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Abstract:

As the first part of this paper we get to analyze Standard Model (SM) Higgs boson main decay channels, at
tree level for massive final state particles and at one loop for gluons. We reproduce also the plot for Higgs
branching ratios for different decay channels as a function of its mass. Next we get to analyze the LHC and
Tevatron main Higgs production channels, gluon-gluon fusion, weak boson fusion and Higgs-strahlung. We
numericaly integrate the obtained cross sections convoluted with the parton distribution functions (PDFs) in
order to obtain a realistic leading order (LO) estimation of the result. At this point, we analize an extended
version of the SM with a fourth generation of leptons and quarks (SM4). We compare the SM4 theoretical
predictions with the latest experimental results and get to an interesting conclusion. Afterwards, we will
also analize one loop Higgs self-energy diagrams and see how the Higgs running mass looks like, and draw
another interesting conclusion about the SM at higher energy scales. Last, we take a look at the latest
experimental results on Higgs mass exclusion regions.
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0. Standard Model

Since the discovery of the β decay of neutrons, many efforts have been made to understand the nature of
the weak interaction. The development of a formal consistent theory of this interaction had to pass through
many stages and tests. The first model capable of describing successfully the experimental data at low
energies was the effective interaction proposed by Fermi in 1934:

Leff (x) =
GF√

2
J†µ(x)Jµ(x) (0.1)

this is a current-current interaction with Jµ given by:

Jµ(x) =
∑
l

ν̄l(x)γµ(1− γ5)l(x) + p̄(x)γµ(1− γ5)n(x) (0.2)

The first part is the leptonic part and the second one was naively thought to be the part describing the
interaction between nucleons. Nowadays we know that we have to substitute the nucleon fields for quark
fields. Let’s take a look at the simplest cross section we can imagine calculated with Fermi’s interaction
lagrangian:

σ(νµ e
− → νe µ

−) =
G2
F s

π
∼ s (0.3)

Obviously, as we mentioned before, this theory can only describe low energy phenomenology; at high enough
energies it violates unitarity. The other problem that makes this theory ill is that it’s non renormalizable.
All higher order corrections are found to be infinite. A theory is called renormalizable if all ultraviolet
divergences can be reabsorbed in a redefinition of the coupling constants and fields. With Fermi’s theory
this is impossible. The next step was the Intermediate Vector Boson (IVB) theory. Here we assume that
the weak interaction is mediated by a vector boson, analogous to QED, but in this case it would have to be
a massive boson because of the short range of the interaction.

νµ

e−

νe

µ−
GF

νµ

e− µ−

νe

IV B W

Figure 1: Fermi’s effective coupling and the IVB theory.

This theory was also doomed to fail. One can easily find that this theory again violates unitarity and
is non-renormalizable. Finally, in 1967, Weinberg, Salam and Glashow proposed an electro-weak unified
theory which successfully passed almost all the tests. This theory is what we now call the Standard Model of
Electroweak Interactions. It is a gauge theory based on the symmetry group SU(2)L⊗U(1)Y with massless
particles. Together with the strong interaction we have the SU(3)C ⊗SU(2)L⊗U(1)Y group wich describes
the whole SM. The mechanism that provides mass to all the particles is called Spontaneous Symmetry
Breaking (SSB):

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)QED

The SSB is generated by the non-zero expectation value of a SU(2) doublet which is called Higgs doublet.
This doublet also gives rise to a scalar particle, the Higgs boson, which couples to all massive fields in the
theory. So far, the SM has been very succesful and it passed many precision tests. The only ingredient left
to be discovered, if it exists, is the scalar Higgs boson. This paper will be dedicated to the analysis of this
particle. In order to get an idea of the underlying physics of the Higgs boson we have to study at least three
things: decay channels, production mechanisms at particle colliders such as the LHC and Tevatron, and of
course, renormalization. We shall start by analyzing its decay channels in the next section.
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1. Higgs Decay Channels

The first thing that we have to do in order to get a correct and complete vision of the Higgs phenomenology
is to analyze at tree level it’s coupling to all the massive particles in the S.M. We shall start by analyzing the
fermion anti-fermion channels and the weak boson channels. Afterwards we also need to analyze massless
final state bosons like gluons or photons. We can argue that γγ and γZ final states are very small compared
to all the others so we could leave them out of our discussion, but we are going to include them anyway
(from ref.[16]) for completness sake and also because H → γγ is a very interesting channel for a low mass
Higgs. These processes and H → gg take place through loop diagrams. We will see that the loop diagrams
need to be taken in consideration for a correct understanding of the Higgs phenomenology.

