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1 Introduction

These pages are not lecture notes. Students are strongly encouraged to
use the impressive amounts of good books on Quantum Mechanics.

Lectures are mostly based on

• J.J.Sakurai, Modern Quantum Mechanics

• Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe, Quantum Me-
chanics

• Leonard Schiff, Quantum Mechanics

A previous knowledge of

• Analaytical mechanics

• Electromagnetism

• Hylbert spaces

• Schröedinger equation

• angular momentum in quantum mechanics

• unidimensional potential well and barriers

• exact solutions for the Schröedinger equation: unidimensional harmonic
oscillator and hydrogen atom

is assumed.

2 Time independent perturbation theory

2.1 Non degenerate spectrum: summary

2.1.1 Notes for students

Sakurai, chapter 5.1, for introductory pourposes, previous knowledge of this
subject is assumed
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2.1.2 Theory summary

We have

•

H = H0 + V

H0

∣∣n(0)
〉

= E(0)
n

∣∣n(0)
〉

H |n〉 = En |n〉
En = E(0)

n + ∆(1)
n + . . .

|n〉 =
∣∣n(0)

〉
+
∣∣n(1)

〉
+ . . .

•
∆(1)
n = 〈n0|V |n0〉

• using a projector φn such that φn
∣∣n(0)

〉
= 0, φn

∣∣m(0) 6= n(0)

〉
=
∣∣m(0) 6= n(0)

〉
,

we have ∣∣n(1)
〉

=
1

E
(0)
n −H0

φnV |n0〉 =
∑
k 6=n

Vkn

E
(0)
n − E(0)

k

•
∆(2)
n = 〈n0|V

1

E
(0)
n −H0

φnV |n0〉 =
∑
k 6=n

|V 2
kn|

E
(0)
n − E(0)

k

• ∣∣n(2)
〉

=
1

E
(0)
n −H0

φn(V −∆(1)
n )

1

E
(0)
n −H0

φnV |n0〉

=
1

E
(0)
n −H0

φnV
1

E
(0)
n −H0

φnV |n0〉 − 〈n0|V |n0〉
1

E
(0)
n −H0

φn
1

E
(0)
n −H0

φnV |n0〉

=
∑

k 6=n,m 6=n

VmkVkn(
E

(0)
n − E(0)

k

)(
E

(0)
k − E

(0)
m

) |m0〉+
∑
k 6=n

VnnVkn(
E

(0)
n − E(0)

k

)2 |k0〉

• Notice that the perturbative correction always appear as

Vkn

E
(0)
n − E(0)

k

thus a criterion to judge about the reliability of the approximation is
the smallness of the above ratio
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• Notice that perturbative expansion, however, cannot catch non per-
turbative axpect of the theory. The potential V = ωx2 + gx3 doesn’t
admit bound states. Treating g as a small quantity yields an harmonic
oscillator spectrum with no unbound state. It sill remain a useful ap-
proximation for quasi stable states.

• Suggested exercize: diagonalize exactly the hamiltonian

H =

(
3 + ε 2ε

2ε 1− 2ε

)
Find eigenvector and eigenvalues. Check that first order perturbation
theory does indeed provide first order expansion in ε of the exact results

2.2 Time independent perturbation theory: degener-
ate case

2.2.1 Notes for students

Sakurai, chapter 5.2
The student is assumed to know the prescription to deal with this case,

no demonstration is required. The student is assumed to know how to deal
with perturbation theory in the non degenerate case, to discuss a few relevant
examples, and be aware of the limitation of the provided prescription.

2.2.2 Sketch of the lectures

If the unperturbed hamiltonian has degenerate states the above formulas
cannot be applied.

The procedure must be modified as follows

• For a degenerate level the above formulas cannot be applied: denomi-
nators vanish for equal energies (notice also that there is an ambiguity
in defining zeroth order eigenkets)

• Diagonalize the perturbation into the degenerate subspaces. In this way
one obtains first order energy corrections and zeroth order eigenket.
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• Apply ordinary non degenerate perturbation theory formulas. Now the
projection operator ψn project out the degenerate subspace.

φn =
∑

j,E
(0)
j 6=E

(0)
n

|nj〉 〈nj| ; H0

∣∣∣n(0)
j

〉
= E(0)

n

∣∣∣n(0)
j

〉

• Example:

H0 =

E1 0 0
0 E1 0
0 0 E2


V = λ

V11 V12 V13

V ∗12 V22 V23

V ∗13 V ∗23 V33


We first diagonalize V restricted to the degenerate subspace

Ṽ = λ

(
V11 V12

V ∗12 V22

)
we have

Ṽ ′ = λ

V11+V22
2

+
√

(V11−V22)2

4
+ |V12|2 0

0 V11+V22
2
−
√

(V11−V22)2

4
+ |V12|2


|1′〉 = cosα |1〉+ eiβ sinα |2〉
|2′〉 = cosα |2〉 − e−iβ sinα |1〉

• in the new basis

H ′0 = H0

V ′ = λ

V+ 0 V ′13

0 V− V ′23

V
′∗

13 V
′∗

23 V33


where

V± =
V11 + V22

2
±
√

(V11 − V22)2

4
+ |V23|2

V ′13 = cosαV13 + e−iβ sinαV23

V ′23 = cosαV23 − eiβ sinαV13
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• we are now in the position to perform the standard perturbative ex-
pansion

E1 = E1 + λV ′11 + λ2 |V ′13|2

E1 − E2

E2 = E1 + λV ′22 + λ2 |V ′23|2

E1 − E2

E3 = E2 + λV ′33 + λ2 |V ′13|2 + |V ′23|2

E2 − E1

|ψ1〉 = |1′〉+ λ
V ′13

E1 − E2

|3′〉

|ψ2〉 = |2′〉+ λ
V ′23

E1 − E2

|3′〉

|ψ3〉 = |3′〉+ λ
V ′31

E2 − E1

|1′〉+ λ
V ′32

E2 − E1

|2′〉

• suggested exercize: diagonalize exactly the hamiltonian

H =

 ε ε 2ε
ε ε 2ε
2ε 2ε 1


and find eigenvector end eigenvalues (notice that H has manifestly zero
determinant). Check that first order perturbation theory, degenerate
case, does indeed provide first order expansion in ε of the exact results.

