
CHAPTER 3

Gauss map

In this chapter we will study the Gauss map of surfaces in R3.

3.1. Surfaces in R3

Let S ⊂ R3 be a submanifold of dimension 2. Let {Ui,ϕi} be a DS on S. For
any p ∈ Ui we have a well defined tangent space TpS and its orthogonal complement

TpS
⊥. The map ϕ−1

i induces local coordinates (u, v) and a base (Xu(p), Xv(p)) for
any TpS. Where Xu, Xv are the vector fields associated to ∂u and ∂v respectively,
recall Lemma 1.7.3. To uniformize our notation with those classically used for
surfaces in R3 we define x(u, v) := ϕ−1

i , xu := Xu, xv := Xv, hence

T(u,v)S = �xu,xv�.
Define

N(q) =
xu ∧ xv

||xu ∧ xv||
the normal versor. This produces a smooth morphism the Gauss map

N : Ui → S2.

Remark 3.1.1. Recall that TpS is independent on the local chart chosen. On
the other hand the choice of N is not canonical. We could have chosen

xv ∧ xu

||xu ∧ xv||
instead. That is the normal versor is defined only up to a sign. This is related
to the problem of orientability of S. One says that a surface is orientable if the
Gauss map is defined on all of S. That is it is possible to glue the Gauss maps on
local charts to produce a well defined map N : S → S2. Think at the Möbius band,
maybe some Escher picture, to understand the geometric meaning of this notion.
Altrenatively this is equivalent to have a trivial Normal bundle.

From now on to simplify the treatment we will assume that S ⊂ R3 is an
orientable surface, that is there is a well defined Gauss map N : S → S2. The local
description shows that N is differentiable and the differential is DN : TS → TS2,
with

DNp : TpS → TN(p)S
2.

Note that for any point of S2 the tangent space is TpS = �p�⊥, recall exer-
cise 1.8.10. Therefore we may interpret DNp as a linear self map on TpS. As such
we may consider it is a way to measure the way the tangent space is varying in a
neighborhood of a point.

For curves the variation of tangent direction is measured by the curvature, a
number or a 1x1 matrix. Here we have a two dimensional vector space to control
therefore we need a 2x2 matrix. This is what DNp is devoted to.
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40 3. GAUSS MAP

From now on we will always consider

DNp : TpS → TpS

as a linear endomorphism of TpS. Our first computation is the following.

Lemma 3.1.2. Let DNp : TpS → TpS, then DNp(Xu) = Nu(p) and DNp(Xv) =
Nv(p).

Proof. Let α(t) be an integral curve of Xu with α(0) = p. Then

DNp(xu) = DNp(α
�(0)) =

d

dt
N(α(t))|t=0 = Nu(p),

and similarly for xv. �
Since a linear map is determined by the image of a basis Lemma 3.1.2 is the

local way to determine the differential of the Gauss map. Let us start computing
it in some special cases

3.1.0.5. DNp of a sphere. Let S ⊂ R3 be a sphere centered at the origin of
radius r. We already know that for any point p ∈ S TpS = �p�⊥ that is

N(p) =
p

||p|| =
1

r
p,

and

DNp =
1

r
Id.

3.1.0.6. DNp of a cylinder. Let S = {(x, y, z) ∈ R3|x2+y2 = r2}, then we may
parametrize it via ϕ−1 : R2 → S with ϕ−1(u, v) = (r cosu, r sinu, v)

N(x, y, z) =
(x, y, 0)

r
,

and

DNp =

�
1
r 0
0 0

�
.

See more examples in the exercises at the end of the chapter.

Definition 3.1.3. A linear endomorphism f : Rs → Rs is called self-adjoint
if for any pair of vectors v, w ∈ Rs

�f(v)·w� = �v·f(w)�,
where � · � is the euclidean scalar product.