1.1 Higgs decay to fermion anti-fermion.
H(p1)→ f(p2)f̄(p3):

H(~p1)

f(~p2, r2)

f̄(~p3, r3)

mf

v

Figure 2: Higgs decay to fermions.

The transition amplitude of this diagram is given by :

MH→ff̄ =
mf

v
ūr2vr3 ⇒ M†H→ff̄ =

mf

v
v̄r3ur2 (1.1)

Therefore the squared transition amplitude is:∑
r2,r3

|M2
H→ff̄ | =

m2
f

v2
Tr{( /p2 +mf )( /p3 −mf )} =

4m2
f

v2
(p2p3 −m2

f ) (1.2)

In the center of mass frame the relativistic four-momenta are given by:

pµ1 = (MH ,~0), pµ2 = (Ef , ~p), p
µ
3 = (Ef ,−~p) (1.3)

where, momentum conservation implies:

MH = 2Ef with E2
f = p2 +m2

f , p = |~p| (1.4)

We can easily find that:

p2p3 −m2
f =

1

2
M2
H(1−

4m2
f

M2
H

) ; p =
1

2
MH(1−

4m2
f

M2
H

)1/2 (1.5)

and we also find the squared amplitude of the process to be:∑
ri

|M(H→ff̄)|2 = NC
2m2

f

v2
M2
H(1−

4m2
f

M2
H

) (1.6)

The decay width is defined by the formula (X, X’ can be anything):

Γ(H → XX ′) ≡ 1

2MH

∫
dQ2

∑
|M(H→XX′)|2 (1.7)
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In this case the transition amplitude does not depend on any angle, so it can be directly integrated:∫
dQ2 =

∫
1

(2π)2

p

4
√
s
dΩCM =

1

8π
(1−

4m2
f

M2
H

)1/2 (1.8)

Therefore, the partial decay width of the Higgs boson to fermion anti-fermion is:

Γ(H → ff̄) = NC
1

8π

m2
f

v2
MH(1−

4m2
f

M2
H

)3/2 (1.9)

NC is the number of colours; it’s value is 1 for leptons and 3 for quarks.

1.2 Higgs decay to weak bosons.
H(p1)→ Z(p2)Z(p3)/W (p2)W (p3):

H(~p1)

A(~p2, r2)

A(~p3, r3)

2M2
A

v

Figure 3: Higgs decay to weak bosons A = W, Z.

We shall calculate the transition amplitude with a general weak boson A which can be either one. Afterwards
we shall particularize the result for each one of them, considering that in phase space the ZZ decay width
has an extra 1/2 identical particles factor. The transition amplitude of this diagram is therefore given by :

MH→AA =
2M2

A

v
εµr2 εµ,r3 ⇒ M†H→AA =

2M2
A

v
εν∗r2 ε

∗
ν,r3 (1.10)

We find the squared transition amplitude to be:∑
ri

|MH→AA|2 =
4M4

A

v2

(
− gµν +

pµ2p
ν
2

M2
A

)(
− gµν +

p3µp3ν

M2
A

)
(1.11)

Considering the the final vector bosons are on-shell, the squared amplitude becomes:∑
ri

|MH→AA|2 =
4M4

A

v2

(
2 +

(p2p3)2

M4
A

)
=

4M4
A

v2

(
3 +

1

4

M4
H

M4
A

− M2
H

M2
A

)
(1.12)

We have the same two-particle phase space as in the previous example (except the 1/2 factor that goes to
ZZ, and different masses) so the partial decay rate of the Higgs boson to Weak bosons W or Z is:

Γ(H →WW ) =
1

4π

M4
W

MHv2

(
1− 4M2

W

M2
H

)1/2(
3 +

1

4

M4
H

M4
W

− M2
H

M2
W

)
(1.13)

Γ(H → ZZ) =
1

8π

M4
Z

MHv2

(
1− 4M2

Z

M2
H

)1/2(
3 +

1

4

M4
H

M4
Z

− M2
H

M2
Z

)
(1.14)
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1.3 Higgs decay to gluons.

The next process is a one-loop process. We could naively think that it’s decay rate must be very low
compared to the tree-level ones, but that is not exactly true. Due to the very heavy top quark mass, this
diagram generates a high enough decay rate that necessarily must be taken in consideration. We shall see
at the end of our computation that for a massless quark this diagram does not contribute.