3 Invariance under rotations, the Wigner-Eckart

theorem

3.1 Notes for student

Lectures follow Sakurai chapter 3.11
The student is assumed to know the definition of tensor operators (both

cartesian and spherical) and to be able to cope with specific relevant exam-
ples. The student is assumed to have a detailed operative knowledge of the
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Wigner-Eckart theorem. No demonstration is required. The student should
know how to use the theorem and to be able to discuss a few relevant phe-
nomenological application. Rules are provided to move from cartesian to
spherical tensor, again no detailed demonstration is required only a good
understunding of how to obtain the relevant realtionships.

3.2 Introduction

Newton equation are covariant under rotations. Namely the equations are
invariant in form under the action of a rotations.

These implies, in classical mechanics, that

• we have conserved quantities, angular momentum

• comparing the motion in different reference frames we don’t need to
solve the equations again

• each relevant physical quantity will have definite transformation rules
under the action of a rotation.

The relationships among different frames will be of purely geometric
nature and to move from one frame to another we don’t need to solve
the dynamical problem again.

We expect something similar to happen in QM. The formal expression of
rotational invariance in QM context is the Wigner-Eckart theorem

3.3 Examples

Let |α〉 be the state vector of a two level spin 1/2 system. Let’s consider the
expectation value of Sx.

〈+|Sx |+〉 = 〈−|Sx |−〉 = 0; 〈+|Sx |−〉 = 〈−|Sx |+〉 =
1

2

Let’s operate a π/2 rotation around the z axis. We have

|±〉 → |±′〉 = e∓iπ/4 |±〉

and thus

〈+|Sx |−〉 → 〈+′|Sx |−′〉 = i = −〈+|Sy |−〉
〈−|Sx |+〉 → 〈+′|Sx |−′〉 = −i = −〈+|Sy |−〉

Sx → Sy
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Rotating the state vector is equivalent to rotate the operator (with the state
vector unchanged). In more generality we say that the set

S = {Sx, Sy.Sz}

is a vectorial operator namely under the action of a frame rotation its matrix
elements do transform like

〈ψj|Sk |φj′〉
R→ 〈ψj| (DJ)†(R)SkDJ

′
(R) |φj′〉 = (R−1)kl 〈ψ|j Sl |φj′〉

where |ψj〉 and |φj′〉 are eigenkets of the J2 operator with quantum number
j and j′ respectively. Therefore S can be regarded as a vector in the above
sense: the action of a rotation can be thought as acting on the operator itself
whose matrix elements transform as if the operator is rotated with the state
ket unchanged

This property of the Sj operators allows us to deduce geometrical re-
lationships among its expectation values between J2 eigenkets Back to our
example, performing a rotation around the x axis we can deduce 〈−|Sx |−〉
from 〈+|Sx |+〉. Indeed under a rotation around the x axis a spinor transform
as (

ψ1

ψ2

)
→
(
ψ′1
ψ′2

)
= e−iαSx

(
ψ1

ψ2

)
=

(
cos α

2
−i sin α

2

−i sin α
2

cos α
2

)(
ψ1

ψ2

)
choosing α = π and recalling the definition of a vectorial operator we obtain

〈−|Sx |−〉 = 〈+|Sx |+〉

Thus by knowing just a few expectation values of an arbitray component Sj
we can deduce the expectation values of all Sk on an arbitrary state vector.
This is a particular case of the Wigner-Eckart theorem.

3.4 Tensorial Operators

• Let |α〉 be a state vector and assume it trasforms as an irreducible
representation under rotation

|αj〉
R→ D(J)(R) |αj〉

Let V be an operator acting on |αj〉. The expectation value of V , under
a rotation, changes as follows

〈αj|V |βj′〉
R→ 〈αj| D†(R)VD(R) |βj′〉
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If a for set of operators Vk

〈αj|Vk |βj′〉
R→ 〈αj| D†(R)VkD(R)|β〉j′ = R−1

kl 〈αj|Vl |βj′〉

where R is the usual 3× 3 rotation matrix we say that the operator Vj
is a vectorial operator. Specifying R to be, for example, an infinitesimal
rotation around the z axis

D(R) = 1− iεJz

R =

 1 ε 0
−ε 1 0
0 0 1


we can explicitly show that Vj satisfy (〈α| {1 + iε[Jz, Vj]} |α〉 = [δjk −
iεJzjk] 〈α|Vk |α〉) the commutation relation

[Vj, Jk] = iεjklVl

which implies

Vj
R→ eiJφVje

−iJφ

• In a completely analogous manner we define a tensorial operator Vj1j2...jn
as a set of operators transforming as

Vj1j2...jn
R→ Rj1k1Rj2k2 . . . RjnknVk1k2...kn

Vj1j2...jn is usually referred to as a Cartesian tensor and transforms as
a reducible representation of the rotation group.

• A more convenient set of operators is a spherical tensor namely a set
T

(k)
q transforming as

T (k)
q

R→ D(k)
qq′T

(k)
q′

i.e. exactly the same transformation law of spherical armonics. An al-
ternative definition of a spherical tensor is via its commutation relation
with the angular momentum generators

[Jz, T
(k)
q ] = qT (k)

q[
J±, T

(k)
q

]
=

√
(k ∓ q)(k ± q + 1)T

(k)
q±1
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• The way to combine two spherical tensor T
(k1)
q and T

(k2)
q to obtain a

tensor T
(k)
q is

T (k)
q =

∑
q1

∑
q2

〈k1k2; q1q2| k1k2; kq〉T (k1)
q1

T (k2)
q2

(1)

where 〈k1k2; q1q2| are the Clebsch-Gordan coefficient for the addition of
two angular momenta k1 and k2 to obtain an angular momenta k.

