable and we may define the function

F (x) =

∫ b
x
f(t)dt∫ b

a
f(t)dt

,

then

F (x) =


∫ a
x
f(t)dt∫ b

a
f(t)dt

+ 1 for x ≤ a

−
∫ x
b
f(t)dt∫ b

a
f(t)dt

for x ≥ b

Hence F (x) = 1 for x ≤ a and F (x) = 0 for x ≥ b. In particular we may define the
differentiable function

ψ(x1, . . . , xm) = F (x21 + . . .+ x2m)

that has values 1 on the ball of radius
√
a and 0 outside the ball of radius

√
b. We

may then cover A with k balls in such a way that the union of these balls does not
intersect B (remember that A is compact and B is closed) and define ψi as above
for any ball to produce the differentiable function

ϕ = 1− (1− ψ1) · · · (1− ψk)

that realizes the requirements. �
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You have to think of these functions as a sort of glue that one can use to patch
together functions. It is time to define the main objects of our lectures.

Definition 1.2.4. Let M be a Hausdorff topological space. A (open) chart
of dimension n on M is a pair (U,ϕ) where U ⊂M is an open subset and ϕ : U →
V ⊂ Rn is a homeomorphism on an open subset of Rn.

A differentiable structure (DS) of dimension m on M is a collection of
(open) charts of dimension m, {(Ua, ϕa)}a∈A on M such that:

DS1 M = ∪a∈AUa,
DS2 for any pair a, b ∈ A the map ϕa◦ϕ−1b is a differentiable map of ϕb(Ua∩Ub)

onto ϕa(Ua ∩ Ub),
DS3 The collection {(Ua, ϕa)}a∈A is maximal (with respect to inclusion) for

all families satisfying DS1 and DS2.

A differentiable manifold of dimension m, or m-manifold, is a Hausdorff
topological space with a countable base and a DS of dimension m.

Remark 1.2.5. Let p ∈ Ua be a point and (Ua, ϕa) a chart, then ϕa(p) =
(x1, . . . , xm) ∈ fa(Ua) ⊂ Rm. This shows that a chart induces local coordinates on
the open Ua. We will frequently identify p with its coordinates in a local chart and
use them directly on Ua. In particular we will talk of balls Bε(x) ⊂ Vx, for x ∈M
a point and Vx ⊂M an open neighborhood of x.

The 0-dimensional differentiable manifold are discrete topological spaces.

Remark 1.2.6. Condition DS3 is not as bad as it seems. Thanks to the axiom
of choice the set of differentiable structures satisfying DS1 and DS2 always admits
maximal elements.

Remark 1.2.7. We may define analytic structures as well or complex manifold
using holomorphic functions and local charts into Cn. These may all be considered
as differentiable manifolds and it is sometimes useful to do so thanks to the freedom
given by bump functions.

Exercise 1.2.8. Prove that PnR and Sn ⊂ Rn+1 are n-manifolds.

1.3. Differentiable functions

Once defined the differentiable manifolds we need differentiable functions to
work on them.

Definition 1.3.1. Let M be a differentiable manifold and f : M → R a
function. Then f is called differentiable, or smooth, at a point p ∈ M if there
exists a local chart (Up, ϕ) such that f ◦ϕ−1 is a differentiable function in ϕ(p). A
function is differentiable (smooth) if it is differentiable at each point p ∈ M . Let
F(M) be the set of differentiable functions on M .

It is interesting to note that the set of differentiable functions on a m-manifold
M enjoys the following properties:

DF1 let u be a differentiable function on Rr and f1, . . . , fr ∈ F(M) then
u(f1, . . . , fr) ∈ F(M),

DF2 let f : M → R be a function and assume that for any p ∈ M there is a
gp ∈ F(M) and Up with f|Up = gp|Up then f ∈ F(M),
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DF3 for any p ∈M there exist functions f1, . . . , fm ∈ F(M) and an open neigh-
borhood Up such that (Up, ϕ) is a local chart, where the map ϕ : Up → Rm
is given by ϕ(q) = (f1(q), . . . , fm(q)). In particular any function g ∈
F(M) is such that there is a function ug on Rm with g|U = ug(f1, . . . , fm).

The first two properties are immediate. To check the third let us play with
bump functions.

Lemma 1.3.2. Let M be a m-manifold. For any p ∈ M there exist functions
f1, . . . , fm ∈ F(M) and an open neighborhood Up such that (Up, ϕ) is a local chart,
where the map ϕ : Up → Rm is given by ϕ(q) = (f1(q), . . . , fm(q)) . In particular
any function g ∈ F(M) is such that there is a function ug on Rm with g|U =
ug(f1, . . . , fm).

Proof. Let ϕp : Up → B ⊂ Rm be the local chart and πi : Rm → R the
projection on the ith coordinate and define ψi = πi ◦ ϕp : Up → R the composition.
Fix a neighborhood Vϕ(p) ⊂ B and a compact neighborhood K ⊂ Vϕ(p). Then by
Lemma 1.2.3 there is a bump function χ that is identically 1 on K and identically
0 outside of V . This allows to define the smooth function fi ∈ F(M) as

fi(p) =

{
ψi(p)χ(ϕ(p)) p ∈ ϕ−1(Vϕ(p))

0 p ∈ ϕ−1(Vϕ(p))
c

�

We can easily extend the definition of differentiable functions to that of smooth
map between manifolds.

Definition 1.3.3. Let F : M → N be a continuos map between manifolds.
We say that F is differentiable in a point p ∈ M if there are local charts (Up, ϕ)
and (VF (p), ψ) such that ψ ◦ F ◦ ϕ−1 is differentiable at ϕ(p). If F is differentiable

at p then the rank of F at p is the rank of the Jacobian of ψ ◦F ◦ϕ−1 at ϕ(p). The
map F is called differentiable if it is differentiable at any point.

Remark 1.3.4. It is easy to check that the definition is well posed. That is it
does not depend on the choice of local charts, see the exercises.

The Lemma 1.3.2 shows how useful are bump function to define global objects
starting from local constructions.

Remark 1.3.5. It is not difficult to prove that any collection of functions
enjoying properties DF1, DF2, and DF3 are associated to a unique differentiable
structure and are F(M) for this differentiable structure.

Definition 1.3.6. The set F(M) has a natural structure of real algebra given
by the punctual operations f ∗g(p) = f(p)∗g(p). When we think of it as an algebra
we call it C∞(M).

The following is a useful generalization of bump functions.

Lemma 1.3.7. Let C ⊂M be a compact subset of a manifold M and V ⊃ C an
open subset. Then there exists an element f ∈ C∞(M) which is identically 1 on C
and identically 0 outside of V .

Proof. Let {Ua}a∈A be a covering of V with local charts. Let p ∈ C then
there is a neighborhood Va,p ⊂ Ua with Va,p ⊂ Ua a compact neighborhood. Then
{Va,p}a∈A,p∈C is an open covering of C and admits a finite subcovering. This yields
finitely many subsets Ki with
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• Ki ⊂ Uai compact in a local chart
• ∪k1Ki ⊂ V
• C ⊂ ∪k1Ki

Then, by Lemmata 1.3.2 1.2.3, for each index i we may define a bump function
fi : M → R that is identically 1 on Ki and identically zero outside a neighborhood
of Ki contained in Uai (keep in mind that Ki is contained in a local chart Ua).
Then the required function is obtained with the usual trick

ψ = 1− (1− f1) · · · (1− fk).

�

Definition 1.3.8 (Open submanifold). Let U ⊂ M be an open subset of an
m-manifold with differentiable structure {(Ua, ϕa)}a∈A. Then we may induce on U
a differentiable structure of dimension m by restriction. In this way we call U an
open submanifold.

Remark 1.3.9. Note that in general closed subsets of manifolds do not inherit
a differentiable structure. Think to the example of [0, 1] ⊂ R. One of our goals is
to understand what is a reasonable notion of submanifold, see section 1.6.

The following is an easy, but useful, consequence of Lemma 1.3.7.

Lemma 1.3.10. Let M be a m-manifold and U ⊂M an open submanifold. Let
f ∈ C∞(U) be a function and p ∈ U a point. Then there is an open Vp ⊂ U and a

function f ∈ C∞(M). such that f |Vp = f|Vp .

Proof. Let B1(p) ⊂ U be a local neighborhood. Then by Lemma 1.3.7 there
is a function g ∈ C∞(U) such that g|B1/2(p) = 1 and g is identically zero outside

B2/3(p). Therefore we may define the function f : M → R as follows

f(x) =

{
g(x)f(x) x ∈ U
0 x ∈ U c

�

We conclude this gymnastic with a technical tool that is quite useful in global
differential geometry. Recall the following facts from topology:

• the support of a function f : M → R is supp(f) = {x ∈M |f(x) 6= 0}, f
is called with compact support if the support is contained in a compact
set,

• a family of subsets {Ba}a∈A is called locally finite if for any x ∈ X there
exists a neighborhood Ux such that Ba ∩ Ux 6= ∅ only for finitely many
indexes,

• a topological space is paracompact if any open covering has an open re-
finement that is locally finite,

• a locally compact Hausdorff space, with a countable base, is paracompact.
In particular manifolds are paracompact.

Proposition 1.3.11 (Partition of unity). Let M be a m-manifold and {Ua}a∈A
an open covering of M . Then there is a system of functions {θa}a∈A ⊂ C∞(M),
called partition of unity attached to {Ua}a∈A such that:

• each θa has compact support contained in Ua
• θa ≥ 0
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•
∑
a∈A θa ≡ 1.

Proof. For any x ∈ M let Bε(x)(x) ⊂ Ua(x). The collection {B ε(x)
2

(x)}x∈M
is an open covering. M is paracompact hence there is a locally finite refine-
ment {Za}a∈A of {B ε(x)

2
(x)}x∈M (note that we may keep the same index because

B ε(x)
2

(x) ⊂ Ua, for some a). Via Lemma 1.3.7 we may associate a non negative func-

tion ψa ∈ C∞(M) with (compact) support in Za. The family {Za}a∈A is locally
finite therefore ∑

a∈A
ψa = θ

is a well defined positive function in C∞(M). Then the function

θa :=
ψa
θ

satisfies all the requirements. �

We are not going to use partition of unity much. We will often restrict our
global theorems to the simpler setting of compact manifolds avoiding in such a way
the technicalities that requires partition of unity. As a toy application we prove the
existence of proper functions on any manifold.

Recall that a morphism is said to be proper if the preimage of any compact
is compact. When M is a compact manifold any function in C∞(M) is proper,
see Exercise 1.8.5. On the other hand for non compact manifolds it is not clear if
proper functions exists at all. As an application of partitions of unity we will show
that any manifold admits proper differentiable functions.

Corollary 1.3.12. Let M be a m-manifold then there exists a proper function
f ∈ C∞(M).

Proof. Let {Ui} be a countable locally finite open covering of M . Let θi be
a partition of unity attached to {Ua}. Set

ρ :=
∑
i

iθi,

then ρ ∈ C∞(M). To prove it is proper it is enough to show that ρ−1([−n, n])
is compact for n ∈ N>0. Let x ∈ ρ−1([−n, n]) then θi(x) 6= 0 for some i ≤ n.
Therefore ρ−1([−n, n]) is contained in union of the supports of θi for i ≤ n. The
latter is compact the former is closed therefore ρ−1([−n, n]) is compact. �

1.4. Inverse Theorem and constant rank Theorem

In this section we recall basic facts from function theory in several variables.
Let F : W → Rm be a differentiable function, with W ⊂ Rn open and p ∈ W a
point. Then the differential at p is the linear application induced by the Jacobian
matrix evaluated at p.

DFp = JF (p) = (
∂fi
∂xj

(p)),

where F = (f1, . . . , fm).
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Theorem 1.4.1. (Inverse function Theorem/Teorema del Dini) Let W ⊂ Rn
be an open set and F : W → Rn a smooth function. If a ∈W and DFa is invertible,
then there exists an open Ua ⊂W such that V = F (U) is open and F|U : U → V is
a diffeomorphism. Moreover for y = F (x) ∈ V we have

DF−1y = (DFx)−1

More generally we have the so called constant rank theorem.

Theorem 1.4.2. Let W ⊂ Rn and V ⊂ Rm be open subsets and F : W → V a
smooth function. Assume that for any point p ∈W we have rkDFp = k. Then for
any a ∈ W there are open subsets Wa ⊂ W and VF (a) ⊂ V and diffeomorphisms
ϕ : Wa → U ⊂ Rn, ψ : VF (a) → Rm such that, for any (x1, . . . , xn) ∈ U

ψ ◦ F ◦ ϕ−1(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).

Remark 1.4.3. Note that this is an extension of inverse function theorem, but
all proofs I know relies on the latter, see also Remark 1.5.4. One can visualize it
saying that a map of constant rank k behaves, up to a diffeomorphic change of
coordinates, like a projection π : Rk × Rn−k → Rk composed with the injection
Rk → Rk × {0} ⊂ Rk × Rm−k.

1.5. Constructions of n-manifolds

As we already observed any open subset of Rn is a n-differentiable manifold.
Here we want to provide ways to produce differentiable manifolds.

Lemma 1.5.1. Let U ⊂ Rn be an open set and f : U → R a differentiable
function. Then the graph of f

Γf := {(x, y) ⊂ Rn × R|y = f(x)}
is a n-manifold.

Proof. Let ψ : U → Rn+1 be the function ψ(x) = (x, f(x)). Then ψ is
differentiable and of constant rank n. This is enough to conclude thanks to Theo-
rem 1.4.2. �

Example 1.5.2. With Lemma 1.5.1 it is easy to see that Sn ⊂ Rn+1 is a
n-manifold, by gluing together two parametrizations.

By inverse function theorem we have the following.

Lemma 1.5.3. Let U ⊂ Rn be open and F : U → Rs a differentiable function
given by F (x) = (f1(x), . . . , fs(x)). Let p ∈ U and a = F (p). Assume that n > s
and DFp is of maximal rank. Then there is a neighborhood Up such that Up∩F−1(a)
is a (n− s)-manifold.

Proof. Let H : Rn → Rs+(n−s) be given by

H((x1, . . . , xn)) = (f1(x1, . . . , xn), . . . , fs(x1, . . . , xn), xs+1, . . . , xn).

By hypothesis DHp is invertible and by the inverse function theorem the func-
tion H is locally invertible. Let a = (a1, . . . , as) then there are neighborhoods
W(a1,...,as,xs+1,...,xn) and Up ⊂ U such that H−1 : W → Up is a diffeomorphism.
Let La := (x1 = a1, . . . , xs = as) be a linear space, then

H−1(La ∩W ) = Up ∩ F−1(a),
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and

H|Up∩F−1(a) : Up ∩ F−1(a)→ La ' Rn−s

is an open chart and shows that Up∩F−1(a) is a differentiable manifold of dimension
(n− s). �

Remark 1.5.4. Let me stress that this is “essentially” the way one proves the
Rank Theorem from Inverse Function Theorem.

Example 1.5.5. When s = 1 Lemma 1.5.3 has the following easier translation.
If the gradient of a differentiable function F : Rn → R is not identically zero at a
point p then F−1(F (p)) is an (n − 1)-manifold around p. This again tells us, via
gluing, that Sn is an n-manifold.