Lemma 3.1.4. DNp is self-adjoint

Proof. To prove the claim it is enough to prove that

�DNp(xu)·xv� = �xv·DNp(xu)�.
Since N is orthogonal to Xv and Xu we have

0 = ∂u�N ·xv� = �Nu·xv�+ �N ·xuv�
and

0 = ∂v�N ·xu� = �Nv·xu�+ �N ·xvu�.
Therefore we conclude by Lemma 3.1.2 and equality of mixed partials. �

Remark 3.1.5. Let us recall some important facts of self adjoint operators
from linear algebra. Let A : Rs → Rs be a self-adjoint linear operator
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a) on any hortonormal base A is represented by a symmetric matrix
b) if a versor v maximize the quantity �A(v)·v� then v is an eigenvector of A
c) A can be diagonalized by a hortonormal basis.

Let us see what this means for DNp. First consider the bilinear symmetric
form

B : TpS × TpS → R
given by

B(v, w) = �v·DNp(w)�,
and the associated quadratic form

Q(w) = B(w,w).

Definition 3.1.6. In the above notation the second fundamental form of
the surface S at the point p is

IIp(v) = −Q(v) = −�v·DNp(v)�,
for v ∈ TpS.

This lemma explains the minus sign and sheds some light on the matter, I hope.

Lemma 3.1.7. Let α(t) be a regular curve with α(0) = p and α�(0) = v. Then

IIp(v) = kα(0)�nα(0)·N(p)�,
where kα and nα are, respectively, curvature and normal versor of α.

Proof. We may assume that α is parametrized by arc length. Since

�α�(t)·N(α(t))� = 0,

derivation with respect to t yields

0 = �α(t)��·N(α(t)�+ �α�(t)·DNα(t)(α
�(t))�,

to conclude apply Frenet formulas and our definition

kα(0)�nα(0)·N(p)� − IIp(v) = 0.

�

Let α be, as in Lemma, parametrized by arc length, then α� and N are hor-
togonal versors at any point of α(t). Therefore we may associate a hortonormal
moving frame

(α�, N,α� ∧N).

Since |α�| = 1, then α� is hortogonal to α�� and

kαnα = α�� = knN + kgα
� ∧N.

Since the basis is hortonormal we have

k2α = k2n + k2g ,

further note that kn(0) = �α��(0)·N(p)� = IIp(α
�(0)).

Definition 3.1.8. kn is called the normal curvature, kg is called the geo-
desic curvature.
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Remark 3.1.9. A geodesic is a curve with zero geodesic curvature, that is a
curve whose normal is parallel to the normal of the surface at any point. We are
not going to explore it, but geodesics are local minimum of distance, that is the
curve of minimal distance between two points in a neighborhood of a surface.

In this way it is easy to derive Meusnier Theorem

Corollary 3.1.10 (Meusnier Theorem). Let α(t) be a regular curve on a sur-
face S, with α(0) = p and α�(o) = v. Then the normal curvature kn(0)depends only
on v.

Proof. In our notation we have kn(0) = kα(0)�nα(0)·N(p)� = IIp(v) �
Let us go a bit further.

Lemma 3.1.11. Let p ∈ S be a point, TpS the tangent space and H � p a
plane. If TpH �= TpS, then C := H ∩ S is a submanifold in a neighborhood of p
and TpC = TpH ∩TpS. In particular if H is parallel to N(p) the resulting manifold
C := H ∩ S is called a normal section.

Proof. We may assume that H = (z = 0) � p = (0, 0, 0). Let h : R3 → R be
the projection on the z coordinate. By hypothesis we have TxS �⊂ H. Let i : S → R3

be the inclusion map, then h ◦ i : S → R is a differentiable map of constant rank
1 in a neighborhood of p. Therefore (h ◦ i)−1(0) = H ∩ S is a 1-manifold in a
neighborhood of p and TpC is the kernel of D(h ◦ i)p = (z = 0 ∩ T0S). �

Let C = H ∩ S be a normal section at p. Then TpC = TpH ∩ TpS and we may
choose a local parametrization by arc length, α(t), with α(0) = p and nα(0) = N(p).
This yields

kn = kα = IIp(α
�(0)).

In particular all normal curvature, i.e. the second fundamental form, are encoded
in normal sections.

