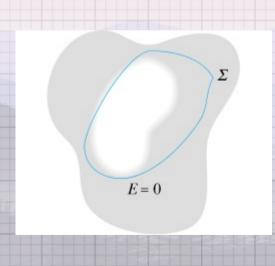
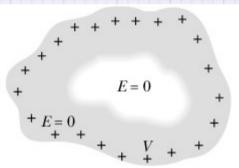
Conduttori

• Un conduttore **ideale** è un materiale in cui le cariche sono perfettamente libere di muoversi. In un conduttore, all'equilibrio, risulta:

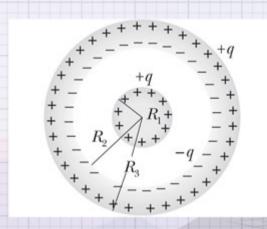
$$\vec{E} = 0$$


- Valgono le seguenti proprietà:
 - 1. L'eventuale eccesso di carica può stare solo sulla superficie del conduttore.
 - 2. Il potenziale elettrostatico è lo stesso in tutti i punti del conduttore.
 - 3. Il campo elettrico appena fuori dal conduttore è perpendicolare alla superficie e vale σ/ϵ_0 , con σ densità superficiale di carica (teorema di Coulomb).


Effetto schermo

 La (eventuale) carica di un conduttore si distribuisce sempre sulla superficie esterna anche se cavo.

• In ogni punto interno il campo elettrico è nullo.


Condensatori

• All'interno della cavità mostrata in figura vi è un campo elettrico pari a:

$$\vec{E} = \frac{q}{4\pi\epsilon_0 r^2}$$

e un potenziale elettrico:

$$V(r) = \frac{q}{4\pi\epsilon_0 r}$$

fra i due conduttori esiste quindi una differenza di potenziale:

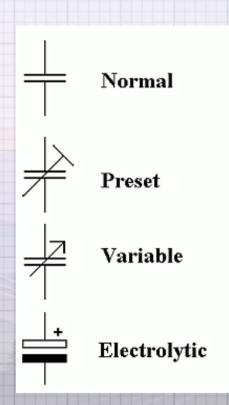
$$V_1 - V_2 = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

Condensatori

 Il rapporto carica/differenza di potenziale risulta quindi essere costante e determinato solo dalla geometria del sistema:

$$\frac{q}{\Delta V} = C = 4\pi\epsilon_0 \left(\frac{1}{R_1} - \frac{1}{R_2}\right)^{-1}$$

• Questa costante, C, si chiama **capacità** del condensatore. Unità di misura: Farad, 1 F = 1 C/V


• Una qualunque coppia di conduttori vicini ma isolati costituisce un condensatore. Indipendentemente dalla sua forma o dimensione, il rapporto $q \mid \Delta V$ è sempre costante e si chiama *la sua capacit*à: $C = q \mid \Delta V$.

Alcuni tipi di condensatore

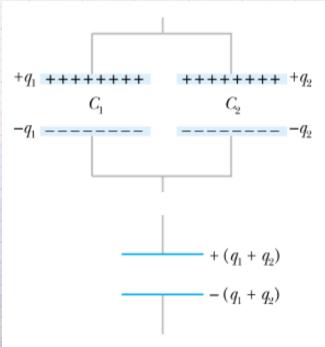
- Condensatore cilindrico
- Condensatore a facce piane e parallele

· Condensatori reali.

Simboli circuitali del condensatore:

Fisica 2 5

Condensatori in parallelo


• Due condensatori "in parallelo" hanno la stessa differenza di potenziale V e diverse quantità di carica q_1 e q_2 .