Definition 1.5.6 (Product). If M and N are differentiable manifolds of dimen-
sion m and n respectively we may consider their product M ×N . If {(Ua, ϕa)}a∈A
and {(Vb, ϕb)}b∈B are their differentiable structures then it is easy to see that
{(Ua×Vb, ϕa×ϕb)}a∈A,b∈B satisfy DS1 and DS2 for M ×N . Then we may extend
it to a maximal differentiable structure, keep in mind Remark 1.2.6, and define the
product as a (n+m)-manifold.

1.6. Submanifolds

It is important to have a notion of submanifold of a manifold. Due to the
existence of the differentiable structure there are various possibilities. At first one
could say, mimicing the construction of topological subspaces, that a submanifold
W = F (N) of M is the image in M of an injective map F : N →M together with
the induced topology and DS that makes F a diffeomorphism onto the image. This
is somehow the weaker possible definition and as such it presents some difficulties.

Example 1.6.1. Let M = R2 and F : R → R2 constructed as follows. Let
g : R → R be a monotone increasing smooth function such that g(0) = π,
limt→−∞ g(t) = 0, and limt→∞ g(t) = 2π. Let

F (t) = (2cos(g(t)− π

2
), sin(2(g(t)− π

2
))).

After a moment thought we realize that the image of F is a figure 8 and F is
a 1:1 map onto its image and F is a diffeomorphism onto the image. Therefore
W = F (R) is a submanifold with our previous definition. Unfortunately it is not
a manifold itself. Indeed it is not even a topological variety if we consider the
induced topology of R2. Indeed removing 0 from Bε((0, 0))∩W we get 4 connected
component for any ε� 1.

Examples like the one above suggest that a less general definition of submanifold
could be useful.

Definition 1.6.2. Let M be a m-manifold and N ⊂ M a subset. We say
that N is a n-submanifold (regular submanifold in the literature) of M if for any
p ∈ N there is a local chart (Up, ϕ) in the DS of M such that

N ∩ Up = ϕ−1({xn+1 = . . . = xm = 0}).

Remark 1.6.3. Note that if N is a n-submanifold of M then it is for free a
n-manifold. Let π : Rm → Rn be the projection onto the first n coordinates, then
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{Up∩N, π◦ϕ)} gives a DS structure enjoying properties DS1 and DS2 and therefore
defines a DS.

There is a third notion, between the two already presented, of submanifold on
which we will not dwell here, the imbedded submanifold.

We opted for a stricter notion of submanifold. This will help us to prove result
but is more difficult to produce them. To do this observe the following.

Definition 1.6.4. An embedding (imbedding in some British books) is an
injective map F : N → M of constant rank, such that U is open in N if and only
if F (U) = V ∩ F (N) for some open V in M . In other words the topology on N is
the induced topology on F (N).

Proposition 1.6.5. Let F : N → M be an embedding of manifolds of dimen-
sion n and m respectively. Then F (N) is a submanifold and F is a diffeomorphism
on the image.

Proof. By the constant Rank Theorem 1.4.2, and the definition of embedding
for any F (x) = p ∈ F (N) we may choose an open local chart (Vp, ϕ) in M , with
F−1(Vp ∩F (N)) = Ux and such that F|Ux : Ux → Vp is given (in local coordinates)
by (xn+1 = . . . = xm = 0). This gives the first part of the proof for the latter it is
enough to compose with the projection on the first n variables. �

Corollary 1.6.6. Let F : N → M be an injective smooth map of constant
rank. Assume that N is compact, then F is an embedding and F (N) is a subman-
ifold.

Proof. By Proposition 1.6.5 it is enough to prove that F : N → F (N) is
open. Since F is injective this is equivalent to prove that it is closed. The latter is
immediate since N is compact and M is Hausdorff. �

The following extends and improves Lemma 1.5.3.

Proposition 1.6.7. Let F : N → M be a map of constant rank k, and q ∈
F (N) a point. Then F−1(q) is a closed submanifold of dimension n− k.

Proof. The subset F−1(q) is closed by the continuity of F . Fix y ∈ F−1(q)
then by the Rank Theorem 1.4.2 we may choose coordinate neighborhoods Uy
and Vq such that (in local coordinates) F (Uy) = (xk+1 = . . . = xm = 0), with
y = (0, . . . , 0) and q = (0, . . . , 0). Therefore F−1(q) ∩ Uy = (x1 = . . . = xk = 0)
and we conclude. �

Remark 1.6.8. A particular, but useful, case of the above proposition is the
following. Let F : N → M be a smooth function, with n > m. Assume that
for some a ∈ M we have rkDFx = m for any x ∈ F−1(a). Then F−1(a) is
a submanifold. This is particularly useful when F ∈ C∞(N) is a differentiable
function.

It is time to get some gratification from all the work we did. Recall that we are
still wandering whether abstract manifolds and embedded ones are the same class
of objects. We have developed enough theory to study embeddings into RN . Here
the main result is Whitney embedding theorem. We are not able to prove it in full
generality. For the time being we are pleased to prove a light version of Whitney
theorem. We will show that any compact manifold admits an embedding in some
RN , see Theorem 1.7.28 for a refinement and also Remark 1.7.30.
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Proposition 1.6.9. Let N be a compact n-manifold. Then there is an embed-
ding ϕ : N → Ra, for some a.

Proof. The manifold N is compact, hence we may choose a finite collection
of local charts

{(Ui, ϕi)}i=1,...,s

and a finite open covering {Vi}i=1,...,s such that V i ⊂ Ui, if you are wandering
why go back to the proof of Proposition 1.3.11. By Lemma 1.3.7 there are smooth
functions fi : N → R such that fi(x) = 1 for any x ∈ Vi and fi|Uci ≡ 0. Let

(1) σi(x) =

{
fi(x)ϕi(x) x ∈ Ui
0 x 6∈ Ui

The functions σi are smooth and we may define

F : N → Rm(s+1)

as
F (x) = (σ1(x), . . . , σs(x), σ1(x)ϕ1(x), . . . , σs(x)ϕs(x)).

By construction σi|Uci ≡ 0 then the function F is well defined and smooth. It is

then easy to see that F is injective, keep in mind that (Ui, ϕi) are local charts. The
manifold N is compact, therefore by Corollary 1.6.6 it is enough to prove that the
map is of constant rank n. Let p ∈ Ui ⊂ N be a point, then in a neighborhood of
p we have

rkJ(F ◦ ϕ−1i )ϕi(p) ≥ rkJ((σiϕi) ◦ ϕ−1i )ϕi(p).

By construction we may assume that σi ≡ 1 in a neighborhood of p therefore

rkJ((σiϕi) ◦ ϕ−1i )ϕi(p) = rkJ(ϕi ◦ ϕ−1i ) = n.

�

Remark 1.6.10. Whitney theorem applies to arbitrary manifold. The exten-
sion to non compact manifold it is not really hard. One shows that any manifold
can be written as a countable union of increasing compact sets and plays a bit with
these and partitions of unity to produce the required functions.

1.7. Tangent space and tangent bundle

To take the full advantage of differentiable functions we need to introduce
an equivalent of the Jacobian of a differentiable function f : Rn → Rm. Let
us start stressing that the Jacobian is defined at any point p as the linear map
Jfp : Rn → Rm

Jfp(v) := (∂ifj(p))(v)

that evaluates the partial derivatives of f at the point p.
Here we used v and not x as point of Rn because, in this occasion, it is useful to

think of Rn as a vector space rather than a differentiable manifold. To get a similar
construction for a differentiable manifold we need to associate a vector space at any
point. This is what is called the tangent space.

We will start with an embedded m-manifold M ⊂ Rs, i.e. a submanifold of
Rs. Fix a point p ∈ M and let J ⊂ R be an interval containing 0 and f : J →
C ⊂M ⊂ Rs be an embedding with f(0) = p. In other words C is a differentiable
curve (1-manifold) in a neighborhood of p. Then we may associate the tangent
vector in Rs to the curve C at the point p simply considering f ′(0) ∈ Rs. This
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may seem not really satisfactory since we would like to land in some vector space
of dimension m. To do this let (Up, ϕ) be a local chart, then f = ϕ−1 ◦ ϕ ◦ f , in
other words

f ′(0) = Df0(1) ⊂ Im(Dϕ−1)ϕ(p) ⊂ Rm.
At first you may wonder why this is well defined and does not depend on the choice
of the local chart. To convince yourself consider two charts (Up, ϕ), (Up, ψ), and
the following commutative diagrams, the second one induced by the differentials,

Up Rm
ϕ−1

oo Rs Rm
D(ϕ−1)ϕ(p)oo

Rm
ψ−1

OO

ϕ◦ψ−1

==

Rm
D(ψ−1)ψ(p)

OO

D(ϕ◦ψ−1)ψ(0)

'
77 .

We may consider the union of all tangent vectors at p in M .

Definition 1.7.1. (Geometric point of view on Tangent space) Let p ∈
M ⊂ Rs be a point. The tangent space of M at the point p is the set of all tangent
vectors at p

TpM =: {tangent vectors at p in M} = Im(Dϕ−1)ϕ(p) ⊂ Rs,
where ϕ : Up → Rm is a local parametrization.

This gives us a quick way to compute TpM for an embedded manifold M .

Corollary 1.7.2. Let M ⊂ Rs be a submanifold, p ∈ M a point and (Up, ϕ)
a local chart, then

TpM = 〈∂ϕ
−1

∂x1
(ϕ(p)), . . . ,

∂ϕ−1

∂xm
(ϕ(p))〉 ⊂ Rs.

Proof. Immediate from the definition. �

For hypersurfaces, that is manifold M embedded in Rm+1 and defined by a
single equation, there is an even easier way to express the tangent space at a point.

Lemma 1.7.3. Let M = {F (x1, . . . , xm+1) = 0} ⊂ Rm+1 be a submanifold and
(a1, . . . , am+1) ∈M a point then

T(a1,...,am+1)M = (
∂F

∂x1
(a1, . . . , am+1), . . . ,

∂F

∂xm+1
(a1, . . . , am+1))⊥.

Proof. Let f : J →M be a curve through p. Then f(t) = (x1(t), . . . , xm+1(t))
and by construction F (x1(t), . . . , xm+1(t)) = 0, for any t ∈ J . This yields

dF

dt
=
∑
i

∂F

∂xi
x′i = 0,

that is to say the tangent vector f ′(0) is orthogonal to the vector of partial deriva-
tive. �

Remark 1.7.4. The assumption that M is a submanifold guaranties that

(
∂F

∂x1
(a1, . . . , am+1), . . . ,

∂F

∂xm+1
(a1, . . . , am+1)) 6= 0.

The vector ( ∂F∂x1
(a1, . . . , am+1), . . . , ∂F

∂xm+1
(a1, . . . , am+1)) is called the gradient of

F or after a normalization the normal vector to M , see also page 36 and Chapter 3.
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This allows to compute easily the tangent space of Sn = {x21 + . . . + x2n+1 =
1} ⊂ Rn+1. For any p = (x1p, . . . , xn+1p) ∈ Sn we have

∂F

∂xi
(p) = 2xip.

This shows TpS
n = (x1p, . . . , xn+1p)

⊥.

We are looking at TpM as a vector subspace of Rs, therefore it has a natural
vector space structure. On the other hand the choice of a local chart (Up, ϕ) defines
an isomorphism between TpM and Rm. Therefore TpM inherits a vector space
structure independently of its immersion in Rs. Furthermore given a differentiable
function F : M → N it is well defined and linear, the map

DFp : TpM → TF (p)N

that associates the tangent vector of f to the tangent vector of F ◦ f . This sug-
gests that it should be possible to define the tangent space in an abstract way,
disregarding any embedding in Rs.

Our next aim is to give a different, somehow more abstract but fruitful in the
long, point of view on the construction of the tangent space.

Let M be a m-manifold. Let p ∈M be a point. A smooth function in p is the
data of a pair (f, Up) with p ∈ Up and f ∈ C∞(Up). We will say that two smooth
functions (f, Up) ∼ (g, Vp) are equivalent if there exists an open neighborhood
Wp ⊆ Up ∩ Vp such that f|Wp

= g|Wp
. Let

C∞(M)p := ∪U3pC∞(U)/ ∼ .
It is easy, see the exercises, to show that C∞(M)p is a R-vector space and has a
R-algebra structure induced by the multiplication of functions.

Definition 1.7.5. A derivation in p is a linear application X : C∞(M)p → R
that satisfies the following requirement

X(fg) = f(p)X(g) + g(p)X(f)

known as Leibniz rule.

Remark 1.7.6. The derivations are elements in C∞(M)∗p that satisfies the
Leibniz rule. The latter is clearly preserved by linear combinations. Therefore the
derivations in p are a vector subspace in C∞(M)∗p. Further note that, again by
Leibniz rule, if f ∈ C∞(M) is constant that X(f) = 0.

Definition 1.7.7. Let D(M)p ⊂ C∞(M)∗p be the vector space spanned by
derivations in p.

Our first aim is to compute the dimension of D(M)p. Fix a local chart (Up, ϕ)
with ϕ(p) = 0 and ϕ(q) = (x1(q), . . . , xm(q)). For any f ∈ C∞(M) we define
f∗ = f ◦ ϕ−1, we may also assume without loss of generality that f(p) = 0. Fix an
open ball centered at 0, B ⊂ ϕ(Up). For any point (x1, . . . , xm) ∈ B we have

f∗(x1, . . . , xm)− f∗(0) =

∫ 1

0

d

dt
f∗(tx1, . . . , txm)dt =

∑
xi

∫ 1

0

∂f∗

∂xi
(tx)dt

going back to M we may define functions gi ∈ C∞(f−1(B)) such that

(2) f(q) =
∑

xi(q)gi(q), for all q ∈ ϕ−1(B),
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with

(3) gi(q) =

∫ 1

0

∂f∗

∂xi
(tϕ(q))dt

In particular

gi(p) = (
∂f∗

∂xi
)(0).

LetX ∈ D(M)p be a derivation then applying Leibniz rule and equations (2) (3)
we have

X(f) = X(
∑

xi(p)gi(p)) =
∑

xi(p)X(gi)+
∑

(
∂f∗

∂xi
)(0)X(xi) =

∑
(
∂f∗

∂xi
)(0)X(xi)

Definition 1.7.8. Let ∂i :=: ∂
∂xi
∈ D(M)p be the derivation given by

f 7→ (
∂f∗

∂xi
)(0),

Then we may rephrase the above equation as

(4) X =

m∑
i=1

X(xi)∂i,

Remark 1.7.9. Note that X(xi) ∈ R is a real number. Hence any derivation
is a real linear combination of the ∂i’s. It is easy to see that {∂i} are linearly
independent in D(M)p, consider for instance the projection on one coordinate.

Therefore we have proved that D(M)p is a vector space of dimension m and
(∂i) is a basis. We are ready to prove the following proposition.

Proposition 1.7.10. Let M ⊂ Rs be a m-manifold and p ∈ M a point then
D(M)p is a vector space of dimension m. Moreover there is a natural identification
between TpM and D(M)p given by

v = (a1, . . . , am) 7→
∑

ai∂i.

Proof. We already observed that both TpM and D(M)p are vector spaces
of dimension m. Fix a local chart (Up, ϕ), with ϕ(p) = 0 and a basis (ei) of
TpM = Rm. Let xi : R→ Rm be the function

xi(t) = tei,

then the vector ei is the tangent vector of ϕ−1 ◦ xi. We may then define the linear
isomorphism

χ : TpM → D(M)p

given by

χ(ei) = ∂i.