3.5 Wigner-Eckart theorem

• The matrix element of tensorial operators among angular momentum
eigenstates satisfy the relation

〈α′, j′,m′|T (k)
q |α, j,m〉 =

〈j, k;mq| j, k; j′m′〉√
2j + 1

〈α′, j′| |T (k)
q | |α, j〉

where the matrix element 〈| |T (k)
q | |〉 is independent from m and m′ and

depends only from j, j′ and the dynamics of the system (α). Notice
that in the above formula |j,m〉 are angular momentum eigenstates

and T
(k)
q spherical tensor. Using different representations the theorem

still holds but the coefficients are changed. Since the Clebsch-Gordan
coefficient are tabulated it is more convenient to transform first to
angular momentum eigenstates and spherical tensor and then apply
the theorem.

• selection rules

|j − k| ≤ j′ ≤ j + k

m′ = q +m

• scalar operator: only matrix element among states with the same j and
m can be non zero

• vectorial operator: selection rules

∆m = 0,±1

∆j = 0,±1
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morover the transition j ==→ j′ = 0 is forbidden. If j = j′ we have

〈α′, j,m′|Vq |α, j,m〉 =
〈α′, j,m|JV |α, j,m〉

j(j + 1)
〈j,m′| |Jq| |jm〉

known also as projection theorem.

Let’s now establish the connection between cartesian and spherical oper-
ators. For the coordinates

〈ψ| rj |ψ′〉
R→ Rjk 〈ψ| rk |ψ′〉

thus the coordinate operators are a cartesian vector.
From rj we can build a rank 1 spherical tensor

[Jz, z] = 0⇒ T 1
0 = z

[J+, z] = −x− iy ⇒ T 1
1 =

1√
2

(−x− iy)

[J−, z] = x− iy ⇒ T 1
−1 =

1√
2

(x− iy) (2)

the generalization to a generic vector operator Vj is straightforward, just
trade rj → Vj

Notice that, up to an overall constant T 1 “is” the rank 1 spherical ar-
monic. (To be more accurate the spherical armonics are built up from the
eigenvalues of the coordinate operators ane therefore the correspondence is
between operator and its eigenvalues) This is understood since spherical
harmonics are built from the eigenvalues of the position operator and the
commutation relationships for a spherical tensor match the transformation
laws of spherical harmonics under rotations.

Let’s now consider a rank two cartesian tensor and its decomposition into
spherical tensor. We are interested only into its properties under a rotation.
Thus we can write a rank two tensor as a direct product of two rank one
tensors.

τij = aibj

where both a and b are vectors. As a product of two rank one tensors τ
will be decomposed into the direct sum of rank zero, one and two spherical
tensor.

10



We have
T 0 ∼ ab (3)

T1 ∼

−cx − icy√
2z

cx − icy


c = a× b

T 2 =


axbx + iaxby + iaybx − ayby
−az(bx + iby)− bz(ax + iay)

1√
6
(−2axbx − 2ayby + 4azbz)

az(bx − iby) + bz(ax − iay)
axbx − iaxby − byby

 (4)

The student is invited to check that the above espression do indeed fullfill
the definition of the corresponding spherical tensor. Use momentum and spin
as a and b.

A list of a few possible ways to obtain the above relationships

• the most straightforward way is to use the definition of a spherical
tensor:

1. start from any component and compute [J+, τij] continue until you
obtain zero.

2. once you obtain [J+, τ̃ ] = 0 then τ̃ acting with J− you obtain the
full rank k tensor (k = 0, 1, 2 depending on the τlm chosen to start)

3. Choose another τl′m′ remove its component along the previously
found tensors and repeat until you find the three tensors.

• a bit more efficent (and slightly less straightforward):

1. use eq. 2 to build two spherical tensor T 1
j and R1

j out of the two
cartesian vector a and b

2. use the addition rule of eq. 1 to obtain three sperical tensors of
rank zero one and two respectively

• finally less straightforward but much quicker, use the correspondence
between spherical harmonics and spherical tensors built out of combi-
nation of polinomials in the coordinate operators:
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1. out of the product of two cartesian vectors it is straightforward to
build combinations with specific properties under rotations

ab; a× b; ajbk + akbj −
2

3
(ab)δjk

which are a scalar, a vector and a symmetric traceless rank two
tensor. These combination do correspond to rank zero one and two
respectively. The scalar is trivial and is mapped into rank zero
spherical tensor. For the vector we already know the mapping
from cartesian to spherical. For the rank two we can use as the
special set of a = b = r cartesian operators. The combination
which give rise to the rank two tensor can be read directly from
the expression of the rank two spherical harmonics as a function
of rj. The generalization to two distinct operators a and b is
obtained ensuring that it is symmetric under the exchange of a
and b

Add some comments and references to group theory, in partic-
ular group representations

3.6 Examples

• Let’s consider for example

〈α, 2,m| z |α′, 1,m′〉 =

∫
dρ ρ2f

(2)
α′ (ρ)f (1)

α (ρ)ρ

∫
dΩY m

2 Y m′

1 cos θ

Where

Y 2
2 =

1

4

√
15

2π
e2iϕ sin2 θ =

1

4

√
15

2π

(x+ iy)2

r2

Y 1
2 = −1

2

√
15

2π
eiϕ sin θ cos θ = −1

2

√
15

2π

(x+ iy)z

r2

Y 0
2 =

1

4

√
5

2π
(3 cos2 θ − 1) =

1

4

√
15

2π

2z2 − x2 − y2

r2

Y −1
2 =

1

2

√
15

2π
e−iϕ sin θ cos θ =

1

2

√
15

2π

(x− iy)z

r2

Y −2
2 =

1

4

√
15

2π
e−2iϕ sin2 θ =

1

4

√
15

2π

(x− iy)2

r2
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The required matrix element is then factorized as a factor which doesn’t
depend on m times an m dependent factor. The ratio among m depen-
dent factors is entirely specified in terms of the appropriate Clebsch-
Gordan coefficients. We have the freedom to choose what way to apply
the Wigner-Eckart theorem. In order to simplify the calculation we
choose to “add” two j = 1 representations to obtain a j = 2 represen-
tation. We recall that

|j1 = 1, j2 = 1; j = 2, jz = ±2〉 = |j1 = 1, j2 = 1; j1z = ±1, j2z = ±1〉

|j1 = 1, j2 = 1; j = 2, jz = ±1〉 =
1√
2

(|j1 = 1, j2 = 1; j1z = ±1, j2z = 0〉

+ |j1 = 1, j2 = 1; j1z = 0, j2z = ±1〉)

|j1 = 1, j2 = 1; j = 2, jz = 0〉 =
1√
6

(|j1 = 1, j2 = 1; j1z = 1, j2z = −1〉

+ |j1 = 1, j2 = 1; j1z = −1, j2z = 1〉+

2 |j1 = 1, j2 = 1; j1z = 0, j2z = 0〉)