Let S1 ⊂ TpS be the set of versors, and kn : S1 → R1 the map given by

kn(v) = IIp(v).

Since S1 is compact there is a maximum, say k1, for kn(S
1). Let v1 be such

that kn(v1) = k1, and v2 an orthogonal versor. Then by Remark 3.1.5 v1 is an
eigenvector and we may diagonalize DNp on the basis (v1, v2). On the orthonormal
basis (v1, v2) the matrix of DNp is given by

�
k1 0
0 k2

�
,

that is for w = av1 + bv2 ∈ TpS we have

IIp(w) = a2k1 + b2k2.

When we restrict to versors v ∈ S1 there is a θ such that v = cos θv1 + sin θv2.
Therefore we have the Euler formula

(12) kn(v) = cos θ2k1 + sin θ2k2,

and k1, k2 are maximum and minimum of normal curvatures.

Definition 3.1.12. When k1 �= k2 the eigenvalues k1 and k2 of DNp are called
principal curvatures and the eigenversors v1, v2 are called principal directions.
The leaf of a principal direction distribution is called line of curvature.
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A 2x2 matrix has not many invariants.

Definition 3.1.13. The Gaussian curvature at the point p is K(p) := k1k2 =
detDNp, the mean curvature is H(p) = 1/2(k1 + k2) = 1/2Trace(DNp).

Remark 3.1.14. By the examples we already worked out we have:
3.1.0.7. Sphere. A radius r sphere has k1 = k2 = 1/r, therefore K(p) = 1/r2

and H(p) = 1/r,
3.1.0.8. Cylinder. A radius r cylinder has k1 = 1/r, k2 = 0, therefore K(p) = 0

and H(p) = 1/2r,
3.1.0.9. Plane. A plane has k1 = k2 = 0 therefore K(p) = H(p) = 0.

As we will see in a while the sign and vanishing of K(p) has a geometric
meaning.

Definition 3.1.15. Let p ∈ S be a point. We say that p is

elliptic if K(p) > 0
hyperbolic if K(p) < 0
parabolic if K(p) = 0
umbilical if k1 = k2
planar if DNp ≡ 0.

The Gaussian curvature encodes both global and local geometric properties of
the surface.

Proposition 3.1.16. Let p ∈ l ⊂ S be a smooth point on a line l, then K(p) ≤
0.

Proof. Let H be a plane containing l and normal to S at p, then

0 = kl = kn(v),

where v = Tpl. Therefore p cannot be elliptic. �
Umbilical points can be easily found as follows

Lemma 3.1.17. Let S ⊂ R3 be a surface then the set of umbilical points is given
by the equation H2 −K = 0, for H and K the mean and Gaussian curvature.

Proof. The equation H2−K = 0 translates, in terms of principal curvatures,
as

(k1 + k2)
2 − 4k1k2 = (k1 − k2)

2 = 0.

Hence it defines the set of points where k1 = k2. �
Note that by Equation (12) at hyperbolic points there are exactly two directions

v1, v2 ∈ TpS such that kn(vi) = 0. Moreover K(p) < 0 then there is a neighborhood
Up of hyperbolic points. This allows to define the asymptotic curves.

Definition 3.1.18. Let p ∈ S be a hyperbolic point and v1, v2 such that
kn(vi) = 0. Then vi are called asymptotic directions. The leaf of the distribution
of an asymptotic direction is called asymptotic line.

Remark 3.1.19. Note that thanks to Frobenius Theorem we know that both
lines of curvature (for non umbilical points) and asymptotic lines (for hyperbolic
points) exist. These pairs of vector fields are always linearly independents and
may be used to define a local parametrization of the surface S. Note that lines of
curvature are mutually orthogonal, this is in general not the case for asymptotic
lines.
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The first global result is the following.

Proposition 3.1.20. Let S ⊂ R3 be a connected surface all of whose points
are umbilical then S is contained in either a sphere or a plane.