�

Definition 1.7.11 (Tangent space to a manifold). Let M be a m-manifold
and p ∈M a point. The tangent space in p is the vector space of derivation in the
point p.

TpM := D(M)p
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Let us start immediately to gain something from the abstract viewpoint. We
define the differential of a morphism from the derivation point of view. Let F :
M → N be a morphism, then by composition we have

F ∗ : C∞(N)→ C∞(M)

given by

F ∗(f) = f ◦ F.
Then to a derivation X ∈ D(M)p = TpM we associate the derivation DFp(X)
given by

DFp(X)(f) = X(F ∗(f)).

Definition–Lemma 1.7.12. Let F : M → N be a smooth map then the rank
of F at the point p is dim Im(DFp) ⊂ TF (p)N .

We got a new definition of the differential map

DFp : TpM → TpN.

It is immediate, and left to the reader, to prove that the two definition of differential
agree. The latter allows a straight forward proof of the chain rule for differentials.

It is also possible to use the differential to define the tangent vector of a curve
in a point avoiding coordinates or local charts.

Definition 1.7.13. Let f : J → C ⊂ M be a curve with f(0) = p. Then the
tangent vector of C in p is

Df0(1).

Remark 1.7.14. It is easy to see that this is equivalent to our previous geomet-
ric version of tangent vectors. From now on we will identify the three descriptions
of the tangent space and we will use the one that suites more in the specific contest
we are working on. See the exercise at the end of the chapter for a fourth one.

Proposition 1.7.15. Let M , N and S be manifolds and F : M → N , G :
N → S morphisms. Then

D(G ◦ F )p = DGF (p) ◦DFp.

Proof.

D(G ◦ F )p(X)(f) = X((G ◦ F )∗(f)) = X(f ◦G ◦ F ) =

= DFp(X)(f ◦G) = DGF (p)(DFp(X))(f) = DGF (p) ◦DFp(X)(f)

�

Corollary 1.7.16. Let F : M → N be a diffeomorphism, then DFp : TpM →
TF (p)N is a linear isomorphism and

(DFp)
−1 = D(F−1)F (p).

In particular for any local chart (Up, ϕ) the differential Dϕ−1q is an isomorphism
for any q ∈ Up.

Remark 1.7.17. It is important to remember that inverse function theorem
is a local inverse of Corollary 1.7.16. The isomorphism Dϕq produces an explicit

basis for TqM . Let ϕ(q) = (x1(q), . . . , xm(q)) we already observed that ( ∂
∂xi

(ϕ(q)))
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is a basis for Tϕ(q)Rm for any q ∈ Up. Set (dxi) the canonical dual basis. That is

to say dxi(
∂
∂xi

) = δij In this notation we have

TqM = 〈∂ϕ
−1

∂xi
〉,

and Dϕ−1ϕ(p) is given by sending ∂
∂xi
∈ D(Rm)ϕ(p) to ∂ϕ−1

∂xi
=: ∂

∂xi
∈ D(M)p. That

is to say
Dϕ−1ϕ(p) = (dx1, . . . , dxm).

The construction of derivation D(M)p is essentially based on the algebra struc-
ture of C∞(M). More generally we may define.

Definition 1.7.18. Let A be an algebra over a field k. A derivation of A is
a k-linear mapping D : A→ A that satisfies the Leibniz rule

D(fg) = fD(g) + gD(f).

We will be mainly concerned with the special case of the real algebra C∞(M).
Let M be a m-manifold.

Definition 1.7.19. A vector field X on C∞(M) is a derivation of C∞(M).

Remark 1.7.20. For any point p ∈ M we may associate to a vector field X a
derivation (tangent vector) in p

X(p) : C∞(M)p → R
given by

X(p)(f) = X(f)(p).

Definition 1.7.21. Let X (M) be the set of vector fields on M .

Then for (Up, ϕ) a local chart ∂i ∈ X (Up) is the vector field associated to the
partial derivation with respect to the ith coordinate that is

∂i(f) :=
∂(f ◦ ϕ−1)

∂xi
,

and equation (4) gives

X(p) =
∑

X(p)(xi)∂i(p),

and X(p)(xi) is a smooth function in p.

The set X (M) has a natural structure of C∞(M)-module given by

fX : g 7→ fX(g), X + Y : g 7→ X(g) + Y (g).

The Leibniz rule forces X(f) = 0 for any constant f , and, via restriction and
Lemma 1.3.7, from a vector field on M we may induce a vector field X(U) on any
open submanifold U and viceversa, maybe at the expense of shrinking U , see also
the proof of Proposition 1.7.25.

Further note that, due to Leibniz rule, in general the composition of two vector
fields is not a vector field.

Example 1.7.22. Consider X,Y ∈ X (R3) given in the canonical base by

X = y∂x − x∂y, Y = z∂y − y∂z,
Then XY (xy) = yz on the other hand XY (x) = XY (y) = 0.
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It is then quite amazing that it is always well defined the so called Lie bracket,
the bilinear form

[·, ·] : X (M)×X (M)→ X (M)

given by [X,Y ] = XY − Y X.
It is immediate to see that, if dimM > 0, the space X (M) has an infinite

dimensional R-vector space structure and a C∞(M)-module structure. Note that
for any open chart (U,ϕ) the basis ( ∂

∂xi
(q)) is defined on every point q ∈ U . This

induces a natural map
U × Rm → ∪p∈UTpU,

and shows that X (U) is finitely generated as C∞(U)-module. In the next section
we will discover how to glue this local identifications to produce the tangent bundle.
Moreover with the bracket operation [·, ·] it acquires the structure of a Lie algebra.
We are not going to develop this theory, the interested reader can look at [5].

From the geometric point of view a vector field is the assignment of a tangent
vector in any point of M , and this assignment varies in a smooth way. This suggests
the possibility to consider the set of all tangent spaces of a manifold M and consider
it with a differentiable structure. Let us work out the details.

1.7.1. Tangent bundle. Let M be a m-manifold

Definition 1.7.23. The tangent bundle of M is the set

TM := ∪p∈MTpM

By definition TM has a natural projection π : TM → M sending v ∈ TpM to
p ∈ M . Our aim is to show that TM has a natural structure of 2m-manifold and
π is a smooth map of constant rank m.

Let us start considering W ⊂ Rm an open subset. Then for any p ∈ W we
have TpM = Rm and we have a natural basis in TpM corresponding to the vectors
associated to the lines p + tei, where (e1, . . . , em) is a basis in Rm. In the vector
fields notation we are choosing the m linearly independent vector fields ∂i ∈ X (W )
and use them to define bases of TpM for any p ∈ M . This shows that in this case
we have a natural identification

TW = W × Rm ⊂ R2m,

given by

(p,
∑

vi∂i(p)) 7→ (x1(p), . . . , xm(p), v1, . . . , vm)

Next, with the help of local charts we want to glue this local description through
the manifold. Let (Up, ϕ) be a local chart, then ϕ : Up → W ⊂ Rm is a diffeomor-
phism and the differential

Dϕq : TqM → Tϕ(q)W = Rm

is a linear isomorphism for any q ∈ Up given by Dϕq = (dx1(q), . . . , dxm(q)), where
{d(xi)(q)} is the canonical dual basis in (TqM)∗, see Remark 1.7.17. Therefore we
have a bijection

Dϕ : TUp → TW = W × Rm

given by
Dϕ(x, v) = (ϕ(x), (dx1(x)(v), . . . , dxm(x)(v)).

The next step is to define the right topology on TM in such a way that Dϕ is an
homeomorphism.
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To do this consider a differentiable structure on M and for any local chart
(U,ϕ) we define on TU the quotient topology, say Uϕ induced by Dϕ−1. Then
B = ∪Uϕ is a basis for a topology and we denote by U the associated topology on
TM . From now on we let TM = (TM,U) be the topological tangent bundle of
M . It is easy to see that TM is Hausdorff, has a countable base of open sets and
using the morphisms Dϕ we have that it is a 2m-dimensional topological variety.
To conclude we need to check condition DS2. Let (U,ϕ) and (V, ψ) be local charts
of M and W1 = ϕ(U ∩ V ), W2 = ψ(U ∩ V ). Then we have the differentials

Dϕ : T (U ∩ V )→W1 × Rm

and

Dψ : T (U ∩ V )→W2 × Rm.
Note that by construction Dψ◦Dϕ−1 = D(ψ◦ϕ−1) therefore the coordinate change
is given by

(5) (ψ ◦ ϕ−1, D(ψ ◦ ϕ−1)) : W1 × Rm →W2 × Rm,

where D(ψ ◦ ϕ−1) is the Jacobian of ψ ◦ ϕ−1. Therefore the coordinate change is
smooth and we have proven condition DS2. Moreover the map π is locally at any
point p the projection on the first m coordinates. We have proved the following.

Proposition 1.7.24. Let M and N be manifolds, and F : M → N be a
smooth morphism. Then TM and TN are manifolds of dimension 2 dimM and
2 dimN , respectively, the map π : TM → M is smooth of constant rank m, and
DF : TM → TN , defined as

DF (x, v) = DFx(v),

is a smooth morphism.

Let σ : M → TM be a section of the natural projection p : TM →M . That is
π ◦ σ = idM . Then σ associates to any point in M a tangent vector (derivation).
This reminds as the construction of vector fields.

Proposition 1.7.25. There is a bijection between sections of the map π :
TM →M and X (M).

Proof. Let σ : M → TM be a section. Then σ is locally defined by a form∑
ai(x1, . . . , xm)∂i,

with ai differentiable functions. In particular it defines a derivation on C∞(M).
On the other hand let X be a derivation on C∞(M). We already observed that
for any p ∈ M we have a well defined tangent vector X(p). To conclude we have
to show that these vectors glue together to give a section. This is clearly a local
question.

Let (Up, ϕ) be a chart with p ∈ Up. In general C∞(Up) is not a subalgebra
of C∞(M) therefore we cannot simply consider X as a vector field on Up. On the
other hand we have a way to associate a vector field X(Up) ∈ X (Up) from X that
locally behaves like X.

Indeed by Lemma 1.3.7 there is a smooth function, h ∈ C∞(M) that is identi-
cally 1 on Kp and identically zero outside Vp where Kp is compact and Vp ⊂ Up is
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open. Then for any f ∈ C∞(Up) we may define

X(Up)(f)(x) =

{
X(hf)(x) x ∈ Vp
0 x ∈ Up \ Vp

We know that if f is locally zero then X(f) is locally zero. Thus, by Lemma 1.3.10,
we may check the requirement for X(Up) and restrict to the chart Up where a vector
field is given by the equation we already exploited, see Remark 1.7.20. This shows
that locally to any vector field we are able to associate a unique section and allows
to conclude. �

Example 1.7.26. Consider M = R3 \ {0}. Fix coordinates (x, y, z) on R3 and
the canonical basis (∂i) for each TpM ' R3. Let X : M → TM be the vector field
defined as

X((x, y, z)) = −G(x/r3, y/r3, z/r3),

with r =
√
x2 + y2 + z2. This is the gravitational field, that is the opposite of the

gradient of gravitational potential (the minus sign is not always used), of an object
of unit mass at (0, 0, 0), where G is the Gravitational constant.

Remark 1.7.27. Note that in general vector fields are not preserved by smooth
morphisms. As a simple example let X : R3 → TR3 = R3 × R3 be given by
X(x, y, z) = ((x, y, z), (z, x, y)). Consider the projection πz : R3 → R2 given by

πz(x, y, z) = (x, y).

Then the π∗X is not well defined on R2. It is easy to see that if F : M → N is a
diffeomorphism then the vector fields on M and N are in bijection via DF : TM →
TN .

Let N ⊂ M be a submanifold, then it is immediate that TN ⊂ TM is a
submanifold. In particular any vector field X ∈ X (M) such that X(p) ∈ TpN for
any p ∈ N defines a restricted vector field XN ∈ X (N).

We are now in the condition to prove (for compact manifolds) a stronger ver-
sion of Whitney Theorem. We already know that any compact manifold can be
embedded in RN , cfr. Proposition 1.6.9. We aim to improve this result giving an
upper bound to N .

Theorem 1.7.28 (Whitney embedding Theorem). Let M ⊂ Rs be a m-submanifold.
Then there is an embedding f : M → R2m+1.

Proof. If s ≤ 2m + 1 there is nothing to prove. Assume that s > 2m + 1.
To conclude it is enough to prove that there is an embedding f : M → Rs−1. The
idea is to use a linear projection. Let x ∈ Rs be a point. Let H ⊂ Rs \ {x} be a
hyperplane. Let L = x+ dirH and assume that L∩M = ∅. The latter can always
be achieved by applying for instance the diffeomorphism F : Rs → Rs that maps
x 7→ x

1+||x|| . Then define the projection from x onto H

πx : Rs \ L→ H = Rs−1,
given by

πx(y) = 〈x, y〉 ∩H.
We want to show that there are points x ∈ Rs such that πx|M is an embedding.

The map πx is open and M is a submanifold therefore it is enough to prove that

a) πx|M is injective
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b) πx|M has constant rank m.

Let us first be concerned with a). Let y ∈ Rs−1 be a point. Then πx(y)−1 is a line
through x. Therefore πx|M is injective if and only if there are no lines through x
intersectingM in two distinct points. Let us consider the abstract (2m+1)-manifold
Y := ((M ×M) \∆)× R. Let g : Y → Rs be defined as

g(p, q, t) = p+ (q − p)t.
Then g is well defined and smooth.

Claim 1.7.29. Let f : Rn → Rm be a smooth map, with n ≤ m. Assume that
A has measure 0 then f(A) has measure 0.

Proof of the claim. If n = m − a consider the map f̃ : Rn+a → Rm given
by f̃(x1, . . . , xn, y1, . . . , ya) = f(x1, . . . , xm), and the subset Ã = A × (0, . . . , 0).

Then f̃(Ã) = f(A) and Ã has measure zero. Hence it is enough to prove the
statement for n = m. By hypothesis we may cover A with countably many closed
balls. Hence we may assume that A ⊂ B for some closed ball. The function f is
smooth. Then there is a constant M > 0 such that for all x, y ∈ B we have

||f(x)− f(y)|| ≤M ||x− y||.
Hence if we cover A with countably many disks of volume bounded by ε the image
f(A) is covered by a countable collection of balls of total volume Mε. �

Let {Ui, ϕi} be a DS of Y , then the claim applied to g ◦ ϕ−1i shows that g(Y )
is of measure zero (recall that we always have countably many local charts). In
particular there is a point x ∈ Rs that such that x 6∈ g(Y ) and therefore the
projection from x satisfies condition a).