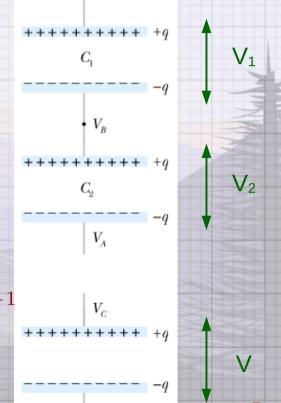
$$q_1 = C_1 V \qquad q_2 = C_2 V$$

$$q = q_1 + q_2 = (C_1 + C_2)V = C_{\text{par}}V$$

$$C_{\text{par}} = C_1 + C_2$$

$$C_{\text{par}} = C_1 + C_2 + C_3 + \dots$$

Condensatori in serie


• Due condensatori "in serie" hanno la stessa quantità di carica q e differenze

Fisica 2

di potenziale V_1 e V_2 diverse.

$$V_1 = \frac{q}{C_1}$$
 $V_2 = \frac{q}{C_2}$ $V = V_1 + V_2 = q\left(\frac{1}{C_1} + \frac{1}{C_2}\right) = \frac{q}{C_{\text{ser}}}$ $\frac{1}{C_{\text{ser}}} = \frac{1}{C_1} + \frac{1}{C_2}$

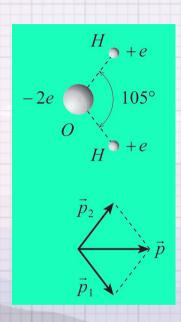
$$C_{\text{ser}} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} \qquad C_{\text{ser}} = \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots\right)^{-1} + \dots + \dots + q$$

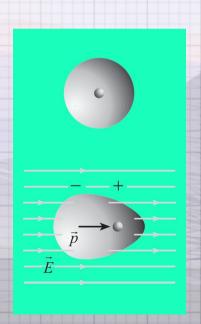
Energia del campo elettrostatico

• Calcoliamo il lavoro necessario per caricare un condensatore inizialmente scarico e portarlo ad una carica q ed una differenza di potenziale V. Siano V(t) e q'(t) il potenziale e la carica ad un generico istante durante il processo stesso.

$$W = \int_0^q V' \, dq' = \int_0^q \frac{q'}{C} dq' = \frac{q^2}{2C}$$

• Questa è l'energia potenziale elettrostatica U contenuta nel condensatore carico (energia del campo elettrico):

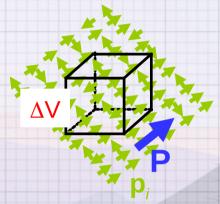

$$U = \frac{q^2}{2C} = \frac{1}{2}CV^2 = \frac{1}{2}qV$$


Dielettrici (=isolanti)

• Proprietà.

• Dielettrici polari...

...e apolari.



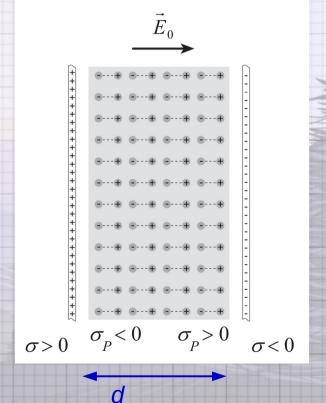
Polarizzazione

• Per rappresentare il grado di polarizzazione di un dielettrico si definisce il vettore **polarizzazione**: momento di dipolo elettrico per unità di volume.

$$\vec{P} = \frac{d\vec{p}}{dV} = \lim_{\Delta V \to 0} \frac{\sum_{i} \vec{p}_{i}}{\Delta V}$$

- Esso dipende dal campo applicato e dalle caratteristiche del dielettrico; se sono entrambi uniformi anche \vec{P} lo è.
- Unità di misura: C/m².

Spostamento elettrico o induzione


 Si inserisca un dielettrico tra due conduttori piani carichi con cariche opposte ed isolati:

$$E_0 = \frac{\sigma}{\epsilon_0} \qquad E_p = \frac{\sigma_p}{\epsilon_0}$$

$$E = E_0 - E_p = \frac{\sigma - \sigma_p}{\epsilon_0}$$

• Si chiama spostamento elettrico o induzione il vettore parallelo al campo e di modulo $D=\sigma$.

$$P = \frac{q_p d}{S d} = \sigma_p \qquad \vec{D} = \epsilon_0 \vec{E}_0 = \epsilon_0 \vec{E} + \vec{P}$$