Let’s denote by

Czmm′ = 〈2,m| z
ρ
|1,m′〉

C±mm′ =
1√
2
〈2,m| x∓ iy

ρ
|1,m′〉
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according to the Wigner-Eckart theorem we have

Cz±1±1 =
1√
2
C0

Cz00 =

√
2

3
C0

C+
21 = C0

C+
10 =

1√
2
C0

C+
0−1 =

1√
6
C0

C−−2−1 = C0

C−−10 =
1√
2
C0

C−01 =
1√
6
C0

with all other entries zero. For C0 we have

C0 =

√
3

2

∫
dΩ Y 0

2 Y
0

1 cθ =

√
15

4

√
3

2

∫
dcθ

(
3c4
θ − c2

θ

)
=

3
√

5

4
√

2

8

15
=

√
2

5

Let’s cross check a few others value

Cz11 =

∫
dΩ (Y 1

2 )∗Y 1
1 cθ =

3
√

5

4

∫
dcθ c

2
θ(1− c2

θ) =
3
√

5

4

4

15
=

√
1

5

C+
10 =

1√
2

∫
dΩ (Y 1

2 )∗Y 0
1 sθe

−iφ =
1√
2

3

2

√
5

2

∫
dcθ c

2
θ(1− c2

θ) =
3
√

5

4

4

15
=

√
1

5

C+
0−1 =

1√
2

∫
dΩ (Y 0

2 )∗Y −1
1 sθe

−iφ = − 1√
2

√
15

4
√

2

∫
dcθ (3c2

θ − 1)(1− c2
θ)

= −
√

15

8

(
−2 +

8

3
− 6

5

)
=

√
15

4

8

15
=

1√
15

Notice that it is crucial that we operate with x ± iy and not x and y,
the Wigner-Eckart theorem applies to spherical tensors
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4 Discrete Simmetries: Parity

4.1 Notes for Students

Sakurai chapter 4

4.2 The parity operator

Let’s consider the operation of space reversal

x→ −x

At the quantum mechanical level the transformation will be operated by an
operator π called the PARITY, P operator. The action of the P operator
on a state vector is

|α〉 P→ π |α〉

we require that π inverts the expectation value of the coordinate operator,

〈α|π†x̂π |α〉 = −〈α|x |α〉

which implies
πx̂− x̂π = 0

from which we obtain

x̂π |x〉 = −πx̂ |x〉 = −xπ |x〉

namely π |x〉 is an eigenstate of the coordinate operator with reversed eigen-
value

π |x〉 = eiδ |−x〉

The phase δ is arbitrary and physically unobservable and thus it is usually set
to 1. With this choice, observing that acting twice with the parity operator
on a state ket one goes back to the original state, the parity operator has
two eigenvalues ±1. They correspond to even and odd wavefunctions.

•
p̂π + πp̂ = 0 (5)

This can be expected of the analogy with classical mechanics p =dx/dt
which reverses sign under coordinate reversal or more selfconsistently
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remebering that x̂ is the generator of spatial translations. A spatial
translation, followed by coordinate reversal is equivalent to minus co-
ordinate reversal followed by the same translation. At the operator
level

π†
(
1 + iεp̂δ

)
π =

(
1− iεp̂δ

)
which implies (11). Notice that parity and momentum anticommute
and thus momentum eigenstates are not necessarily parity eigenstate;
for example plane waves are not parity invariant.

• Again in analogy with the classical analogue we can infer that angular
momentum commute with parity operators. This can be seen esplicitly
for orbital angular momentum L̂ = ix̂× p̂ and using anticommutation
relations for coordinate and momentum operators. For a generic spin
J representation the property can be inferred looking at the action
of parity and angular momentum on the fundamental representation.
The commutation relation [Jm, π] = 0 is then inherited by arbitrary
representations. 1 The angular momentum operator Ĵ is an example of
pseudo-vector. The scalar operator x̂Ĵ which changes sign under parity
is an example of pseudo-scalar.

• Since parity and angular momentum commute, angular momentum
eigenstates are parity eigenstates. It can be shown that, under par-
ity

π |l,m〉 = (−1)l |l,m〉

This can be shown by considering explictly the form of spherical ar-
monics and the action of coordinate reversal. Alternatively taking into
account that Jl and π commute one can consider olny the action of
parity on the |l, 0〉 states or one can take into account that

〈1,m| ≡
(
x+ iy√

2
, z,

x− iy√
2

)
which is therefore of parity −1. The spherical armonic of order l can
be obtained composing l times the l = 1 states and therefore to odd l
will corrispond odd parity and to even ones even parity.

1For the fundamental representation P = −I and commute with an arbitrary rotation
R. If we seek a representation of the group of proper rotation and time inversion a generic
representation is such that D(R)D(P ) = D(RP ) = D(PR)

16



• Notice that if parity commute with the hamiltonian than non degen-
erate hamiltonian eigenstates are parity eigenstates. This follows for
example from the fact that two operators that commute can be simul-
taneously diagonalized.

1. Consider one dimensional harmonic oscillator. The Hamiltonian is
invariant under parity, all the eigenvalues are non degenerate and
thus all the eigenstates are also parity eigenstates (parity (−1)n).