We are left to control point b). Note that ker(Dπx)y = dir〈x, y〉 for any y.
Therefore πx|M has constant rank m as long as dim(TyM ∩ 〈x, y〉) = 0 for any
y ∈ M , or equivalently y + TyM 63 x. Let us consider TM , the tangent bundle
of M . We know it is a 2m-manifold and let h : TM → Rs be the map given
by h(y, v) = y + v. Then condition b) is satisfied for any z ∈ Rs \ g(TM). We
have, by Claim 1.7.29, that h(TM) is of measure zero therefore we may find points
z ∈ Rs\{g(Y )∪h(TM)} such that πz satisfies both a) and b) and allow to conclude
the proof. �

Remark 1.7.30. The really amazing result is that one can drop the dimension
by 1. That is any m-manifold admits an embedding in R2m. This is really hard
and completely out of reach for us. The idea is to project into R2m producing only
isolated double points (keep in mind our construction) and then apply delicate
arguments to remove self intersections, see [4]

Claim 1.7.29 is the baby version of Sard’s theorem stating that the image of
critical points of a smooth map has measure zero. Let me spend few words on
it. Let f : X → Y be a smooth map. We say that x ∈ X is a critical point if
rkDfx < dimY . Let C ⊂ X be the set of critical points. Then Sard’s Theorem
guaranties that f(C) is of measure 0. If you recall our construction of submanifolds
induced by smooth maps, see Proposition 1.6.7, Sard’s theorem says that, outside
of a measure zero set, fibers of a smooth surjective map are submanifolds. That is
any time we have positive dimensional fibers almost all of them are nice manifolds.
On the other hand note that measure zero set may well be dense therefore maybe
in any neighborhood you have some fiber which is not a manifold.
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1.8. Exercises

Exercise 1.8.1. Show that constant functions, the identity morphism, and the
inclusion Sn−1 ↪→ Rn are smooth morphisms.

Exercise 1.8.2. Show that GL(n) is a manifold, ore generally prove that for
any k the set of matrices of rank at least k is a manifold in M(n).Show that
multiplication, inversion and sum of matrices are smooth functions on M(n).

Exercise 1.8.3. Show that a continuous map F : M → N , between manifolds
is smooth if and only if for any open W ⊂ N and f ∈ C∞(W ) we have f ◦ F ∈
C∞(F−1(W )).

Exercise 1.8.4. Let f : R → R be given by t 7→ t3. Show that it is an
homeomorphism but not a diffeomorphism.

Exercise 1.8.5. Prove that when M is a compact manifold any morphism in
a Hausdorff space is proper.

Exercise 1.8.6. Let A : Rn → Rm be a linear map. Show that DA0 = A.

Exercise 1.8.7. Prove Definition-Lemma 1.7.12.

Exercise 1.8.8 (Germ of a function). Let p ∈ M be a point. A differentiable
function in p is the data of a pair (f, Up) with p ∈ Up and f ∈ C∞(Up). We will say
that two smooth functions (f, Up) ∼ (g, Vp) are equivalent if there exists an open
neighborhood Wp ⊆ Up ∩ Vp such that f|Wp

= gWp
. Let

C∞(M)p = ∪U3pC∞(U)/ ∼ .
Show that:

• C∞(M)p has an algebra structure
• the restriction C∞(M)→ C∞(M)p is surjective
• the kernel of the restriction map is given by smooth functions that vanish

in a neighborhood of p.

Exercise 1.8.9. (submanifolds) Show that Sn is a submanifold of Rn+1.
Show that the map F : R3 → R given by

F (x, y, z) = (a−
√
x2 + y2)2 + z2

has constant rank 1 at any point of F−1(b2), for a > b > 0. Conclude that the
torus in R3 is a submanifold.

Let Ct := (x + y = t, x2 + y2 = 1) ⊂ R3 say for which values of t Ct is a
submanifold.

Assume that N ⊂ M is a submanifold and let i : N → M be the natural
inclusion as sets. Show that i is differentiable.

Show that X ⊂ N and Y ⊂ M are submanifolds then X × Y ⊂ N ×M is a
submanifold.

Let F : R3 → R4 be given by F (x, y, z) = (x2 − y2, xy, xz, yz). Show that F
induces an embedding of P2

R into R4. In particular P2
R is a submanifold of R4.

Show that SLn(R) ⊂ GLn(R) is a submanifold.
Show that O(n) ⊂ GLn(R) is a submanifold, describe TIdO(n).

Exercise 1.8.10. Compute the tangent space at any point of: S2, a cylinder,
a plane, the torus add more.
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Exercise 1.8.11. Let p ∈ M be a point of a manifold. Let Cp be the set of
curves through p, that is smooth maps f : J → M with f(0) = p. We say that
f, g ∈ Cp are tangent at p if for some local chart (Up, ϕ)

(ϕ ◦ f)′(0) = (ϕ ◦ g)′(0).

A tangent vector at p is an equivalence class of curves with respect to being
tangent at p. Prove that this is well defined, equivalent to our previous definitions,
and TpM = Cp/∼

Exercise 1.8.12. (Zariski tangent space) Let mp := {f ∈ C∞(M)|f(p) = 0}.
Observe the following:

• mp is an ideal in C∞(M),
• let m2

p ⊂mp be the ideal given by functions that vanish of order at least

2 in p. For any f ∈m2
p and any derivation X ∈ D(M)p, X(f) = 0,

• any derivation X ∈ D(M)p defines a linear functional fX :
mp

m2
p
→ R,

• mp

m2
p

is a vector space of dimension m.

Conclude that D(M)p is isomorphic to (
mp

m2
p
)∗.

Exercise 1.8.13. Let X,Y ∈ X (M) be vector fields. Show that the Lie bracket
[X,Y ] = XY − Y X is always a vector field.

Exercise 1.8.14. Let M be a connected manifold and F : M → N a smooth
morphism. Show that F is constant if and only if DF ≡ 0.

Exercise 1.8.15. Show that TS1 ' S1 × R1 and TS3 ' S3 × R3 (hint: note
that on these spheres it is possible to define 1, respectively 3, vector fields that are
linearly independent at any point). It is out of our reach to prove that S7 has the
same property and these are the unique spheres having trivial tangent bundle. This
is related to existence of the octonions, like the two examples where related to the
existence of the complex field and quaternions.

Exercise 1.8.16. Let Y ⊂ X be a submanifold. Prove that TY ⊂ TX is a
submanifold.

Exercise 1.8.17. Let X ⊂ RN be a submanifold. Prove that TX is a subman-
ifold of R2N .



CHAPTER 2

Vector bundles

In this chapter we prove Frobenius Theorem about integrability of vector fields
and use this construction to motivate and study vector bundles on manifolds.

2.1. One parameter vector fields

Let M be a manifold. We already encountered vector fields, they can be either
seen as derivations on C∞(M) or sections of the tangent bundle, recall Proposition
1.7.25. In this section we want to focus on a slightly different perspective. Let
C ⊂ M be a submanifold of dimension 1, that is a curve on M . Then through
any point p ∈ C we have a tangent space TpC ⊂ TpM and also the tangent vector
induced by a parametrization of C. Let now X be a vector field. Then at any point
p ∈ M , X(p) ∈ TpM is a tangent vector. Restrict to a local chart (Up, ϕ) then
X =

∑
ai(x1, . . . , xm)∂i, and consider a differentiable function f : J → ϕ(Up),

with f(t) = (x1(t), . . . , xm(t)). When we think of f as a curve in Up, the function

f ′(t) := df
dt (t) = Dft(1) describes its tangent vectors. It is natural to ask whether

there is such a f with f ′(t) = X(f(t)). In other words we are asking for the
existence of a curve whose tangent vectors are described by the vector field. Such
a curve is called an integral curve of the vector field X.

Definition 2.1.1. Let X be a vector field on M . A curve f : J → M is an
integral curve of X if for any t ∈ J , f ′(t) = Dft(1) = Xf(t).

By definition integral curves are solutions of the following equation

(6) Dft(1) = X(f(t)).

In a chart (Up, ϕ), with ϕ(p) = (0, . . . , 0) we have ϕ ◦ f(t) = (x1(t), . . . , xm(t)),
Dϕ(X) =

∑
ai(x1, . . . , xm)∂i, therefore Equation (6) translates in the following

system of ordinary differential equations

dxi(t)

dt
= ai(x1, . . . , xm),

together with initial condition (ϕ ◦ f)(0) = (0, . . . , 0). Therefore, thanks to Cauchy
existence result, integral curves always exists locally.

Remark 2.1.2. Note that even if integral curves always exists they do not
need to be submanifolds. For example, consider M = S1×S1 ⊂ R2

(x1,x2)
×R2

(y1,y2)
.

Fix any irrational number a, the integral manifold of the non-vanishing vector field
Xa = (x2∂x1

− x1∂x2
) + a(y2∂y1 − y1∂y2) is dense in M.

This allows to give a geometric point of view on differential equations. Moreover
we may also consider vector fields depending on a parameter t.

25
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Definition 2.1.3. Let M be a m-manifold and J ⊂ R an interval, with 0 ∈ J .
A one parameter vector field is a map

X : M × J → TM,

such that for any t ∈ J , the assignment X(•, t) is a vector field on M . A curve f(t)
is integral for X if

df(t)

dt
= X(f(t), t),

for any t ∈ J . Let us indicate with X (M)J the set of one parameter vector fields
on M defined on M × J .

Example 2.1.4. This is an evolution of Example 1.7.26. Consider M = R3. Fix
coordinates (x, y, z) on R3 and the canonical basis (∂i(p)) for each TpM ' R3. Let
f : R→ R3, with f(t) = (x(t), y(t), z(t)) be a smooth function with f(0) = (0, 0, 0).
Let X : M \ f(R)× R→ T (M \ f(R)) be the vector field defined as

X((x, y, z), t) = −G((x− x(t))/r(t)3, (y − y(t))/r(t)3, (z − z(t))/r(t)3),

with r(t) =
√

(x− x(t))2 + (y − y(t))2 + (z − z(t))2. This is the gravitational field
of an object of unit mass that moves along the curve f(t). We had to exclude f(R)
to ensure that X is well defined on the manifold.

Proposition 2.1.5. Let X ∈ X (M)J be a one parameter vector field. Then
there is an open subset WM×{0} ⊂M×J and a smooth function G : W →M , such
that

• for any x ∈M the curve f(t) := G(x, t) is integral for X,
• G(x, 0) = x

Proof. Fix p ∈ M and let (Up, ϕ) be a local chart, after maybe shrinking
Up, we may assume, by Cauchy theorem, that the solution exists and is unique in
Up×(−δp, δp), for some δp > 0. That is there exists a function Gp : Up×(−δp, δp)→
M with the required properties. We have now to glue these local solutions. This
can be done thanks to the uniqueness part of Cauchy theorem. To conclude observe
that ∪p∈MUp × (−δp, δp) is an open neighborhood of M × {0}. �

Definition 2.1.6. The function G produced in proposition 2.1.5 is called the
flow of the one parameter vector field.

Remark 2.1.7. Note that the flow is such that G(x, t) is an integral curve of
the vector field for any t, and G(x, 0) = x. Hence we may rewrite the differential
equation of the field via the following equations of the flow:

(7) DG(x,0)(∂i) = ∂i, DG(x,t)(
d

dt
) = X(x, t)

If W ⊃M × (−δ, δ) and s ∈ (−δ, δ), then by uniqueness we have

(8) G(p, s) = G(G(p, s), 0).

Let θs : M →M be defined as

θs(p) := G(p, s).

Then by Equations (7), (8) we have that θs is a local diffeomorphism. Moreover
θs is a bijection by uniqueness of solutions. Therefore θs is a diffeomorphism and
it is homotopy equivalent to the identity. In other words the flow describes the
manifold M has a dynamical system whose points are moved according to the one
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parameter vector field. This opens our arguments to dynamics on the manifolds.
We refer the interested reader to [1].

If M is compact we only need a finite number of local charts, then there is a
positive δ such that the flow is defined on M × (−δ, δ), but something even better
is at hand.

Proposition 2.1.8. Let M be a compact manifold and X(p, t) ∈ X (M)R a one
parameter vector field then there is a flow G : M × R→M . Moreover

G(p, s1 + s2) = G(G(p, s1), s2),

therefore there is a morphism of groups

R→ Diff(M,M),

all diffeomorphisms built in this way are homotopy to the identity. Finally this
produces a map

X (M)R → Hom(R, Diff(M,M)).

Proof. Let f : (a, b)→M be an integral curve and assume that f(0) = p. For
the first statement it is enough to show that we may prolong f to an integral curve
f̃ : (a− δ, b+ δ)→M , such that f(t) = f̃(t) for t ∈ (a, b). M is compact therefore
the flow G : M × (−δ, δ)→M is well defined, for some δ > 0. Choose t ∈ (a, a+ δ)
and define the integral curve G(f(t), t) on (t− δ, t+ δ). By Equation (8) we have

G(p, t+ t) = G(f(t), t),

hence by uniqueness of solution it has to agree with f and it prolongs it.
Since the flow G : M × R → M is well defined then, again by uniqueness of

solutions we have that

G(p, s1 + s2) = G(G(p, s1), s2).

�

On non compatc manifold it is in general not true that a vector field X ∈
X (M)R defines a flow on M × R. This naturally leads to the following definition

Definition 2.1.9. Let X ∈ X (M)R be a one paramenter vector field. Then X
is called complete if there exists a flow G : M × R→M associated to X.

As observed before to a complete vector field is associated a one paramenter
group of diffeomorphism homotopically equivalent to the identity.

Remark 2.1.10. Note that the theory of one paramenter vector fields contains
that of vector fields, simply defining X(p, t) = X(p), for any p ∈M .

2.2. Frobenius Theorem

It is quite natural in our set up to ask for integral submanifolds of higher
dimension. That is we talked about integral curves associated to a vector field on a
manifold M , but what happens if we choose two or more vector fields? Is it possible
to “integrate” them? In other words is it possible to describe submanifolds N ⊂M
such that at any point TpN is spanned by the chosen vector fields?

Let us start with a simple example. Let W ⊂ R3 be open and consider a system
of partial differential equations

∂z/∂x = g(x, y, z), ∂z/∂y = h(x, y, z).
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Given (a, b, c) ∈W , a solution, if any, will be a function z = f(x, y) such that

c = f(a, b), fx(x, y) = g(x, y, f(x, y)), fy(x, y) = h(x, y, f(x, y)).

From a geometric point of view if we let let F (x, y, z) = z−f(x, y) then V := {F =
0} is a surface in W ⊂ R3. Recall that (∂x, ∂y, ∂z) is a basis for derivations on W ,
hence, by Lemma 1.7.3, we have

T(x,y,z)V = (∂xF, ∂yF, ∂zF )⊥ = (−fx,−fy, 1)⊥ = 〈∂x + g(x, y, z)∂z, ∂y + h(x, y, z)∂z〉.

In other words if we consider the two vector fields X and Y , given by

X = ∂x + fx∂z, Y = ∂y + fy∂z

then V is an integral submanifold for {X,Y }. Note further that for this particular
choice of vector fields, since fxy = fyx we have

[X,Y ] = XY − Y X = 0

This shows that, in this set up, our initial question has a necessary condition,
namely [X,Y ] = 0, and it reflects the independence on the order of partial deriva-
tives. It is therefore easy to guess that some condition on integrability are needed
in this more general framework. It is time to introduce some definitions.

Definition 2.2.1. Let M be a manifold, a distribution D of rank k is the
assignment of a subspace Dp ⊂ TpM such that:

a) dimDp = k for any p ∈M ,
b) for any p ∈M there is a chart (Up, ϕ) and k vector fields {X1, . . . , Xk} ⊂
X (Up) such that for any q ∈ Up Dp = 〈X1(q), . . . , Xk(q)〉. Such a set
{X1, . . . , Xk} is called a local basis at q

We say that a vector field Y ∈ X (M) belongs to the distribution D,

Y ∈ D,

if for any p ∈ M Y (p) ∈ Dp. That is to say that Y =
∑
ciXi with ci ∈ C∞(Up)

for any local basis. A distribution is said involutive if for any pair of vector fields
X,Y ∈ D we have [X,Y ] ∈ D. A distribution is integrable at p if there exists an
open Wp ⊂M and a submanifold F 3 p such that for any q ∈W ∩ F

TqF = Dq,

such a F is called a leaf of the distribution. Integrable distributions are also called
foliations.