Proof. Since connected manifolds are also path-connected it is enough to
prove the statement on a neighborhood of any point. Let Up ⊂ S be a local chart
with coordinates x(u, v). Then for any v = a1xu + a2xv ∈ TqS we have

DNq(v) = λ(q)v,

for some smooth map λ : Up → R, that is

Nua1 +Nva2 = λ(a1xu + a2xv).

Hence Nu = λxu and Nv = λxv and differentiating with mixed derivatives we get

λuxv − λvxu = 0.

The latter forces λu = λv = 0 and λ is therefore constant. If λ ≡ 0 then N is
constant and it is easy to see, by derivation, that

�x(u, v)·N� = constant,

hence Up is contained in the plane p+N(p)⊥.
To conclude let λ �= 0 then, again by derivation,

x(u, v)− 1

λ
N = constant.

Then Up is contained in the sphere of radius 1/λ centered in p− 1/λN . �

Proposition 3.1.21. Let S ⊂ R3 be a compact connected surface with K(p) �= 0
for any p ∈ S. Then S is diffeomorphic to the sphere. In particular there are not
smooth compact surfaces of negative curvature at any point.

Proof. By hypothesis the Gauss map N : S → S2 is well defined and since
K(p) �= 0 it is a local diffeomorphism. To conclude we need to prove that it is
bijective. We already observed that N is an open map therefore N(S) is open in S2

and since S is compact N(S) is also closed. This shows that N is surjective. Then
N is a covering and since S2 is simply connected �N−1(x) = 1 for any x ∈ S2. �

Next we show that a compact surfaces always possesses elliptic points.

Proposition 3.1.22. Let S ⊂ R3 be a compact surface. Then there is p ∈ S
with K(p) > 0. In particular in Proposition 3.1.21 we have K(p) > 0 for any p ∈ S.

Proof. Let x ∈ S such that ||x|| ≥ ||p|| for any p ∈ S. Then the norm function
f(x) = ||x|| has a maximum at x, therefore TxS = �x�⊥. Then any normal section
is a plane curve C with x maximum for the norm function. This shows that kn has
a fixed sign and therefore p is elliptic. �

Remark 3.1.23. In Proposition 3.1.22 the compactness assumption is needed,
think for instance to a plane. It is far more complicate, but possible, to produce
examples of non smooth compact surfaces for which all smooth points have negative
curvature. A less sophisticated example is given by smooth non compact surfaces
of constant negative curvature, see Exercise 3.3.8.
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3.1.1. Local equations of DNp. Let now x := ϕ−1
i : R2 → Up ⊂ S be a

coordinate chart, with �xu,xv� = Tx(u,v)S, then

N(u, v) =
xu ∧ xv

||xu ∧ xv||
.

Recall that by Lemma 3.1.2Nu = DN(xu) andNv = DN(xv). Let α : (−�, �) → R2

be a curve with α(0) = p, then we may consider β = x◦α to get β(t) = x(u(t), v(t)).
In this notations

(13) II(β�) = −�DN(β�)·β�� = −(u�)2�Nu·xu� − 2u�v��Nu·xv� − (v�)2�Nv·xv�
Note that deriving �N(u, v)·xu(u, v)� = 0 and �N(u, v)·xv(u, v)� = 0 we get

�Nu·xu� = −�N ·xuu�, �Nu·xv� = �Nv·xu� = −�N ·xuv�, �Nv·xv� = −�N ·xuu�.
Therefore Equation (13) takes the form

(14) II(β�) = (u�)2�N ·xuu�+ 2u�v��N ·xuv�+ (v�)2�N ·xvv�
Recalling the first fundamental form of S we also have

I(β�) = (u�)2�xu·xu�+ 2u�v��xu·xv�+ (v�)2�xv·xv�,
where I(v) is the first fundamental form of S. Classically all these have the
following names.

Definition 3.1.24.
E = �xu·xu�, F = �xu·xv�, G = �xv·xv�
e = −�Nu·xu�, f = −�Nu·xv�, g = −�Nv·xv�.
A direct computation furnishes the so called Weingarten equations. We

have �
Nu

Nv

�
=

�
a11 a12
a21 a22

�t �
xu

xv

�
,

for (aij) the matrix representing DN with respect to the basis (xu,xv). Taking the
scalar product yields

−
�

e f
f g

�
=

�
a11 a12
a21 a22

�t �
E F
F G

�
,

that is �
a11 a12
a21 a22

�t
= −

�
e f
f g

� �
E F
F G

�−1

.