2. Consider a free particle. Plane wave solutions are not parity eigen-
state. This is due to the twofold degeneracy of the state ket: both
|p〉 and |−p〉 are hamiltonian eigenstates with the same energy.
It is obviously possible to construct superpositions which are also
parity eigenstates |p〉± |−p〉 (they are not momentum eigenstate,
momentum and parity don’t commute and cannot be simultane-
ously diagonalized).

4.3 Parity selection rule

If an operator has definite properties under parity transformation it can
connect only states with specific parities. The operator r connects only
states of opposite parity.

〈α| r |β〉 6= 0

only if PαPβ = −1 Equivalently one can observe that
∫
ψα(r)rψβ(r) is equal

to zero if both wave function are (anti-)symmetric. It follows that for non
degenerate eigenstates of the Hamiltonian |n〉

〈n| r |n〉 = 0

which in turns implies that these states have vanishing electric dipole mo-
ment.

The above argument can be generalized to any operator of given parity.
A scalar operator, like J1J2 for example, can connect only states with the
same parity, whereas a pseudoscalar operator (J1p̂) can connect only states
of opposite parity.
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5 Interaction of a charged particle with an

Electromagnetic Field

5.1 Notes for students

Cohen, appendix III; Cohen, complement HIII Sakurai, chapter 2.7

5.2 Hamiltonian for a charged particle into an Elec-
tromagnetic Field

See Cohen, appendix III for example. The student is required to know the
general form of the hamiltonian in presence of an external electro-magnetic
field and its specific form in the cases of interest.

Let’s recall the interaction of a classical particle with an Electromagnetic
Field

S =

∫
L =

∫
1

2m
ṙṙ +

q

c
ṙA− qΦ

H =

∫
pṙ− L =

∫
1

2m
(p− q

c
A)2 + qΦ

The quantization of the system proceeds promoting p to momentum opera-
tor. The quantum Hamiltonian is

H =
1

2

(
p̂p̂− qp̂A− qAp̂− q2A2

)
+ qΦ

Notice that p̂ and A don’t commute. The above expression is therefore a
priori ambiguos. The ambiguity is removed requiring that the hamiltonian is
hermitian. One could make p̂A = Ap̂ with the gauge choice ∇A = 0 Among
the most common situations let’s work out the case of constant fields.

• Constant electric field

H =
1

2
p̂p̂− qEr

• Constant magnetic field We have

A =
1

2
r×B

18



and thus

Ap̂ =
1

2
εijkrjBkp̂i = −1

2
BL = p̂A

where the last equality holds since p̂ and r×B commute and L is the
angular momentum operator. Finally

H =
1

2
p̂p̂− q

2
BL + q2 |r×B|2

5.3 Gauge Invariance

See Cohen, complement HIII for example. The student must be aware that
seemingly different results for the same problem might be related to different
gauge choiches and that any physical observable must be related to a gauge
invariant operator.

The lagrangean equation of motion are invariant under gauge transfor-
mation

Φ → ∂tΛ(r, t) + Φ

A → ∇Λ(r, t)

At the quantized level the Schröedinger equation

i∂tψ =
1

2
(−i∇− qA)(−i∇− qA)ψ + qΦψ

is invariant under gauge transformations provided that we perform the phase
transformation

ψ → e−iqΛ(r,t)ψ

Namely a gauge transformation amount to an (unobservable) phase transfor-
mation of the wave function. Notice that only gauge invariant quantities are
observable. The canonical momentum p̂ is not a gauge invariant quantity

〈p̂〉〉 → 〈p̂− i∇Λ〉

whereas the mechanical momentum

Π = p̂− qA

is indeed a gauge invariant quantity. It is Π that enters the Ehrenfest theorem

m
d2x

dt2
= Π̇ = q

[
E +

1

2c
(ṙ×B−B× ṙ)

]
19



also the continuity equation is gauge invariant. From the Schröedinger equa-
tion we obtain

∂tρ−∇j = 0

j =
ρ

m
(∇S − qAc)

ρ =
√
|ψ|2

ψ = ρeiS

this is satisfactory since this equation reflects the conservation of the proba-
bility.

6 Theory at work

We now provide a few relevant examples to illustrate the applications of the
tools discussed in the previous lectures.

6.1 Linear Stark Effect.

Let’s now consider the effect of an external constant electric field on a hy-
drogen atom. We shall consider the linear Stark Effect, namely the effect of
a constant electric field on degenerate atomic levels. For definitness we shall
discuss the energy level shift of the n = 2 level of the hydrogen atom. The
potential is

V = −eEz

which we shall treat as a perturbation of the coulombic potential.

• The n = 2 level is fourfold degenerate (we neglect spin) ⇒ we need
to use perturbation theory for the degenerate case. For this pourpose
we evaluate the matrix element of the perturbation restricted to the
invariant n = 2 subspace

Vlm,l′m′ = 〈n = 2, l,m|V |n = 2, l′,m′〉

and we diagonalize the resulting matrix

• before proceeding to the actual calculation we try to make best possible
use of parity and rotational invariance
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• the perturbation is proportional to the coordinate operator, namely
it is a vector operator. With our choice of the z axis V is the ze-
roth component of the corresponding rank one spherical operator. The
Wigner-Eckart selection rules are

∆m = 0

∆l = 0,±1

• V is odd under parity transformation and thus only matrix elment con-
necting odd/even l with even/odd l′ are non vanishing ⇒

∆l = ±1

• Due to the above limitation the only non vanishing matrix elements
are

V00;10 = 〈2, 0, 0|V |2, 1, 0〉 = −eE
∫

dr r3R20R21

∫
dΩ

√
3

4π
c2
θ

= −eE
∫

dr
1

8a4
0

√
3
r3(2− r

a0

)
r√
3

e−r/a0

= − 1

24
eEa0

∫
t4(2− t)e−t = 3eEa0

and its hermitian conjugate

Within the degenerate subspace the perturbative hamiltonian is

Ṽ =


0 V00;10 0 0

V10;00 0 0 0
0 0 0 0
0 0 0 0


where the entries are ordered as |n = 2, l = 0,m = 0〉, |2, 1, 0〉, |2, 1, 1〉 and
|2, 1,−1〉
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The degeneracy is partially lifted:√
1

2
(|2, 1, 0〉+ |2, 0, 0〉) ∆E = 3ea0E√

1

2
(|2, 1, 0〉+ |2, 0, 0〉) ∆E = −3eEa0

|2, 1, 1〉 ∆E = 0

|2, 1,−1〉 ∆E = 0

Finally a comment since this has driven some misunderstunding in the
past. The electric field is an external perturbation. Whereas the expression
Er is a scalar if the system under consideration is the whole universe, once
we restrict the investigation to tha tomic system only r is an operator and Ej
only a set of numbers. Thus evaluating 〈V 〉 V has the structure of a vector
operator.