Example 2.2.2. Let M = Rn+k and Dp := {∂i(p)}i=1,...n ⊂ TpM . Let D be
the distribution defined by the Dp. Then D is clearly involutive and the leaves of
D are the fibers of the projection onto the last k coordinates π : M → Rk. Despite
this may seem a very special case we will prove that any foliation is locally of this
type.

Remark 2.2.3. The notion of integrable distribution extends that of integral
curve. Note that a distribution of rank 1 is a single vector field, hence is always
involutive since [X,X] = XX − XX = 0. The result on integral curves in the
preceding section can be rephrased saying that a rank 1 distribution is always
involutive and a foliation.
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We aim to study foliations. The first step is to prove that Example 2.2.2 locally
describes any rank 1 foliation. The following is just a rephrasing of the existence
of integral curves with a local change of variables.

Lemma 2.2.4. Let D = {X} be a rank 1 distribution, i.e. a non vanishing
vector field, on M . Let p ∈ M be a point then there is a local chart (Up, ϕ) such
that for any q ∈ Up, X(q) = ∂1(q).

Proof. The statement is local therefore we may assume, after shrinking M ,
that M ' Bε(0) ⊂ Rm, moreover we may assume that X(0) = ∂1(0). Let X =∑m

1 ai∂i, with ai smooth functions, a1(q) 6= 0, for all q ∈ M , and ai(0) = 0 for
i ≥ 2. Consider the following system of ordinary differential equations

(9)
dxi

dx1
=
ai(x1, . . . , xm)

a1(x1, . . . , xm)
for i = 2, . . . ,m.

Then for any (z2, . . . , zm) the system has a unique solution

xi = xi(x1, . . . , xm),

with initial data

(10) xi(0, z2, . . . , zm) = zi,

for i = 2, . . . ,m. Moreover the xi are smooth functions in the variables (x1, z2, . . . , zm).
Consider the following sistem

x1 = z1, x2 = x2(z1, . . . , zm), . . . , xm = xm(z1, . . . , zm).

By equations (9), (10) and construction the Jacobian (∂xi/∂zj) evaluated in z1 = 0
is the identity therefore by the inverse function theorem we may change coordi-
nates from (x1, . . . , xm) to (z1, . . . , zm) in a neighborhood of the origin. In these
coordinates, by Equation (9), we may rewrite

X =
∑

ai
∂

∂xi
=
∑

(a1
∂xi
∂z1

)
∂

∂xi
= a1

∂

∂z1
.

To conclude it is then enough to normalize the first coordinate with

x1(z1, . . . , zn) :=

∫ z1

0

dt

a1(t, z2, . . . , zm)
.

�

Theorem 2.2.5 (Frobenius Theorem). Let M be a m-manifold and D a dis-
tribution of rank k. Then D is integrable if and only if it is involutive.

One direction of the Frobenius is clear. If D is integrable then the vector fields
X,Y ∈ D belong to TF ⊂ TM therefore [X,Y ] ∈ TF = D. To prove Frobenius
Theorem we start with a local version of it.

Proposition 2.2.6. Let D be an involutive distribution of rank k on M . Let
p ∈ M be a point, then there is a local chart (Up, ϕ) such that for all q ∈ Up we
have

Dq = 〈∂1(q), . . . , ∂k(q)〉.
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Proof. Let {X1, . . . , Xk} be a local basis for the distribution, after eventually
shrinking the open neighborhood of p. We prove the Proposition by induction on
k. The first step is Lemma 2.2.4. Then we may assume the Proposition is true
for distributions of rank k − 1. By Lemma 2.2.4 we have M ' Bε(0) ⊂ Rm and
Xk = ∂k. Define, for j ≤ k − 1 the vector fields

Yj = Xj −Xj(xk)Xk,

then Yj(xk) = 0, for j ≤ k − 1 and Xk(xk) = 1. Moreover by definition

D = 〈Y1, . . . , Yk−1, Xk〉,
and evaluating the bracket on xk we see that

0 = [Yi, Yj ](xk) = (
∑

bijhYh)(xk) + aijXk(xk) = aij

hence
DY = 〈Y1, . . . , Yk−1〉

is involutive. By induction hypothesis we have a coordinate system, say (y1, . . . , ym)
such that

{ ∂
∂yi
}i=1,...,k−1 = DY .

Since ∂
∂yi

, for i = 1, . . . , k− 1, is a linear combination of Yj , for i = 1, . . . , k− 1 we

still have
∂

∂yi
(xk) = 0,

for i = 1, . . . , k − 1. Let

(11) [
∂

∂yi
, Xk](xk) = (

k−1∑
1

cikh
∂

∂yh
+ ciXk)(xk) = ci,

on the other hand

[
∂

∂yi
, Xk](xk) =

∂

∂yi
(Xk(xk)) +Xk(

∂

∂yi
(xk)) =

∂

∂yi
(1) +Xk(0) = 0

then, as before, we get ci = 0. That is

(12) [
∂

∂yi
, Xk] =

k−1∑
1

cikh
∂

∂yh
.

Since since ( ∂
∂yj

) is a local basis we have Xk =
∑n

1 bj
∂
∂yj

and

[
∂

∂yi
, Xk] = [

∂

∂yi
,

n∑
1

bj
∂

∂yj
] =

n∑
1

∂bj
∂yi

∂

∂yj
,

then plugging in Equation (12) we get

∂bj
∂yi

= 0,

for i ≤ k − 1 and k ≤ j ≤ n. That is bj = bj(yk, . . . , ym) for j ≥ k. Let

Yk =
∑m
j=k bj

∂
∂yj

, then

D = {Y1, . . . , Yk}.
Moreover by Lemma 2.2.4 there is a coordinate change, (y1, . . . , ym) to (z1, . . . , zm)
such that

yi = zi, for i = 1, . . . , k − 1,
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and

Yk =
∂

∂zk
.

Hence in this coordinate system Yi = ∂
∂zi

, For i = 1, . . . k. �

We are now in the condition to conclude Frobenius Theorem.

Proof of Frobenius Theorem. We need to produce the leaves of a rank k
distribution D. Fix p ∈M a point. Then by Proposition 2.2.6 there is a local chart
(Up, ϕ) such that D = 〈∂i〉, for i ≤ k. Let π : Rm → Rm−k the projection onto the
last m− k coordinates then π ◦ ϕ is a smooth function of constant rank k and

ker(D(π ◦ ϕ)q) = Dq,

for any q ∈ Up. Therefore for any (zk+1, . . . , zm) ⊂ im(π ◦ ϕ), the subset (π ◦
ϕ)−1(zk+1, . . . , zm) is a k-manifold and it is the required leaf. �

Remark 2.2.7. With some more effort, but no new ideas, one can prove that
the leaf passing through a point p is

Fp := {q ∈M |there exists a piece-wise smooth integral curve of D joining p and q}.

We may use Frobenius Theorem to produce a new point of view on coordinates.

Corollary 2.2.8. Let M be a manifold assume that {X1, . . . , Xm} are vector
fields such that [Xi, Xj ] = 0 for any pair i, j and {X1(p), . . . , Xm(p)} is a local basis
for TpM . Then the Xi define local coordinates in a neighborhood of p.

Proof. By hypothesis {X1, . . . , Xm} is a distribution of rank m in a neighbor-
hood of p and by Frobenius it is integrable. Moreover, following the proof of Propo-
sition 2.2.6, this yields a coordinate change such that Xi = ∂

∂zi
, for i = 1, . . . ,m. �

The above Corollary shifts the attention from coordinates to vector fields. This
is sometimes useful when treating special structures, coming from theoretical de-
scriptions, where it is difficult or even not possible to introduce explicit local coor-
dinates.

2.3. Vector bundles

We already realized how useful could be the Tangent bundle of a manifold. Let
M be a m-manifold and {Ui, ϕi} a DS, then

TM|Ui ' Rm × Ui.

In particular locally any manifold of dimension m has isomorphic tangent bundle
and the geometry of M encoded in TM only depends on the way we glue together
these pieces.

This suggests the possibility to define in an abstract way some gluing condition
and attach to a manifold M various type of objects like TM . Before plunging in
the abstract description let us work out a special example.



32 2. VECTOR BUNDLES

2.3.1. Cotangent bundle. Let M be a manifold of dimension m and f ∈
C∞(M) a smooth function. Then we have f : M → R and Df : TM → R. In
particular for any p ∈M let

df(p) := Dfp : TpM → R.

Then df(p) is a linear map, that is a linear functional on TpM . Therefore we may
consider

df(p) ∈ TpM∗.
As we did for the tangent bundle we define the set

TM∗ = ∪p∈MTpM∗,
there is a natural projection π : TM∗ → M , and df is just a section of π. As we
did for TM let us work out a DS to produce a manifold.

Let {Ui, ϕi} be a DS on M , with local coordinates (x1(p), . . . , xm(p)). Then,
keep in mind Remark 1.7.17, define

(dx1(p), . . . , dxm(p))

the dual basis of TpM
∗. It is worthwhile to spend a couple of lines on this dual

basis.

Remark 2.3.1. We know that TUi = Ui×Rm and {∂1, . . . , ∂m} are vector fields
such that for any p ∈ Ui, the set {∂1(p), . . . , ∂m(p)} is a basis of TpM . Therefore
we may define

dxi : Ui → Ui × (Rm)∗

as

dxi(p)(∂j(p)) = δij .

The dxi are sections of the map

π : ∪p∈UiTpM∗ → Ui

and {dx1(p), . . . , dxm(p)} is a basis of TpM
∗ for any p ∈ Ui.

Since Ui is a local chart it is easy to see that dxi are smooth morphisms with
the usual DS of the product. This also offers a closer look on the differential of a
function f ∈ C∞(Ui). For any vector X(p) ∈ TpM the element dxi(p) assigns a
number dxi(p)(X(p)) that is the ith component of X(p) in the base {∂i(p)}. For
f ∈ C∞(Ui) we have by definition

∂f

∂xi
(p) = Dfp(∂i(p)).

Hence we may rewrite df in the local base {dxi} as

df =
∑
i

∂f

∂xi
dxi.

Since df(p) is a linear form on TpM we may apply it to a vector field X ∈ X (M).
We defined df(p) = Dfp hence we have

df(p)(Xp) = Xp(f),

for Xp ∈ D(M)p a derivation. This shows that we may apply df to a vector field
X ∈ X (Ui) to get a an element in C∞(U)

df(X)(p) := X(p)(f).
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Thus we may see df as a linear approximation of f in the direction of X(p) In
particular in the local expression we found we have

df(X)(p) =
∑
i

∂f

∂xi
(p)dxi(p)(X(p)).

Let us go back to the DS. Note that for any smooth function F : M → N we
have the differential DF : TM → TN . Since DFp : TpM → TF (p)N is a linear map
we have the transposed linear map DF ∗p : TF (p)N

∗ → TpM
∗ where

DF ∗p (h)(v) = h(DFp(v)),

and, with the choice of canonical dual basis, DF ∗p is given by the transpose matrix
of DFp. Hence fix a local chart ϕi : Ui → V and dual basis {dxi}. Then we define
a local chart on TU∗i by

(ϕi, (D(ϕ−1i )t)) : TU∗i → Ui × Rm.

In particular, recalling Equation (5) at page 20, the change of coordinates is
given by

(ϕi ◦ ϕ−1j , (D(ϕ−1i ◦ ϕj)
t)).

We proved the following

Proposition 2.3.2. Let M be a m-manifold. Then the cotangent bundle
TM∗ is a 2m-manifold and π : TM∗ →M is a smooth map.

As in the Tangent bundle case, sections of cotangent bundle have a geometric
meaning.

Definition 2.3.3. A section of π : TM∗ →M is called a differential 1-form.
The space of differential 1-forms is called Ω1(M).

Remark 2.3.4. One forms are given, locally, by∑
aj(x1, . . . , xm)dxj ,

for aj ∈ C∞(Ui). In particular for any f ∈ C∞(M) we may write

df =
∑ ∂f

∂xi
dxi ∈ Ω1(M)

this defines the (external) differentiation

d : C∞(M)→ Ω1(M).

The image of this map is the set of exact forms.

Differential 1-forms, and their friends k-forms obtaining wedging the former,
are related to integration on manifolds and Riemannian geometry, see [2] for an
excellent introduction.

An important, and quite surprising, difference between vector fields and 1-forms
is the behaviour with respect to morphisms. We observed that in general it is not
possible to define a vector field through a morphism, recall Remark 1.7.27. On the
other hand let F : M → N be a morphism and α ∈ Ω1(N) a 1-form. Then we may
define

F ∗α(v) = α(DF (v)),



34 2. VECTOR BUNDLES

for v ∈ TpM , and it is a straightforward check, left to the reader, that F ∗α is a
1-form. This produces the pull-back map for 1-forms

F ∗ : Ω1(N)→ Ω1(M).

Further note that this operation commutes with differentiation of functions, that
is d(F ∗(f)) = F ∗(df), where F ∗(f) := f ◦ F .

Via the pull-back it is possible to produce 1-forms on submanifolds of a manifold
M . Indeed let N ⊂M be a submanifold and α ∈ Ω1(M). Then i∗α ∈ Ω1(N), where
i : N → M is an embedding. In particular via the 1-forms of RN we produce 1-
forms on a submanifold N ⊂ RN . In general the behaviour of i∗α form may be
different from that of α.

Example 2.3.5. Let M ⊂ RN be a submanifold, and α = dx1 ∈ Ω1(RN ).
Then α is never zero, that is α(p) is not the zero form for any p ∈ RN . On the
other hand if q ∈ M is such that TqM ⊂ (1, 0, . . . , 0)⊥, then i∗α(p) is zero. This
suggests that pull-back form may be used to study the geometry of submanifolds.

2.3.2. Vector bundles. It is time to provide an abstract description, and
hence a generalization, of the bundles we introduced so far.

Definition 2.3.6. Let M and F be manifolds. A (smooth) fibration on M
with fiber F is

a) a manifold E
b) a morphism π : E →M
c) an open covering {Ui}
d) diffeomorphisms fi : π−1Ui → Ui × F such that the following diagrams

commute

π−1Ui
fi //

π

��

Ui × F

zz
Ui

.

The diffeomorphisms fi are called trivializations. We may, and will, assume that
{Ui, ϕi} are a DS on M .

Note that the diffeomorphism fi forces π−1(x) ' F for any x ∈ M . Moreover
we have the transition function fij = fi ◦ f−1j that are diffeomorphisms on
Uij × F , where Uij = Ui ∩ Uj . In particular for any x ∈ Uij the map fij|{x}×F is
a diffeomorphism of F . The commutation in d) forces also the following cocycle
conditions

fij = f−1ji , fij ◦ fjk = fik.

A section of a fibration π : E → M is a smooth map s : M → E such that
π ◦ s = idM .

We will not develop the theory of fibrations in full generality, for this the
interested reader may refer to [3]. We restrict to vector bundles where both the
fibers and the diffeomorphisms are particularly simple.