Finally we derive the equations

a11 =
fF − eG

EG− F 2
, a12 =

gF − fG

EG− F 2

a21 =
eF − fE

EG− F 2
, a22 =

fF − gE

EG− F 2

and also the expressions of Gaussian and mean curvature

K =
eg − f2

EG− F 2
, H =

1

2

eG− 2fF + gE

EG− F 2
.

Recall thatH2−K = (k1−k2)
2

4 therefore we also have the expression for the principal
curvatures

k1,2 = H ±
√
H−K2.

Local expressions are useful do study the local behaviour of surfaces.
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Proposition 3.1.25. Let p ∈ S be an elliptic point. Then there is a neighbor-
hood Up ⊂ S such that Up ∩ (p+ TpS) = {p}, that is the surface is, locally, on one
side of the tangent space.

Let p ∈ S be a hyperbolic point then for any neighborhood Up the surface is on
both side of the plane p+ TpS.

Proof. Let x(u, v) be a parametrization with p = (0, 0, 0) = x(0, 0) and TpS =
(z = 0) ⊂ R3 with coordinate (x, y, z). Fix N(0) = (0, 0, 1), then the behaviour of
the point, with respect to the tangent space, is dictated by the z coordinate.

By Taylor’s formula we have

x(u, v) = xu(0, 0)u+xv(0, 0)v+
1

2
(xuu(0, 0)u

2 +2xuv(0, 0)uv+xvv(0, 0)v
2)+ o(2),

thus using Equation (14) we find

�x(u, v)·N(0, 0)� = 1

2
II(0,0)(xu(0, 0)u+ xv(0, 0)v) + o(2).

In particular the sign of the z coordinate depends only on the sign of II(0,0). So for
an elliptic point the sign is constant and never vanishes in a neighborhood, while
for a hyperbolic point it changes. �

Remark 3.1.26. Note that for neither parabolic nor planar point there is any-
thing like this. The cylinder has all points on one side of the tangent space. Plane
has all points on the tangent space. While for “monkey saddle”

(u, v) �→ (u, v, u3 − 3v2u),

(0, 0) is a planar point and points are on both sides. Similar examples for parabolic
points can be described with revolution surfaces.

3.2. Ruled surfaces

In this section we are interested in surfaces covered by lines.

Definition 3.2.1. A one parameter family of lines is a pair of smooth maps
α : I → R3 and τ : I → R3 together with the map

x : I × J → R3

given by

(u, v) �→ α(u) + vτ(u).

Assume that 0 ∈ J , |τ(u)| = 1, for any u ∈ I then the image S := x(I×J) is called
a ruled surface. The (portion of) lines x|{v}×J are called the rulings of S while
x|I×{0} is called a directrix of S. The surface S is said to be ruled by the map x.

Remark 3.2.2. The simplest examples of ruled surfaces are: planes, cylinders,
and cones. Note that we do not ask S to be smooth and in general it is not. On
the other hand our assumption |τ(u)| ≡ 1 forces �τ(u)·τ �(u)� = 0. In particular
xu = α�+vτ � and xv = τ therefore x is almost everywhere a smooth parametrization
of S and

Tx(u,v)S = �α� + vτ �, τ�.
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The directrix of S is clearly non unique. In our hypothesis, the so called non-
cylindrical case when τ �(u) �= 0 for any u ∈ I, it is possible to introduce a “special”
directrix called the line of striction. For this define

(15) β(u) = α(u)− �α�(u)·τ �(u)�
�τ �(u)·τ �(u)� τ(u).

Then

�β�(u)·τ �(u)� = 0,

for any u ∈ I, see the exercises at the end of the chapter for further details.
Let p ∈ S be a smooth point of a ruled surface. We already know by Propo-

sition 3.1.16 that Kp ≤ 0. Moreover by Exercise 3.3.3 the Gaussian curvature
vanishes only if the tangent plane is constant along the line.