6.2 Fine structure

6.2.1 Notes for students

Cohen-Tannoudji, chapt. XII. The student is assumed to be able to discuss
the simmetries (parity and rotations) of the hamiltonian, to deal with the
diagonalization of the spin-orbit term and with the calculation of at least one
of the relevant matrix element

6.2.2 Fine structure Hamiltonian

From the non relativistic limit of the Dirac Equation we obtain

H = mec
2 +

p̂2

2me

+ V (R)− p̂4

8m3
ec

2
+

1

2m2
ec

2

1

R

dV

dR
L · S +

h- 2

8m2
ec

2
∆V (R)

Let’s recall a few useful quantities

• EI = 1
2
α2mc2. Ground state energy

• a0 = 1
α
λ- c Bohr radius

• α = e2

h- c
∼ 1

137.
fine structure constant.
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• λ- = h-
mc

is the compton wave length.

Let’s comment briefly on the origin of the various terms.

• mec
2. Electron rest energy. It is a constant term and it just shifts all

energy levels by a constant. No observable effect

• p̂2

2me
+ V (R). The non relativistic hamiltonian.

• Wmv = p̂4

8m3
ec

2 . The first relativistic correction to kinetic energy. The
relative order of magnitude is

Wmv

H0

∼ p̂2

4m2
ec

2
∼ ĥ-

2

4a2
0m

2
ec

2
∼ α2

• WSO = 1
2m2

ec
2

1
R

dV
dR

L · S Spin orbit interaction. Classically we picture
the atom as an electron orbiting around the proton. A charge moving
into a static electric field feels a magnetic field

B = − 1

c2
v × E

Because of the electron intrinsic magnetic moment

M =
qS

me

this implies an interaction term

HI = −MB

The electrostatic field is

E = ∇V (R) = −∇e
2

r
= −1

q

dV

dr

r

r

and thus

B =
1

qc2

1

r

dV

dr

p̂

me

× r =
1

qmec2

1

r

dV

dr
L

and finally

HI =
e2

m2
ec

2

1

R3
L · S
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which is up to a factor 1/2 the spin orbit term. The factor 1/2 can
be understood classically observing that the spin precesses around the
effective magnetic field. The relativistic Dirac equation do provide the
correct term. The realtive order of magnitude is given

WSO

H0

∼ h- 2m2
ec

2a2
0 ∼ α2

(L ∼ S ∼ h- )

• WD = h-
2

8m2
ec

2 ∆V (R), the Darwin term. This is a genuine relativistic
effect. In the equation it appears a non local term. The electron
feels the effect of the value of the field in a domain located around
the electron position r and of size λ- . (Ṽ (r) =

∫
f(x)V (x + r) ∼

V (r)+∆V (r)|x−r|2) With V (r) = 1/r for the Darwin term we obtain

WD =
h- 2

8m2
ec

2
∆

1

R
=

h- 2

8m2
ec

2
δ(r)

Taking the mean value of the darwin term on an atomic state we find
a contribution

πe2h- 2

2mec2
|ψ(0)|2

which is non zero only for s states. Since ψ(0) ∼ a
−3/2
0 the relative

order of magnitude of the Darwin term is

WD

H0

∼ α2

6.3 Fine structure splitting, n=2 level

Taking into account electron and proton spin there are 16 states. The fine
strucutre hamiltonian doesn’t invole proton spin: we shall have a twofold
degenarcy. The remaining eight level are splitted by fine structure terms.

Let’s start from the velocity term. Wmv ∼ p̂4. Wmv commute with L2 and
Lz, and it does’t depend on spin. It will therefore be diagonal in L2, Lz, S

2, Sz
space and the shift will be degenerate for p states and for s states. We have

p̂4 = 4m2
e[H0 − V ]2
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and thus

〈n, l,m| p4 |n, l,m〉 = 4m2
e〈[H0−V ]2〉− 1

2mec2

[
E2
n + 2Ene

2〈1/R〉+ e4〈1/R2〉
]

the angular integral is one and the radial part is readily evaluated to

〈〉1s =
1

2a2
0

〈〉2s =
1

4a2
0

〈〉2p =
1

12a2
0

and thus

〈Wmv〉1s = −5

8
α4mec

2

〈Wmv〉2s = − 13

128
α4mec

2

〈Wmv〉2p =
7

384
α4mec

2

The perturbation is already diagonal and lifts the degeneracy among 2s and
2p.

The Darvin Term is non zero only for s states

〈WD〉1s =
1

2
α4mec

2

〈WD〉2s = − 1

16
α4mec

2

The spin orbit term depends on spin and angular momentum. WSO =
1

2m2
ec

2
1
R

dV
dR

L · S The spin orbit term commute with L2, S2 but not with Lz and
Sz. Thus there is no mixing among s and p states but there is mixing among
states with different Lz and Sz. In principle we should evaluate the matrix
element of the spin-orbit term and then diagonalize it. We are however
familiar with similar operators. The hamiltonian of the atom is invariant
under simultaneous rotation of all tensorial quantities r, S, . . . thus it is
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diagonal in the |j, l, s, jz〉 basis. The 2p states split into 2p1/2 and 2p3/2

respectively with two and four degenerate state. The states 2s is unaffected
since L = 0 for this states. The contribution of WSO term is readily evaluated
in this basis

LS =
1

2
(J2 − L2 − S2)

which leads to an energy split

δE1/2 =
−1

48
mec

2α4

δE3/2 =
1

96
mec

2α4

Notice that the average over all states of the shift is zero. Since there is
clearly no preferred direction in space the average 〈Jz〉 must be zero.