Definition 2.3.7. A rank k (real) vector bundle is a fibration π : E → M
with F ' Rk and diffeomorphism

fij|{x}×Rk ∈ GL(k,R), for any x ∈ Uij .



2.3. VECTOR BUNDLES 35

Remark 2.3.8. The manifold M × Rk is naturally a vector bundle, called the
trivial vector bundle. We may use the DS {(Ui, ϕi)} to define a DS on M ×Rk via

(ϕi, idRk) ◦ fi : π−1(Ui)→ Rm × Rk.
TM and TM∗ are m-vector bundles with trivialization given, respectively, by

(ϕi, Dϕi) and (ϕi, (Dϕ
−1
i )t).

Examples of fibrations, different from vector bundles, are:

• any diffeomorphism is a fibration with fiber a connected 0-manifold,
• the antipodal map a : Sn → PnR as a fibration with F = {p,−p},
• the Hopf fibration

h : S3 → S2 (a, b, c, d) 7→ (a2 + b2 − c2 − d2, 2(ad+ bc), 2(bd− ac)).
an S1 fibration over S2. A way to see this is to consider it on complex
numbers, there it can be defined as h(z0, z1) = (|z0|2−|z1|2, 2z0z1), where
we realize S3 := {(z0, z1) ∈ C2||z0|2 + |z1|2 = 1} and S2 := {(x,w) ∈
R×C||w|2+x2 = 1}. Then it is not difficult to see that h(z0, z1) = h(z2, z3)
if and only if there is a λ ∈ C with |λ|2 = 1 such that z2 = λz0 and
z3 = λz1. This shows that the fibers are S1. With more effort one can
prove that it is a fibration.

We may see Hopf fibration in the light of projective spaces as follows.
Let π : C2 \ 0 → P(C2) = P1

C be the quotient map induced by the equiv-
alence relation z ∼ w if and only if there is a λ ∈ C∗ such that z = λw.
Recall that P1

C
∼= S2 and let X = {(z0, z1) ∈ C2||z0|2+|z21 | = 1} ⊂ C2\{0},

then X ∼= S3 and π|X : S3 → S2 is the Hopf map.

Note that the geometric information carried by a vector bundle are all encoded
in its transition functions.

There are some operations we may perform on vector bundles.
2.3.2.1. Restriction. Let π : E → M be a k-vector bundle and N ⊂ M a

submanifold. Then π|π−1(N) : π−1(N) → N is a k-vector bundle on N and the
trivialization functions are exactly the same fiberwise.

2.3.2.2. Product. Let E → M and G → N be rank a and b vector bundles.
Then E × G → M × N is naturally a (a + b)-vector bundle. When M = N we
may go a bit further. Let ∆ ⊂M ×M be the diagonal. Then it is easy to see that
∆ 'M , by projection on one of the factors, therefore we may define, by restriction,
E×G as a rank (a+b) vector bundle on M , this is usually called either the product
vector bundle or the direct sum.

2.3.2.3. Dual, tensor, wedge, sym. All standard operations on vector spaces
can be carried out on vector bundles. We already encountered the dual during the
construction of the cotangent bundle. In a similar fashion we may define E ⊗ G,∧r

G and Syms(E) using as transition functions the corresponding matrices.
2.3.2.4. Morphisms. Let πE : E → M and πG : G → N be two rank a and b

vector bundles. Let h : E → G, be a smooth map such that it induces a smooth
function h̃ : M → N , that is h̃◦πE = πG ◦h. Then hx := h|Fx : Fx ' Ra → Fh̃(x) '
Rb is a map for any x ∈M .

Definition 2.3.9. We say that h is a vector bundle morphism if hx is a
linear map for any x ∈ M and we will say it is *-jective if hx is *-jective. The
map h is a vector bundle isomorphism if h̃ is a diffeomorphism and hx is a linear
isomorphism, for any x ∈M .
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Remark 2.3.10. The differential of a smooth function Df : TM → TN is a
vector bundle morphism. Given a manifold M and two vector bundles E →M and
G → M of rank a and b. A vector bundle morphism that commutes with idM is
simply given by a smooth function ψ : M →Ma,b(R).

Note that for any vector bundle morphism h(Fx) ⊂ Fh̃(x) is a vector subspace.

The sum and scalar multiplication on a vector bundle E are vector bundle
morphisms.

Definition 2.3.11. Let h : E/M → G/M be an injective vector bundle mor-
phism inducing the identity, then h(E) ⊂ G may be seen in a natural way as a
subvector bundle A vector subbundle is the image of an injective vector bundle
morphism, that induces the identity on the base.

Let E ⊂ G be a vector subbundle of rank a ≤ b. Then it is natural to consider
its quotient Q. Fiberwise the associated vector space is just Qx = Gx/Ex. To define
it globally observe that E ⊂ G is given by a smooth function q : M → Ma,b(R)
and for any x ∈ M the matrix q(x) has a independent columns. Since we may
work locally we assume that the first a columns are independent on W ⊂ M and
therefore we may identify Qx with {x1 = . . . = xa = 0} ⊂ Rb, define locally
Q = ∪Qx together with a map

W × Rb−a → Q (p, (x1, . . . , xb−a)) 7→ (p, (0, . . . , 0, x1, . . . , xb−a)).

This defines the quotient bundle. There is a quotient bundle that is particularly
interesting for us. Let X ⊂ M be a submanifold. Then we have the inclusion
embedding i : X →M that gives as a bundle morphism Di : TX → TM , it is easy
to check that it is an injective morphism and moreover if we take the restriction
Di(TX)|X we may look at it as a subbundle of TM|X . Therefore we have a well
defined quotient

NX := TM|X/Di(TX),

the normal bundle ofX inM . Note thatNX is a vector bundle of rankm−dimX.

Remark 2.3.12. We can now reinterpret the notion of distribution. A rank k
distribution D on a manifold M is a vector subbundle E ⊂ TM of rank k. The
integrability condition is just to say that for any point p ∈M there is k-submanifold
Np ⊂M such that D|Np = TN .

2.4. Exercises

Exercise 2.4.1. Let X1 = y2∂x and X2 = x2∂y be two vector field on R2.
Prove that X1 and X2 are complete but X1 +X2 is not complete.

Exercise 2.4.2. Let {X1, . . . , Xs} be a local basis for a distribution D. Prove
that D is involutive if [Xi, Xj ] ∈ D.

Exercise 2.4.3. Compute the Lie bracket [·, ·] for the following vector fields
on R3: y∂x − x∂y, z∂y − y∂z, ∂x + ∂y + ∂z.

Exercise 2.4.4. Determine which of the following local bases produce an in-
tegrable distribution on an open subset of R3 and when it is integrable determione
the leaves:

- {∂x + ∂y, ∂z}
- {5∂x, 7∂z}
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- {∂x − ∂y, ∂z − ∂x, ∂y − ∂x}
- {∂x + y∂z, ∂y}
- {y∂x, x∂y}

Exercise 2.4.5. Let D be the distribution on R3 associated to the local basis
{x1∂2 − x2∂1, ∂3}. Prove that it is integrable and find the leaf of the foliation.

Exercise 2.4.6. Let F : M → N be a surjective map of constant rank. Show
that for any p ∈ N the sets F−1(p) are the leaves of a foliation.

Exercise 2.4.7. Show that the leaves of a foliation are submanifolds.

Exercise 2.4.8. Let F : R3 → R be the map F (x, y, z) = x2 − y2 + z2 show
that it is of constant rank 1 on R3 \ {0} and determine the associated foliation.

Exercise 2.4.9. Show that on R any 1-form is exact. Produce a non exact one
form on S1.

Exercise 2.4.10. Let π : E → M be a rank k-vector bundle. Assume that
there are k sections {s1, . . . sk} such that {s1(x), . . . , sk(x)} are linearly independent
for any x ∈M . Prove that E = M × Rk.

Exercise 2.4.11. Let π : E → M be a rank a vector bundle. Let f : N → M
be a smooth map. Let

f∗E := {(x, v) ∈ N × E|f(x) = π(v)} ⊂ N × E
be the pull-back vector bundle. Prove that the projection on the first factor has a
natural structure of vector bundle and the projection on the second factor produces
a commutative diagram

f∗E
F //

π1

��

E

π

��
N

f // M

.

Show that if E is trivial then f∗E is trivial.

Exercise 2.4.12. Let G := {([x], v) ∈ P1
R × R2|v ∈ x}, prove that it is a

manifold. Prove that the canonical projection on the first factor is a vector bundle.
Prove that it is not the trivial vector bundle. (same for PnR)

Exercise 2.4.13. Determine the normal bundle of a plane P ⊂ R3 and of
S2 ⊂ R3. Observe that NS2/R3 is the trivial bundle ( this is the condition of

orientability) recall that TS2 is not trivial, how could it be ?





CHAPTER 3

Gauss map

In this chapter we will study the Gauss map of surfaces in R3.

3.1. Surfaces in R3

Let S ⊂ R3 be a submanifold of dimension 2. Let {Ui, ϕi} be a DS on S. For
any p ∈ Ui we have a well defined tangent space TpS and its orthogonal complement

TpS
⊥. The map ϕ−1i induces local coordinates (u, v) and a base (Xu(p), Xv(p)) for

any TpS. Where Xu, Xv are the vector fields associated to ∂u and ∂v respectively,
recall Lemma 1.7.3. To uniformize our notation with those classically used for
surfaces in R3 we define x(u, v) := ϕ−1i , xu := Xu, xv := Xv, hence

T(u,v)S = 〈xu,xv〉.
Define

N(q) =
xu ∧ xv
||xu ∧ xv||

the normal versor. This produces a smooth morphism the Gauss map

N : Ui → S2.

Remark 3.1.1. Recall that TpS is independent on the local chart chosen. On
the other hand the choice of N is not canonical. We could have chosen

xv ∧ xu
||xu ∧ xv||

instead. That is the normal versor is defined only up to a sign. This is related
to the problem of orientability of S. One says that a surface is orientable if the
Gauss map is defined on all of S. That is it is possible to glue the Gauss maps on
local charts to produce a well defined map N : S → S2. Think at the Möbius band,
maybe some Escher picture, to understand the geometric meaning of this notion.
Altrenatively this is equivalent to have a trivial Normal bundle.

From now on to simplify the treatment we will assume that S ⊂ R3 is an
orientable surface, that is there is a well defined Gauss map N : S → S2. The local
description shows that N is differentiable and the differential is DN : TS → TS2,
with

DNp : TpS → TN(p)S
2.

Note that for any point of S2 the tangent space is TpS
2 = 〈p〉⊥, recall exer-

cise 1.8.10. Therefore we may interpret DNp as a linear self map on TpS. As such
we may consider it is a way to measure the way the tangent space is varying in a
neighborhood of a point.

For curves the variation of tangent direction is measured by the curvature, a
number or a 1x1 matrix. Here we have a two dimensional vector space to control
therefore we need a 2x2 matrix. This is what DNp is devoted to.

39
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From now on we will always consider

DNp : TpS → TpS

as a linear endomorphism of TpS. Our first computation is the following.

Lemma 3.1.2. Let DNp : TpS → TpS, then DNp(xu) = Nu(p) and DNp(xv) =
Nv(p).

Proof. Let α(t) be an integral curve of xu with α(0) = p. Then

DNp(xu) = DNp(α
′(0)) =

d

dt
N(α(t))|t=0 = Nu(p),

and similarly for xv. �

Since a linear map is determined by the image of a basis Lemma 3.1.2 is the
local way to determine the differential of the Gauss map. Let us start computing
it in some special cases

3.1.0.1. DNp of a sphere. Let S ⊂ R3 be a sphere centered at the origin of
radius r. We already know that for any point p ∈ S TpS = 〈p〉⊥ that is

N(p) =
p

||p||
=

1

r
p,

and

DNp =
1

r
Id.

3.1.0.2. DNp of a cylinder. Let S = {(x, y, z) ∈ R3|x2+y2 = r2}, then we may
parametrize it via ϕ−1 : R2 → S with ϕ−1(u, v) = (r cosu, r sinu, v)

N(x, y, z) =
(x, y, 0)

r
,

and

DNp =

[
1
r 0
0 0

]
.

See more examples in the exercises at the end of the chapter.

Definition 3.1.3. A linear endomorphism f : Rs → Rs is called self-adjoint
if for any pair of vectors v, w ∈ Rs

〈f(v)·w〉 = 〈v·f(w)〉,
where 〈 · 〉 is the euclidean scalar product.

Lemma 3.1.4. DNp is self-adjoint

Proof. To prove the claim it is enough to prove that

〈DNp(xu)·xv〉 = 〈xu·DNp(xv)〉.
Since N is orthogonal to xv and xu we have

0 = ∂u〈N ·xv〉 = 〈Nu·xv〉+ 〈N ·xuv〉
and

0 = ∂v〈N ·xu〉 = 〈Nv·xu〉+ 〈N ·xvu〉.
Therefore we conclude by Lemma 3.1.2 and equality of mixed partials. �

Remark 3.1.5. Let us recall some important facts of self adjoint operators
from linear algebra. Let A : Rs → Rs be a self-adjoint linear operator
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a) on any hortonormal base A is represented by a symmetric matrix
b) if a versor v maximize the quantity 〈A(v)·v〉 then v is an eigenvector of A
c) A can be diagonalized by a hortonormal basis.

Let us see what this means for DNp. First consider the bilinear symmetric
form

B : TpS × TpS → R
given by

B(v, w) = 〈v·DNp(w)〉,
and the associated quadratic form

Q(w) = B(w,w).

Definition 3.1.6. In the above notation the second fundamental form of
the surface S at the point p is

IIp(v) = −Q(v) = −〈v·DNp(v)〉,

for v ∈ TpS.

This lemma explains the minus sign and sheds some light on the matter, I hope.

Lemma 3.1.7. Let α(t) be a regular curve with α(0) = p and α′(0) = v. Then

IIp(v) = kα(0)〈nα(0)·N(p)〉,

where kα and nα are, respectively, curvature and normal versor of α.

Proof. We may assume that α is parametrized by arc length. Since

〈α′(t)·N(α(t))〉 = 0,

derivation with respect to t yields

0 = 〈α(t)′′·N(α(t)〉+ 〈α′(t)·DNα(t)(α′(t))〉,

to conclude apply Frenet formulas and our definition

kα(0)〈nα(0)·N(p)〉 − IIp(v) = 0.

�

Let α be, as in Lemma, parametrized by arc length, then α′ and N are hor-
togonal versors at any point of α(t). Therefore we may associate a hortonormal
moving frame

(α′, N, α′ ∧N).

Since |α′| = 1, then α′ is hortogonal to α′′ and

kαnα = α′′ = knN + kgα
′ ∧N.

Since the basis is hortonormal we have

k2α = k2n + k2g ,

further note that kn(0) = 〈α′′(0)·N(p)〉 = IIp(α
′(0)).

Definition 3.1.8. kn is called the normal curvature, kg is called the geo-
desic curvature.
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Remark 3.1.9. A geodesic is a curve with zero geodesic curvature, that is a
curve whose normal is parallel to the normal of the surface at any point. We are
not going to explore it, but geodesics are local minimum of distance, that is the
curve of minimal distance between two points in a neighborhood of a surface.

In this way it is easy to derive Meusnier Theorem

Corollary 3.1.10 (Meusnier Theorem). Let α(t) be a regular curve on a sur-
face S, with α(0) = p and α′(0) = v. Then the normal curvature kn(0)depends only
on v.