Definition 3.2.3. A developable surface is a ruled surface with fixed tan-
gent plane along the ruling, away from the directrix.

In particular developable surfaces have zero Gaussian curvature.

Example 3.2.4. Keeping in mind Remark 3.2.2 we may easily write down two
examples of developable surfaces

3.2.0.1. Cylinders. τ(u) = v constant
3.2.0.2. Cones. α(u) = p constant

There is a third one which is a bit less immediate.
3.2.0.3. Tangent developable. Let α : I → R3 be a smooth curve parametrized

by arc length with non vanishing curvature. Then the developable surface S as-
sociated to α is the ruled surface given by the parametrization h : I × R → R3,
with

h(u, v) = α(u) + vα�(u).

In particular S is smooth away from the directrix α(I). The points of α(I) can be
either smooth or non smooth points of S. In particular along a ruling, away from
the directrix, we have

Tx(u,v)S = �α�(u),α�(u) + vα��(u)� = �α�(u),α��(u)�.

Hence the tangent space is constant along the ruling and K ≡ 0 away from the
directrix.

We aim to prove the converse of this statement that is

Theorem 3.2.5. A surface S with zero Gaussian curvature and no planar
points is a developable surface.

Remark 3.2.6. Developable surfaces are isometric to a plane, that is can be
developed on a plane.

Even if it is not strictly necessary we take this theorem as an excuse to introduce
a global point of view on the Gauss mapping using projective geometry. Our
next task is therefore to develop the theory of projective spaces to give a proof of
Theorem 3.2.5.
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3.3. Exercises

Exercise 3.3.1. Compute the image of the Gauss map for the following sur-
faces:

• S = {x2 + y2 + z2 = r2} (sphere)
• S = {x2 + y2 = r2} (cylinder)
• S = {z = x2 − y2} (hyperbolic paraboloid)

Exercise 3.3.2. Compute the differential of the Gauss map for the following
surfaces:

• S = {z = x2 − y2}
• S = {z = ax2 + by2}
• S = {z = 0}

Exercise 3.3.3. Let l ⊂ S be a line. Show that the points of l are parabolic if
and only if TpS is constant in the direction of l.

Exercise 3.3.4. Let S be given by the following parametrization

x(u, v) = (u cos v, u sin v, av),

for some a �= 0. Determine the differential of the Gauss map at any point p ∈ S.

Exercise 3.3.5. Let S = {z = xy2} ⊂ R3 show that S is a submanifold and
(0, 0, 0) is a planar point.

Exercise 3.3.6. Let S = {xyz = 1} ⊂ R3 show that S is a submanifold and
compute K(p) for any p ∈ S.

Exercise 3.3.7. Let q ∈ k[x, y, z] be a polynomial of degree 2 and S =
{q(x, y, z) = 0} ⊂ R3. Prove that if S is a submanifold K(p)K(q) > 0 for any
pair of points p, q ∈ S.

Exercise 3.3.8. Lets now investigate a very interesting surface, called the
pseudosphere. It is the surface of revolution obtained by rotating the tractrix
about the x-axis, and so it is parametrized by

x(u, v) = (u− tanh(u), sech(u) cos v, sech(u) sin v),

for u > 0, v ∈ [0, 2π). Note that the circles (of revolution) are lines of curvature and
the various tractrices are lines of curvature. In the plane of one tractrix, say t the
surface normal and the curve normal agree. Prove that the curvature of the tractrix
is 1

sinh(u) and N(p) = −nt therefore k1 = − 1
sinh(u) Prove that the normal curvature

of the circle is sinhu (hint: to do this observe that kn = k cos θ = cosh(u)tanh(u) =
sinh(u))

Exercise 3.3.9. Give examples of smooth developable surfaces and of singular
developable surfaces.

Exercise 3.3.10. Show that the line of striction defined in Equation (15) has
the required properties and is unique. Show that a ruled surface is smooth outside
the line of striction.