Collecting all the contributions it turns out that the levels 2s1/2 and 2p1/2

are degenerate whereas the 2p3/2 is higher. Within our present discussion this
is an accidental coincidence. The relativistic Dirac Equation has however
additional symmetries and it turns out that the energy levels do depend only
on J and thus this degeneration is exact to all orders.

Notice that both the velocity term and the Darwin term don’t depend on
spin and they are scalars. Both contributions depends only on l. Thus our
calculation is unaffected when we move to the |j, l, s, jz〉 base.

6.4 Hyperfyne splitting

we shall now include the proton spin into our considerations

6.4.1 The hyperfine Hamiltonian

The proton is itself a spin 1/2 particle and thus it has an intrinsic magnetic
moment

µp =
gpµnSp
h-

=
qph-

2Mp

gpSp
h-

where µn is the nuclear Bohr magneton and gp(∼ 5.585) is the proton giro-
magnetic ratio.
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The elecron thus moves also in the magnetic field originated by the proton
magnetic dipole moment. The corresponding magnetic hyperfine hamiltonian
is

Whf = −µ0

4π

{
q

meR3
Lµp +

1

R3
[3(µe · n)(µp · n)− µpµe] +

8π

3
µpµeδ(r)

}
where the first term is the interaction of the nuclear magnetic dipole mo-
ment, the second term originates from the dipole-dipole interaction between
electonic and nuclear magnetic moment and the last term originates from
the singularity at r = 0 from the vector potential of the proton. The relative
order of magnitude of the hyperfine hamiltonian is

Whf

WSO

∼ me

mp

much smaller than the fine strucutre terms.

6.4.2 Hyperfine splitting of 1s state

The fine structure hamiltonian just results in an overall shift of the level

δE =
1

8
mec

2α4

since 〈WSO〉 = 0 for 1s states (l = 0) and the other terms don’t depend on
electron or proton spin.

Let’s evaluate the effect of the hyperfine hamiltonian which we shall treat
as a perturbation. The ground state is fourfold degenerate (two spin de-
grees of freedom for both the electron and the proton) we thus need to use
perturbation theory in the degenerate case. We thus need to evaluate

〈l = 0, Sze, Szp|Whf

∣∣l = 0, S ′ze, S
′
zp

〉
and diagonalize the corresponding matrix.

The first term of the hyperfine hamiltonian is zero since l = 0 For the
dipole-dipole term we have

Whf ;d = 3(µe · n)(µp · n)− µpµe = 3µejµpk

(
njnk −

1

3
δjk

)
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the contribution to the matrix element is

〈l = 0, Sze, Szp|Whf ;d

∣∣l = 0, S ′ze, S
′
zp

〉
= 3 〈l = 0|

(
njnk −

1

3
δjk

)
|l = 0〉 〈Sze, Szp|µejµpk

∣∣S ′ze, S ′zp〉
Now

〈l = 0|
(
njnk −

1

3
δjk

)
|l = 0〉

is the matrix element of a rank two tensor among two heigenstates of l and
lz. It’s average value over an l = 0 state is zero due to the Wigner-Eckart
theorem. It can also be explicitly verified that∫

dΩ n2
x =

∫
dΩ n2

y =

∫
dΩ n2

z =
1

3

∫
dΩ1

whereas off-diagonal terms are zero because of dφ integration. We are left
only with the contact term

−2µ0

3
〈n = 1, l = 0, lz = 0,ms,mI |µp · µe |n = 1, l = 0, lz = 0,m′s,m

′
I〉

=
4

3h- 2 gp
me

Mp

mec
2α4 〈ms,mI |SI |m′s,m′I〉 = A〈ms,mI |SI |m′s,m′I〉

We already know how to diagonalize this term. We shall have a triplet
(F = I+S = 1) state and a singlet (F = 0) state with energy split ∆EF=1 =
1/4Ah- 2 ∆EF=0 = −3/4Ah- 2 respectively.

7 Fine structure splitting and Zeman effect

for the 2n level

We have already discussed the impact of spin orbit terms. Let’s now consider
the effect of an external constant magnetic field. The Zeeman Hamiltonian
is (neglecting nuclear magnetic moment)

Hz = µBB0(Lz + 2Sz) = −µBB0(Jz + Sz)

The overall hamiltonian is now invariant only for rotation around the z axis
and the degeneracy will be (partially ) removed. Hz is Parity invariant and
thus s and p states don’t mix. The s states are lifted by an energy shift
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∆E1s = ±µBB0. p states do mix among themselves. Jz is still a good
quantum number and thus the only non vanishing matrix element are

〈3/2,±3/2|HZ |3/2,±3/2〉 = ∓2µBB0

〈3/2,±1/2|HZ |3/2,±1/2〉 = ∓2

3
µBB0

〈1/2,±1/2|HZ |1/2,±1/2〉 = ∓1

3
µBB0

〈3/2,±1/2|HZ |1/2,±1/2〉 = ∓
√

2

3
µBB0

where we have used

|3/2, 1/2〉 =

√
2

3
|lz = 0, sz = 1/2〉+

√
1

3
|lz = 1, sz = −1/2〉

|1/2, 1/2〉 = −
√

1

3
|lz = 0, sz = 1/2〉+

√
2

3
|lz = 1, sz = −1/2〉 (6)

and the problem can be solved exactly. Including the fine splitting contribu-
tions the perturbing hamiltonian is

W = HMagnetic +Hfinestructure

which has the only non vanishing entries

〈j = 3/2, l = 1, jz = ±3/2|HZ |j = 3/2, l = 1, jz = ±3/2〉 = δFS ∓ 2µBB0

〈j = 3/2, l = 1, jz = ±1/2|HZ |j = 3/2, l = 1, jz = ±1/2〉 = δFS ∓
2

3
µBB0

〈j = 1/2, l = 1, jz = ±1/2|HZ |j = 1/2, l = 1, jz = ±1/2〉 = −δFS ∓
1

3
µBB0

〈j = 3/2, l = 1, jz = ±1/2|HZ |j = 1/2, l = 1, jz = ±1/2〉 = ∓
√

2

3
µBB0

〈j = 1/2, l = 0, jz = ±1/2|HZ |j = 1/2, l = 0, jz = ±1/2〉 = −δFS (7)