Proof. In our notation we have kn(0) = kα(0)〈nα(0)·N(p)〉 = IIp(v) �

Let us go a bit further.

Lemma 3.1.11. Let p ∈ S be a point, TpS the tangent space and H 3 p a
plane. If TpH 6= TpS, then C := H ∩ S is a submanifold in a neighborhood of p
and TpC = TpH ∩TpS. In particular if H is parallel to N(p) the resulting manifold
C := H ∩ S is called a normal section.

Proof. We may assume that H = (z = 0) 3 p = (0, 0, 0). Let h : R3 → R
be the projection on the z coordinate. By hypothesis we have TxS 6⊂ H. Let
i : S → R3 be the inclusion map, then h ◦ i : S → R is a differentiable map
of constant rank 1 in a neighborhood of p. Therefore (h ◦ i)−1(0) = H ∩ S is
a 1-manifold in a neighborhood of p and TpC is the kernel of D(h ◦ i)p that is
TpC = (z = 0 ∩ TpS). �

Let C = H ∩ S be a normal section at p. Then TpC = TpH ∩ TpS and we may
choose a local parametrization by arc length, α(t), with α(0) = p and nα(0) = N(p).
This yields

kn = kα = IIp(α
′(0)).

In particular all normal curvature, i.e. the second fundamental form, are encoded
in normal sections.

Let S1 ⊂ TpS be the set of versors, and kn : S1 → R1 the map given by

kn(v) = IIp(v).

Since S1 is compact there is a maximum, say k1, for kn(S1). Let v1 be such
that kn(v1) = k1, and v2 an orthogonal versor. Then by Remark 3.1.5 v1 is an
eigenvector and we may diagonalize DNp on the basis (v1, v2). On the orthonormal
basis (v1, v2) the matrix of DNp is given by[

k1 0
0 k2

]
,

that is for w = av1 + bv2 ∈ TpS we have

IIp(w) = a2k1 + b2k2.

When we restrict to versors v ∈ S1 there is a θ such that v = cos θv1 + sin θv2.
Therefore we have the Euler formula

(13) − kn(v) = cos θ2k1 + sin θ2k2,

and k1, k2 are maximum and minimum of normal curvatures.
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Definition 3.1.12. When k1 6= k2 the eigenvalues k1 and k2 of DNp are called
principal curvatures and the eigenversors v1, v2 are called principal directions.
The leaf of a principal direction distribution is called line of curvature.

A 2x2 matrix has not many invariants.

Definition 3.1.13. The Gaussian curvature at the point p is K(p) := k1k2 =

detDNp, the mean curvature is H(p) = k1+k2
2 =

Trace(DNp)
2 .

Remark 3.1.14. By the examples we already worked out we have:
3.1.0.3. Sphere. A radius r sphere has k1 = k2 = 1/r, therefore K(p) = 1/r2

and H(p) = 1/r,
3.1.0.4. Cylinder. A radius r cylinder has k1 = 1/r, k2 = 0, therefore K(p) = 0

and H(p) = 1
2r ,

3.1.0.5. Plane. A plane has k1 = k2 = 0 therefore K(p) = H(p) = 0.

As we will see in a while the sign and vanishing of K(p) has a geometric
meaning.

Definition 3.1.15. Let p ∈ S be a point. We say that p is

elliptic if K(p) > 0
hyperbolic if K(p) < 0
parabolic if K(p) = 0
umbilical if k1 = k2
planar if DNp ≡ 0.

The Gaussian curvature encodes both global and local geometric properties of
the surface.

Proposition 3.1.16. Let p ∈ l ⊂ S be a smooth point on a line l, then K(p) ≤
0.

Proof. Let H be a plane containing l and normal to S at p, then

0 = kl = kn(v),

where v = Tpl. Therefore p cannot be elliptic. �

Umbilical points can be easily found as follows

Lemma 3.1.17. Let S ⊂ R3 be a surface then the set of umbilical points is given
by the equation H2 −K = 0, for H and K the mean and Gaussian curvature.

Proof. The equation H2−K = 0 translates, in terms of principal curvatures,
as

(k1 + k2)2 − 4k1k2 = (k1 − k2)2 = 0.

Hence it defines the set of points where k1 = k2. �

Note that by Equation (13) at hyperbolic points there are exactly two directions
u1, u2 ∈ TpS such that kn(ui) = 0. Moreover K(p) < 0 then there is a neighborhood
Up of hyperbolic points. This allows to define the asymptotic curves.

Definition 3.1.18. Let p ∈ S be a hyperbolic point and u1, u2 such that
kn(ui) = 0. Then vi are called asymptotic directions. The leaf of the distribution
of an asymptotic direction is called asymptotic line.



44 3. GAUSS MAP

Remark 3.1.19. Note that thanks to Frobenius Theorem we know that both
lines of curvature (for non umbilical points) and asymptotic lines (for hyperbolic
points) exist. These pairs of vector fields are always linearly independents and
may be used to define a local parametrization of the surface S. Note that lines of
curvature are mutually orthogonal, this is in general not the case for asymptotic
lines.

The first global result is the following.

Proposition 3.1.20. Let S ⊂ R3 be a connected surface all of whose points
are umbilical then S is contained in either a sphere or a plane.

Proof. Since connected manifolds are also path-connected it is enough to
prove the statement on a neighborhood of any point. Let Up ⊂ S be a local chart
with coordinates x(u, v). Then for any v = a1xu + a2xv ∈ TqS we have

DNq(v) = λ(q)v,

for some smooth map λ : Up → R, that is

Nua1 +Nva2 = λ(a1xu + a2xv).

Hence Nu = λxu and Nv = λxv and differentiating with mixed derivatives we get

λuxv − λvxu = 0.

The latter forces λu = λv = 0 and λ is therefore constant. If λ ≡ 0 then N is
constant and it is easy to see, by derivation, that

〈x(u, v)·N〉 = constant,

hence Up is contained in the plane p+N(p)⊥.
To conclude let λ 6= 0 then, again by derivation,

x(u, v)− 1

λ
N = constant.

Then Up is contained in the sphere of radius 1/|λ| centered in p− 1
|λ|N . �

Proposition 3.1.21. Let S ⊂ R3 be a compact connected orientable surface
with K(p) 6= 0 for any p ∈ S. Then S is diffeomorphic to the sphere.

Proof. By hypothesis the Gauss map N : S → S2 is well defined and since
K(p) 6= 0 it is a local diffeomorphism. To conclude we need to prove that it is
bijective. We already observed that N is an open map therefore N(S) is open in S2

and since S is compact N(S) is also closed. This shows that N is surjective. Then
N is a covering and since S2 is simply connected ]N−1(x) = 1 for any x ∈ S2. �

Next we show that a compact surface always possesses elliptic points.

Proposition 3.1.22. Let S ⊂ R3 be a compact surface. Then there is p ∈ S
with K(p) > 0. In particular in Proposition 3.1.21 we have K(p) > 0 for any p ∈ S.
In particular there are not smooth compact surfaces of negative curvature at any
point.

Proof. Let x ∈ S such that ||x|| ≥ ||p|| for any p ∈ S. Then the norm function
f(x) = ||x|| has a maximum at x, therefore TxS = 〈x〉⊥. Then any normal section
is a plane curve C with x maximum for the norm function. This shows that kn has
a fixed sign and therefore p is elliptic. �
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Remark 3.1.23. In Proposition 3.1.22 the compactness assumption is needed,
think for instance to a plane. It is far more complicate, but possible, to produce
examples of non smooth compact surfaces for which all smooth points have negative
curvature. A less sophisticated example is given by smooth non compact surfaces
of constant negative curvature, see Exercise 3.3.11.

3.1.1. Local equations of DNp. Let now x := ϕ−1i : R2 → Up ⊂ S be a
coordinate chart, with 〈xu,xv〉 = Tx(u,v)S, then

N(u, v) =
xu ∧ xv
||xu ∧ xv||

.

Recall that by Lemma 3.1.2Nu = DN(xu) andNv = DN(xv). Let α : (−ε, ε)→ R2

be a curve with α(0) = p, then we may consider β = x◦α to get β(t) = x(u(t), v(t)).
In this notations

(14) II(β′) = −〈DN(β′)·β′〉 = −(u′)2〈Nu·xu〉 − 2u′v′〈Nu·xv〉 − (v′)2〈Nv·xv〉

Note that deriving 〈N(u, v)·xu(u, v)〉 = 0 and 〈N(u, v)·xv(u, v)〉 = 0 we get

〈Nu·xu〉 = −〈N ·xuu〉, 〈Nu·xv〉 = 〈Nv·xu〉 = −〈N ·xuv〉, 〈Nv·xv〉 = −〈N ·xvv〉.

Therefore Equation (14) takes the form

(15) II(β′) = (u′)2〈N ·xuu〉+ 2u′v′〈N ·xuv〉+ (v′)2〈N ·xvv〉

Let us now briefly recall the first fundamental form of a surface. Let S ⊂ R3

be a surface and p ∈ S a point. Then the ordinary scalar product of R3 restricts
to a scalar product on TpS, and as usual, we may use it to determine lenghts and
areas via integration. This defines the first fundamental form of S applied to
the vector β′ simply as I(β′) = 〈β′·β′〉 and therefore on the local base xu, xv it
reads

I(β′) = (u′)2〈xu·xu〉+ 2u′v′〈xu·xv〉+ (v′)2〈xv·xv〉.
Classically, Gauss notation, all these have the following names.

Definition 3.1.24.
E = 〈xu·xu〉, F = 〈xu·xv〉, G = 〈xv·xv〉
e = −〈Nu·xu〉 = 〈N ·xuu〉, f = −〈Nu·xv〉 = 〈N ·xuv〉, g = −〈Nv·xv〉 = 〈N ·xvv〉.

A direct computation furnishes the so called Weingarten equations. We
have [

Nu
Nv

]
=

[
a11 a12
a21 a22

]t [
xu
xv

]
,

for (aij) the matrix representing DN with respect to the basis (xu,xv). Taking the
scalar product yields

−
[
e f
f g

]
=

[
a11 a12
a21 a22

]t [
E F
F G

]
,

that is [
a11 a12
a21 a22

]t
= −

[
e f
f g

] [
E F
F G

]−1
.

Finally we derive the equations

a11 =
fF − eG
EG− F 2

, a12 =
gF − fG
EG− F 2
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a21 =
eF − fE
EG− F 2

, a22 =
fF − gE
EG− F 2

and also the expressions of Gaussian and mean curvature

K =
eg − f2

EG− F 2
, H = −1

2

eG− 2fF + gE

EG− F 2
.

Recall that H2−K = (k1−k2)2
4 therefore we also have the expression for the principal

curvatures
k1,2 = H ±

√
H2 −K.

Local expressions are useful do study the local behaviour of surfaces.

Proposition 3.1.25. Let p ∈ S be an elliptic point. Then there is a neighbor-
hood Up ⊂ S such that Up ∩ (p+ TpS) = {p}, that is the surface is, locally, on one
side of the tangent space.

Let p ∈ S be a hyperbolic point then for any neighborhood Up the surface is on
both side of the plane p+ TpS.

Proof. Let x(u, v) be a parametrization with p = (0, 0, 0) = x(0, 0) and TpS =
(z = 0) ⊂ R3 with coordinate (x, y, z). Fix N(0) = (0, 0, 1), then the behaviour of
the point, with respect to the tangent space, is dictated by the z coordinate.

By Taylor’s formula we have

x(u, v) = xu(0, 0)u+ xv(0, 0)v+
1

2
(xuu(0, 0)u2 + 2xuv(0, 0)uv+ xvv(0, 0)v2) + o(2),

thus using Equation (15) we find

〈x(u, v)·N(0, 0)〉 =
1

2
II(0,0)(xu(0, 0)u+ xv(0, 0)v) + o(2).

In particular the sign of the z coordinate depends only on the sign of II(0,0). So for
an elliptic point the sign is constant and never vanishes in a neighborhood, while
for a hyperbolic point it changes. �

Remark 3.1.26. Note that for neither parabolic nor planar points there is
anything like this. The cylinder has all points on one side of the tangent space.
Plane has all points on the tangent space. While for “monkey saddle”

(u, v) 7→ (u, v, u3 − 3v2u),

(0, 0) is a planar point and points are on both sides. Similar examples for parabolic
points can be described with revolution surfaces.

3.2. Ruled surfaces

In this section we are interested in surfaces covered by lines.

Definition 3.2.1. A one parameter family of lines is a pair of smooth maps
α : I → R3 and τ : I → R3 together with the map

x : I × J → R3

given by
(u, v) 7→ α(u) + vτ(u).

Assume that 0 ∈ J , |τ(u)| = 1, for any u ∈ I then the image S := x(I×J) is called
a ruled surface. The (portion of) lines x|{v}×J are called the rulings of S while
x|I×{0} is called a directrix of S. The surface S is said to be ruled by the map x.
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Remark 3.2.2. The simplest examples of ruled surfaces are:

• (portion of) plane, with α the constant map in a point p ∈ H, and τ any
curve in H

• cone, again α constant in a point p and τ any curve,
• cylinder α any and τ constant.

Note that we do not ask S to be smooth and in general it is not. On the
other hand if we assume τ(u)′ 6= 0 then we may assume that |τ(u)| = 1. Hence
we have 〈τ(u)·τ ′(u)〉 = 0. To check the singularities let us compute xu = α′ + vτ ′

and xv = τ . The singular locus is given by points where xu ∧ xv = 0 and, where
smooth, the tangent space is

Tx(u,v)S = 〈α′ + vτ ′, τ〉.
The directrix of S is clearly non unique, but there is a special ones that contains

all singular points of S. Let γλ(u) = α(u) + λ(u)τ(u) be a directrix. We want to
choose λ in such a way that γ′ is orthogonal to τ ′ for any u. By definition we have

γ′ = α′ + λ′τ + λτ ′,

since 〈τ(u)·τ ′(u)〉 = 0 it is enough to choose

λ(u) = −〈α(u)′·τ ′(u)〉
〈τ(u)′·τ ′(u)〉

The line of striction is then

β(u) = α(u)− 〈α(u)′·τ ′(u)〉
〈τ(u)′·τ ′(u)〉

τ(u),

it is easy to check that β is independent from the directrix choosen. Next we want
to prove that all singularities of S are in β(I). To do this let us reparametrize the
surface S with x(u, v) = β(u) + vτ(u), then

xu = β′ + vτ ′, xv = τ

Then
〈xu·τ ′〉 = v,

hence the singular points are contained in v = 0 that is the directrix β.
We already gave examples of smooth ruled surface of non cylindrical type, for

instance the plane.

Example 3.2.3. A more intersting example is the ruled quadric S := {xy =
z} ⊂ R3. Note that the lines l = (x = z = 0) and r = (x = 1, y = z) are contained
in S and do not intersect. Moreover any plane H containing l intersects r in a point
and is such that H ∩ S = l ∪mH for some line mH . This shows that S is ruled by
the lines mH . As an exercise one can write down the parametrization explicitly.

Let p ∈ S be a smooth point of a ruled surface. We already know by Propo-
sition 3.1.16 that Kp ≤ 0. Moreover by Exercise 3.3.4 the Gaussian curvature
vanishes only if the tangent plane is constant along the line.