Suscettività elettrica

• Nei materiali in cui \vec{P} ed \vec{E} sono proporzionali si può introdurre la suscettività χ :

$$\vec{P} = \chi \epsilon_0 \vec{E}$$

Risulterà quindi:

$$\vec{D} = \epsilon_0 \vec{E} + \vec{P} = \epsilon_0 \vec{E} + \epsilon_0 \chi \vec{E} = \epsilon_0 (1 + \chi) \vec{E} = \epsilon \vec{E}$$

$$1 + \chi = \frac{\epsilon}{\epsilon_0} = \epsilon_r$$

$$\chi = \epsilon_r - 1$$

Condensatore con dielettrico

• Tornando al condensatore, dette C_0 e C le capacità prima e dopo l'introduzione del dielettrico, si ha:

$$C_0 = \frac{q}{V_0} \qquad C = \frac{q}{V}$$

Per le differenze di potenziale V_0 e V ai capi del condensatore vale:

$$V_0 = dE_0$$
 $V = dE$

$$C = C_0 \frac{V_0}{V} = C_0 \frac{E_0}{E} = C_0 \frac{D\epsilon_0}{E} = C_0 \epsilon_0 \epsilon = C_0 \epsilon_r$$

Costante dielettrica

• Nella maggior parte dei dielettrici \vec{P} è proporzionale ad \vec{E} , quindi lo è anche \vec{D} . La costante di proporzionalità, ϵ , si chiama **costante dielettrica**:

$$\vec{D} = \epsilon \vec{E}$$

• In assenza di dielettrico (P=0) evidentemente ε = ε_0 ; per questo ε_0 si chiama anche *costante dielettrica del vuoto*. Il rapporto $\varepsilon/\varepsilon_0$ rappresenta la propensione del dielettrico a polarizzarsi e si chiama **constante dielettrica relativa**:

$$\epsilon = \epsilon_0 \epsilon_r, \qquad \vec{E} = rac{\vec{E}_0}{\epsilon}$$

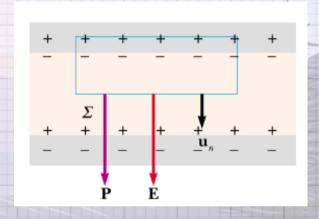
• Per le considerazioni precedenti $D \ge \varepsilon_0 E$, quindi $\varepsilon \ge \varepsilon_0$ e $\varepsilon_r \ge 1$.

Costanti dielettriche

Costanti dielettriche relative e rigidità dielettriche		
Sostanza	Costante dielettrica relativa €,	Rigidità dielettrica V/m
aria	1.00059	$3\cdot 10^6$
acqua	80	_
alcool etilico	28	_
olio per trasformatori	2.5	$20\cdot 10^6$
ambra	2.7	$90 \cdot 10^{6}$
bachelite	4.9	$24 \cdot 10^6$
carta	3.7	$16\cdot 10^6$
polietilene	2.3	$50 \cdot 10^{6}$
polistirolo	2.6	$25 \cdot 10^6$
porcellana	6.5	$4\cdot 10^6$
teflon	2.1	$60 \cdot 10^{6}$
vetro	$4 \div 7$	$20 \cdot 10^{6}$

15

Elettrostatica in presenza di dielettrici


Legge di Gauss per il campo elettrico:

$$\Phi_E = \iint_{\Sigma} \vec{E} \cdot \hat{u}_n \, d\Sigma = \frac{q + q'}{\epsilon_0}$$

• Legge di Gauss per la polarizzazione:

$$\Phi_P = \iint_{\Sigma} \vec{P} \cdot \hat{u}_n \, d\Sigma = P\Sigma = \sigma_p \Sigma = -q'$$

Legge di Gauss per lo spostamento elettrico:

$$\Phi_D = \iint_{\Sigma} \vec{D} \cdot \hat{u}_n \, d\Sigma = \Phi_D = \iint_{\Sigma} (\epsilon_0 \vec{E} + \vec{P}) \cdot \hat{u}_n \, d\Sigma = (q + q') - q' = q$$