(8)

where δFS is the fine splitting term.
One can also approach perturbatively the two limits: weak field (Zeeman

splitting) and strong field (Paschen-Back).
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Weak field, Zeeman effect

µBB0 � δFS

the magnetic hamiltonian is a perturbation with respect to the fine splitting
one. Thus we choose as basis |j, l, s, jz〉 and to first order in µBB0/δFS the
energy level splitting is given by the diagonal entries in eqn. /refeq:zeeman-fs.
Notice that off-diagonal terms connects different energy levels (j = 3/2 and
j = 1/2) and therefore don’t contribute to first order.

Strong field, Paschen-Back effect

µBB0 � δFS

Now it is the fine splitting hamiltonian which is a perturbation with
respect to the magnetic one. We choose a basis that diagonalize the magnetic
hamiltonian, |l, s, lz, sz〉. The Zeeman hamiltonian splits the n=2 level into
five energy levels

δE = ±2µ0B |l = 1, lz = ∓1, sz = −∓ 1/2〉

δE = ±µ0B

{
|l = 1, lz = 0, sz = ∓1/2〉
|l = 0, lz = 0, sz = ∓1/2〉

δE = 0

{
|l = 1, lz = 1, sz = −1/2〉
|l = 1, lz = −1, sz = 1/2〉

Within the three degenerate subspaces the fine splitting hamiltonian is diag-
onal since off diagonal elements are prevented either from parity or jz non
conservation. For the diagonal terms, using the inverse of eqn. 6, We obtain

〈l = 1, lz = ±1, sz = ±1/2|HFS |l = 1, lz = ±1, sz = ±1/2〉 = δFS

〈l = 1, lz = ±1, sz = ∓1/2|HFS |l = 1, lz = ±1, sz = ±1/2〉 = −1

3
δFS

〈l = 1, lz = 0, sz = ±1/2|HFS |l = 1, lz = 1, sz = ±1/2〉 = +
1

3
δFS

〈l = 0, lz = 0, sz = ±1/2|HFS |l = 0, lz =, sz = ±1/2〉 = −δFS

which are the required energy level shifts to first order in δFS/µ0B
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8 Hyperfine splitting of the 2n level

We shall first consider the hyperfine hamiltonian as a perturbation. Let’s
consider the first term. It commutes with L2 and thus it connects only states
with the same l. It vanishes for s1/2 states. It doesn’t depend on electron
spin which can thus be neglected. It doesn’t commute with Jz and thus we
can expect it mixes all the p terms.

9 Time dependent perturbation theory

9.1 Note for students

Sakurai chap. 5.5. Cohen ?? Sakurai approaches the solution of the problem
using the Dyson series. Whereas Dyson series plays an important role in the
contest of relativistic system is overly redundant for low energy QM. Follow
the simplest approach outlined here.

9.2 Time dependent perturbation theory

Let’s consider the Schröedinger equation

i∂t |ψ〉 = [H0 + V (t)] |ψ〉

where H0 doesn’t depend on t and we assume that it’s eigenvalues and eigen-
vectors are known.

H0 |ψn〉 = En |ψn〉
we move to the so called interaction picture.

|ψ〉I = eiH0t |ψ〉
|ψn〉 = e−iEnt|ψn〉I

i∂t|ψ〉I = VI |ψ〉I
VI = eiH0tV (t)e−iH0t

VIlm = ei(El−Em)tVlm

Let’s follow the evolution of a state in the interaction picture

i∂t|ψ〉I = V (t)|ψ〉 ⇒ 〈ψm| [i∂t − VI(t)]cn(t) |ψn〉 = 0

⇒ iċm = 〈ψm| e−iH0tV (t)eiH0t |ψn〉 ⇒ ċm(t) = −iei(Em−En)tcn(t)(9)
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Insofar everything is exact, at zeroth order in perturbation theory we have

ċ(0)
n = 0⇒ c(0)

n = cn(t = t0)

at first order in perturbation theory we shall have

c(1)
m = −ic(0)

n

∫ t

t0

Vmn(s)ei(Em−En)sds (10)

Notice that the results in eqns. 9 and 10 are in the interaction representation:

|ψ〉I = cn(t) |ψ〉n
to move back to the Schröedinger equation we have

|ψ〉S = e−iH0t|ψ〉I = cn(t)e−iEnt |ψ〉n
If the initial state is not an eigenstate of the H0 its crucial to retain these
additional phase factors.

9.3 Two level problem with an oscillating potential,
Rabi’s formula

We want to solve the problem

i

(
ċ1

ċ2

)
=

(
∆
2

γeiωt

γe−iωt −∆
2

)
Using a1,2 = c1,2e±iωt/2 the equation becomes

i

(
ȧ1

ȧ2

)
=

(
∆−ω

2
γ

γ −∆−ω
2

)(
a1

a2

)
which can be solved exactly. If in the initial state the system is in the state

|ψ(t = 0)〉 = |1〉 =

(
1
0

)
at the time t the probability P2 to find the system in the state |2〉 =

(
0
1

)
is

P2 = |c2(t)|2 =
γ2

γ2 + (∆− ω)2/4
sin2

{[
γ2 +

(∆− ω)2

4

]}
P1 = |c1(t)|2 = 1− |c2(t)|2
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• Notice that the above formula (Rabi’s formula) is valid only with the
given initial condition. Try with |ψ(t = 0)〉 = (a b).

• If ∆ = ω we have the resonant condition. The amplitude of the oscil-
lation is maximal (and equal to one)

• If the resonant condition is fulfilled the system jumps continuosly be-
tween the state |1〉 and |2〉. This is a cycle of stimulated absorp-
tion/emission. The potential acts as a source/well of energy
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