Definition 3.2.4. A developable surface is a ruled surface with fixed tan-
gent plane along the ruling, away from the line of striction.

In particular developable surfaces have zero Gaussian curvature.

Example 3.2.5. Keeping in mind Remark 3.2.2 we may easily write down two
examples of developable surfaces
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3.2.0.1. Cylinders. τ(u) = v constant
3.2.0.2. Cones. α(u) = p constant

There is a third one which is a bit less immediate.
3.2.0.3. Tangent developable. Let α : I → R3 be a smooth curve parametrized

by arc length with non vanishing curvature. Then the developable surface S as-
sociated to α is the ruled surface given by the parametrization h : I × R → R3,
with

h(u, v) = α(u) + vα′(u).

In particular S is smooth away from the directrix α(I). The points of α(I) can be
either smooth or non smooth points of S. In particular along a ruling, away from
the directrix, we have

Tx(u,v)S = 〈α′(u), α′(u) + vα′′(u)〉 = 〈α′(u), α′′(u)〉.

Hence the tangent space is constant along the ruling and K ≡ 0 away from the
directrix.

We aim to prove the converse of this statement that is

Theorem 3.2.6. A surface S with zero Gaussian curvature and no planar
points is a developable surface.

Remark 3.2.7. Developable surfaces are isometric to a plane, that is can be
developed on a plane.

Even if it is not strictly necessary we take this theorem as an excuse to introduce
a global point of view on the Gauss mapping using projective geometry. Our
next task is therefore to develop the theory of projective spaces to give a proof of
Theorem 3.2.6.

3.3. Exercises

Exercise 3.3.1. Compute the image of the Gauss map for the following sur-
faces:

• S = {x2 + y2 + z2 = r2} (sphere)
• S = {x2 + y2 = r2} (cylinder)
• S = {z = x2 − y2} (hyperbolic paraboloid)

Exercise 3.3.2. Let S ⊂ R3 be a surface, p ∈ S a point, and C ⊂ S a curve
through p. Observe that TpC ⊂ TpS and conclude that {(x, y, z) ⊂ R3|x(x2 + y2 +
z2 − 1) = 0} is not a submanifolds of R3

Exercise 3.3.3. Compute the differential of the Gauss map for the following
surfaces:

• S = {z = x2 − y2}
• S = {z = ax2 + by2}
• S = {z = 0}

Exercise 3.3.4. Let l ⊂ S be a line. Show that the points of l are parabolic
or planar if and only if TpS is constant in the direction of l.

Exercise 3.3.5. Let S be a surface of revolution of a curve α parametrized by
arclenght, show that the circles of revolution and the curves α are lines of curvature.
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Exercise 3.3.6. Let S be the surface of revolution around the z axis, of the
curve α(t) = (x(t), 0, z(t)), assume that α is parametrized by the arclength. Show

that K = −x
′′

x and prove that circles of revolution and the curves α are lines of
curvature.

Exercise 3.3.7. Let S be the helycoid given by the following parametrization

x(u, v) = (u cos v, u sin v, av),

for some a 6= 0. Determine Kp for any p ∈ S.

Exercise 3.3.8. Let S = {z = xy2} ⊂ R3 show that S is a submanifold and
(0, 0, 0) is a planar point.

Exercise 3.3.9. Let S = {xyz = 1} ⊂ R3 show that S is a submanifold and
determine the type of the points p ∈ S.

Exercise 3.3.10. Let q ∈ k[x, y, z] be a polynomial of degree 2 and S =
{q(x, y, z) = 0} ⊂ R3. Prove that if S is a submanifold K(p)K(q) ≥ 0 for any pair
of points p, q ∈ S.

Exercise 3.3.11. Lets now investigate a very interesting surface, called the
pseudosphere. It is the surface of revolution obtained by rotating the tractrix
about the x-axis, and so it is parametrized by

x(u, v) = (u− tanh(u), sech(u) cos v, sech(u) sin v),

for u > 0, v ∈ [0, 2π). Note that the circles (of revolution) are lines of curvature and
the various tractrices are lines of curvature. In the plane of one tractrix, say t the
surface normal and the curve normal agree. Prove that the curvature of the tractrix
is 1

sinh(u) and N(p) = −nt therefore k1 = − 1
sinh(u) Prove that the normal curvature

of the circle is sinhu (hint: to do this observe that kn = k cos θ = cosh(u)tanh(u) =
sinh(u))

With a different approach either observe or recall that

(e−s, tanh−1(
√

1− e−2s)−
√

1− e−2s)
is the arc lenght parametrization of the tractrix on R>0 and conclude by the above
exercise.

Exercise 3.3.12. Give examples of smooth developable surfaces and of singular
developable surfaces.

Exercise 3.3.13. Show that the line of striction is unique.





CHAPTER 4

Projective geometry

Still to come

4.1. Developable surfaces 2

The aim of this section is to prove Theorem 3.2.6 and give a classification
of developable surfaces as an exercise. For this reason we will mix projective and
differential geometry. Indeed the proof of this theorem without projective geometry
is quite subtle since from the local point of view of differential geometry it is not
easy to detect lines. On the other hand looking from the projective point of view
we may assoiate to a tangent plane its projectivization and consider it as a line in
P2 and therefore a point in (P2)∗.

To take avdantage from this let (P2
R)∗ be the dual projective space and S ⊂ R3

a smooth surface. We may consider the map

γ : S → (P2
R)∗

mapping p ∈ S to [TpS]. Note that TpS is a 2-dimensional vector space in R3

and therefore defines uniquely a projective line in P2
R hence a point in (P2

R)∗. Note
that P2

R has a natural DS inherited by the local charts ϕi : Ui → R2, where
Ui := {[x0, x1, x2]|xi 6= 0}. Via this it is easy to see that γ is a differentiable map.
The map γ is a different way to describe the Gauss map we introduced in § 3.1 for
orientable surfaces

N : S → S2, p 7→ N(p).

This time orientability is not required since we use the tangent space instead of the
normal vector.

The next ingredient we need is the notion of radiality, that is a differentiable
way to recognize lines.

Definition 4.1.1. A smooth map f : J → Rn is radial if it exists a smooth
map g : J → R and a fixed vector v ∈ Rn such that

f(t) = g(t)v,

for any t ∈ J .

Remark 4.1.2. The image of a radial function is (a portion of) a line through
the origin. Let H : J → Rn be a parametrization of (a portion of) a line then H is
in general not radial but its derivative is.

Clearly derivatives of radial functions are radial functions. If f is radial then
f ′ = g′v therefore if g 6= 0 on the interval J then

(16) f ′ =
g′

g
f.

Next we want to prove that Equation (16) characterizes radial functions.

51
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Lemma 4.1.3. Let f : J → Rn and α : J → R be smooth functions. Assume
that f ′ = αf . Then f and any derivative of f are radial.

Proof. If f ≡ 0 there is nothing to prove. Then we may assume that 0 ∈ J
and f(0) = v 6= 0. We have an ODE system

(17) f ′ = αf

with initial conditions f(0) = v.
Let x′ = αx be the differential equation with initial value x(0) = 1. Then by

Cauchy there is a unique solution, say g : J → R.
Then f and gv satisfy the ODE system (17) with the same initial condition.

Therefore by uniqueness f(t) = g(t)v.
To conclude observe that for a radial function f we have f ′ = g′v, therefore

f ′′ = g′′v. �

We are ready to prove our main Theorem.

Theorem 4.1.4. Let S ⊂ R3 be a surface. Assume that K(p) ≡ 0 for any
p ∈ S and p is not planar. Then there exists an open Up ⊂ S such that Up is ruled
by the fibers of the Gauss map γ and it is developable.

Proof. Let us fix a local parametrization x(u, v) : B → S with x(0, 0) = p.
Assume that p is a parabolic, not planar point. Then, up to shrinking S, we may
assume that Dγ has constant rank 1. Therefore by the constant rank Theorem 1.4.2
there is a choice of coordinates with

a) I × J , with I = (−ε, ε) and J = (−δ, δ), x : I × J → Up ⊂ S,
b) γ(x(u, v)) = γ(x(u, 0)) = qu for any u ∈ I.

Let

γ̃ : I × J → R3 \ {0}
given by

γ̃(u, v) = xu ∧ xv.

Then γ̃(u, v) is orthogonal to Tx(u,v)S and

(18) 〈γ̃·xu〉 = 〈γ̃·xv〉 = 0,

for any (u, v) ∈ I × J . Moreover by construction γ̃(u, v) ∈ 〈γ̃(u, 0)〉 for any u ∈ I.
Therefore there is a smooth map λ : I × J → R \ {0} such that

γ̃(u, v) = λ(u, v)γ̃(u, 0),

in other words γ̃ is radial as a function of v, and there is a smooth function θ : J → R
such that

(19) γ̃v = θγ̃.

The next step is to relate the radiality of γ̃v with the existence of (part of) lines
in x(I × J).

For this observe that by Lemma 4.1.3, x({u0} × J) is a (part of a) line if and
only if xv is radial. That is xvv = µxv, for some function µ.

The Gauss map is a second order operator therefore it is perfectly suited to
study xvv.

Claim 4.1.5. For any (u, v) ∈ I × J we have 〈xv·γ̃u〉 = 0
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Proof. By definition 〈γ̃·xu〉 = 0 therefore taking derivative with respect to v,
Equation (19) we get

(20) 0 = 〈γ̃v·xu〉+ 〈γ̃·xuv〉 = 〈θγ̃·xu〉+ 〈γ̃·xuv〉 = 〈γ̃·xuv〉,

where the latter equality is again the fact that γ̃ is orthogonal to the tangent
space. Then by Equation (20) we conclude that

0 = 〈γ̃·xv〉u = 〈γ̃u·xv〉.

�

To conclude we prove that xv is radial. For this it is enough to prove that there
is a smooth function µ such that

xvv = µxv.

Note that γ̃ and γ̃u are linearly independent since there are not planar points.
Moreover by definition and the Claim xv 6= 0 and xv ∈ 〈γ̃, γ̃u〉⊥. Hence to conclude
it is enough to prove that xvv ∈ 〈γ̃, γ̃u〉⊥.

Arguing as in the Claim we take derivatives

0 = 〈γ̃·xv〉v = 〈γ̃·xvv〉

0 = 〈γ̃u·xv〉v = 〈γ̃uv·xv〉+ 〈γ̃u·xvv〉.
To conclude observe that

〈γ̃uv·xv〉 = 〈θuγ̃ + θγ̃u·xv〉 = 0

therefore

〈γ̃uv·xv〉 = 0.

�

Remark 4.1.6. Note that despite the use of dual projective plane seems quite
limited it is crucial to produce lines on the surface via the lift of the Gauss map.

We proved the result assuming that S does not contain any planar point. The
assumption is necessary since one could glue smoothly a portion of a plane to a
portion of a cone/cylinder to get smooth surfaces of constant Gaussian curvature
that do not have the required local behaviour in a neighborhood of the junction
points.

For this let k : (−ε, ε)→ R \ {0} and τ : (−ε, ε)→ R be smooth functions with

τ((−ε, 0]) = 0, τ(0, ε) ⊂ R \ {0}.

The by the classification theorem of differentiable curves there is a curve α that
has curvature k and torsion τ (if you never heard about it, it is just the Cauchy
existence and uniqueness plus the fact that Frenet ODE system has anti-symmetric
coefficient matrix). Since the torsion vanishes on (−ε, 0] there is a plane H such
that α((−ε, 0]) ⊂ H. For the same reason α((0, ε)) is not contained in any plane.
Let p ∈ H be a point. Then the cone with vertex p over α(−ε, ε) is the example
we are looking at. The points on the line 〈α(0), p〉 are smooth planar points and in
any neighborhood we have both planar and parabolic non planar points. Locally
the Gauss map has a single two dimensional fiber, the plane H, and the rulings of
the cone outside H. In particular the neighborhoods of these points are not ruled
by fibers of the Gauss map.
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4.2. Exercise

Exercise 4.2.1. Prove that any developable surface with no planar points is
one of the three types described by Example 3.2.5.



CHAPTER 5

Exams

Here is the list of 18+6 questions you have to know. In any written exam you
have to answer to 3 in the first group and 1 in the second.

First group

(1) Definition of differentiable structure and differentiable m-manifold
(2) Statement of rank Theorem
(3) Definition of n-submanifold and m-manifold
(4) Definition of embedding
(5) Definition of derivation and tangent space at a point p of a manifold M
(6) Definition of differential of a map ϕ : M → N between manifolds
(7) Definition of vector field
(8) Definition of flow of a one parameter vector field.
(9) Definition of distribution

(10) Statement of Frobenius Theorem
(11) Definition of fibration and transition functions
(12) Definition of vector bundle
(13) Definition of vector bundle morphism
(14) Definition of normal bundle of a submanifold X ⊂M
(15) Definition of self-adjoint linear endomorphism
(16) Definition of normal curvature and statement of Meusnier Theorem
(17) Definition of principal curvatures, principal directions, Gaussian curvature

and mean curvature
(18) Definition of ruled surface and developable surface.

Second group

(1) Prove that if F : N →M is a map of constant rank k, and q ∈ F (N) is a
point, then F−1(q) is a (n− k)-submanifold.

(2) State and prove the chain rule for maps between manifolds.
(3) Prove that DNp is self-adjoint.
(4) Let α : J → S be a curve prove, that IIp(α

′) = kα〈nα·N〉, and conclude
Meusnier Theorem.

(5) Prove that if p ∈ l ⊂ S is a point on a line in a smooth surface S then
K(p) ≤ 0.

(6) Prove that tangent developable are developable surfaces.
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Versione italiana
Primo gruppo

(1) Definizione di struttura differenziabile (DS) e manifold.
(2) Enunciato del teorema del rango costante.
(3) Definizione di manifold e submanifold.
(4) Definizione di embedding.
(5) Definizione di derivazione e di spazio tangente in un punto ad un manifold.
(6) Definizione di differenziale di un morfismo ϕ : M → N tra manifolds.
(7) Definizione di campo di vettori.
(8) Definizione di flusso per un campo di vettori ad un paramtro.
(9) Definizione di distribuzione.

(10) Enunciato del Teorema di Frobenius e delle nozioni di integrabilità e in-
volutività.

(11) Definizione di fibrazione e di funzioni di transizione.
(12) Definizione di fibrato vettoriale.
(13) Definizione di morfismo tra fibrati vettoriali.
(14) Definizione di fibrato normale di un submanifold X ⊂M .
(15) Definizione di operatore lineare autoaggiunto.
(16) Definizione di curvatura normale e enunciato del Teorema di Meusnier.
(17) Definizione di curvature principali, direzioni principali, curvatura Gaus-

siana e curvatura media.
(18) Definizione di superficie rigata e superficie sviluppabile.

Secondo gruppo

(1) Si mostri che se F : N →M è un morfismo di rango costante k e q ∈ F (N)
è un punto allora F−1(q) è un (n− k)-submanifold.

(2) Enunciare e dimostrare la regola del differenziale di funzioni composte.
(3) Si mostri che DNp è auto aggiunto.
(4) Sia α : J → S una curva. Si mostri che IIp(α

′) = kα〈nα·N〉, e si dimostri
il Teorema di Musnier.

(5) Si mostri che se p ∈ l ⊂ S ⊂ R3 è un punto su una retta allora K(p) ≤ 0.
(6) Si mostri che la sviluppabile delle tangenti è una superficie sviluppabile.
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