H(p1)→ g(p2)g(p3)
first diagram:

H(p1)
k

k + p2

k − p3

g(p2, r2, a)

g(p3, r3, b)

µ

ν

δ′

γ ′

δ
γ

σ

σ

Figure 4: Higgs decay to gluons, first diagram.

The transition amplitude of the first diagram is given by:

M(1) = (−i)g2
s

m

v
εaµ,r2ε

b
ν,r3

(λa
2

)
δ′γ′

(λb
2

)
γδ
δδδ′δγ′σδσγ ×∫

d4k

(2π)4

Tr{γµ(/k + /p2
+m)(/k − /p3

+m)γν(/k +m)}
(k2 −m2)[(k + p2)2 −m2][(k − p3)2 −m2]

(1.15)

Here m = mt, the top quark mass. Let’s first analyze the colour trace:(λa
2

)
δ′γ′

(λb
2

)
γδ
δδδ′δγ′σδσγ =

1

4
Tr{λaλb} =

1

2
δab (1.16)

The spinor trace is a little more complicated:

Tr{γµ(/k + /p2
+m)(/k − /p3

+m)γν(/k +m)}
= 4m(pµ3p

ν
2 + 4kµkν − 2kµpν3 + 2pµ2k

ν − pµ2pν3 + gµν(m2 − p2p3)− gµνk2)

≡ 4mNµν (1.17)

Before we try to perform the integral, we shall use the Feynman parameterization to simplify the denominator:

1

ABC
=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz δ(x+ y + z − 1)
2

[Ax+By + Cz]3
(1.18)

We have, A = k2−m2, B = (k+p2)2−m2 and C = (k−p3)2−m2, so the denominator D ≡ Ax+By +Cz
can be written as it follows (as a first order approximation we shall consider on-shell gluons):

D = (k2 −m2)x+ (k2 + p2
2 −m2 + 2kp2)y + (k2 + p2

1 −m2 − 2kp3)z

= (k2 −m2)(x+ y + z) + 2(kp2)y − 2(kp3)z

= k2 −m2 + 2(kp2)y − 2(kp3)z

= (k + p2y − p3z)
2 + 2(p2p3)yz −m2 (1.19)

We define a2 ≡m2 − 2(p2p3)yz, therefore, we can write D in the simplified form :

D = (k + p2y − p3z)
2 − a2 (1.20)
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In terms of the Feynman parameters, our integral becomes:

Iµν ≡
∫

d4k

(2π)4

∫ 1

0

dy

∫ 1−y

0

dz
8mNµν

[(k + p2y − p3z)2 − a2]3
(1.21)

Making a variable shift from k to k + p2y + p3z, I
µν takes the form:

Iµν =

∫
d4k

(2π)4

∫ 1

0

dy

∫ 1−y

0

dz
8mN

′µν

(k2 − a2)3
(1.22)

Where the new numerator is:

N
′µν =4(k − p2y + p3z)

µ(k − p2y + p3z)
ν − 2(k − p2y + p3z)

µpν3 + 2pµ2 (k − p2y + p3z)
ν

+ pµ3p
ν
2 − pµ2pν3 + gµν(m2 − p2p3)− gµν(k − p2y + p3z)

2 (1.23)

Knowing that all terms that are lineal in kµ vanish when integrated (kµ is an odd function) we can discard
them from N ′µν , so what we have left is:

N
′µν =4kµkν − gµνk2 + pµ3p

ν
2(1− 4yz) + pµ2p

ν
3(−1− 4yz + 2y + 2z)

+ pµ3p
ν
3(4z2 − 2z) + pµ2p

ν
2(4y2 − 2y) + gµν(m2 − p2p3 + 2p2p3yz) (1.24)

There are a couple terms that are apparently ultraviolet divergent, such as 4kµkν − gµνk2 so we need
to employ dimensional regularization to perform the four-momentum integral. We will also use the same
technique to calculate the finite integrals. The scheme used here is the MS, so we take the identity matrix
trace in D space-time dimensions to be 4 (Tr{ID} = 4). Now let us define the following integral:

J(D,α, β , a2) ≡
∫

dDk

(2π)D
(k2)α

(k2 − a2)β
(1.25)

where D is the number of space-time dimensions. We can easily show that:

J(D,α, β , a2) =
i

(4π)D/2
(a2)D/2(−a2)α−β

Γ(β − α−D/2)Γ(α+D/2)

Γ(β)Γ(D/2)
(1.26)

All terms that do not depend on the four momentum kµ in the numerator give rise to finite integrals, thus
in this case we can directly take D as 4; so J(4, 0, 3, a2) takes the simple form:

J(4, 0, 3, a2) =
−i

32π2

1

a2
(1.27)

Due to Lorentz symmetry, we find the following property:∫
dDk

(2π)D
(k2)αkµkν

(k2 − a2)β
=
gµν

D
J(D,α+ 1, β , a2) (1.28)

Using this property we are now able to integrate the terms 4kµkν − gµνk2 from N ′µν :∫
dDk

(2π)D
4kµkν − gµνk2

(k2 − a2)3
=
( 4

D
− 1
)
gµνJ(D, 1, 3, a2)

=
( 4

D
− 1
)
gµν

i

(4π)D/2
(a2)D/2(−a2)−2 Γ(2−D/2)Γ(1 +D/2)

Γ(3)Γ(D/2)

=
( 4

D
− 1
)
gµν

i

(4π)D/2
(a2)D/2

(D
4

)
Γ(2−D/2) (1.29)

Taking D = 4 + 2ε with ε� 1 we find:( 4

D
− 1
)D

4
= − ε

2

Γ(2−D/2) = Γ(−ε) = −1

ε
− γE +O(ε2) (1.30)
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where γE is the Euler-Mascheroni constant. Substituting this result in our integral the pole of the Gamma
function disappears therefore the ultraviolet divergence disappears. We can now take the limit ε → 0 to
obtain: ∫

dDk

(2π)D
4kµkν − gµνk2

(k2 − a2)3
=

i

32π2
gµν =

i

32π2

a2

a2
gµν (1.31)

We obtain the following expression for Iµν :

Iµν =
8im

32π2

∫ 1

0

∫ 1−y

0

dy dz

−a2
[pµ2p

ν
2(4y2 − 2y) + pµ3p

ν
3(4z2 − 2z) + pµ3p

ν
2(1− 4yz)

+ pµ2p
ν
3(−4yz + 2y + 2z − 1) + gµν(4p2p3yz − p2p3)] (1.32)

Now let us remember that we have considered on-shell gluons, therefore we can apply the transversality
condition to eliminate terms from Iµν , thus keeping in mind that εaµ,rip

µ
i = 0 with i=2,3, then the only

remaining tensorial structure is the following:

Iµν =
8im

32π2

∫ 1

0

∫ 1−y

0

dy dz

−a2
[pµ3p

ν
2(1− 4yz) + gµν(4p2p3yz − p2p3)] (1.33)

Rearranging terms we can write the following:

Iµν =
8im

32π2

∫ 1

0

∫ 1−y

0

dy dz

−a2

[
pµ3p

ν
2 − gµνp2p3

]
(1− 4yz) (1.34)

To simplify our notation let us define the following:∫ 1

0

∫ 1−y

0

dy dz
1− 4yz

−a2
≡ C (1.35)

Now we can write Iµν in a simple compact form:

Iµν =
8im

32π2
C
[
pµ3p

ν
2 − gµνp2p3

]
(1.36)

Finally, we write the transition amplitude M(1):

M(1) = (−i)g2
s

mt

2v
εaµ,r2ε

b
ν,r3δabI

µν (1.37)

second diagram:

H(p1)
k

k − p2

k + p3

g(p2, r2, a)

g(p3, r3, b)

µ

ν

δ′

γ ′

δ
γ

σ

σ

Figure 5: Higgs decay to gluons, second diagram.

The transition amplitude of this second diagram is given by:
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M(2) = (−i)g2
s

m

2v
εaµ,r2ε

b
ν,r3δab

∫
d4k

(2π)4

Tr{γµ(/k +m)γν(/k + /p3
+m)(/k − /p2

+m)}
(k2 −m2)[(k − p2)2 −m2][(k + p3)2 −m2]

(1.38)

Computing the spinor trace, and D in terms of the Feynman parameters we find:

Tr{γµ(/k +m)γν(/k + /p3
+m)(/k − /p2

+m)}
= 4m(pµ3p

ν
2 + 4kµkν + 2kµpν3 − 2pµ2k

ν − pµ2pν3 + gµν(m2 − p2p3 − k2))

≡ 4mMµν (1.39)

and also, the following integral:

Jµν ≡
∫

d4k

(2π)4

∫ 1

0

dy

∫ 1−y

0

dz
8mMµν

[(k − p2y + p3z)2 − a2]3
(1.40)

Performing the parameter shift k → k − p2y + p3z, J
µν takes the form:

Jµν ≡
∫

d4k

(2π)4

∫ 1

0

dy

∫ 1−y

0

dz
8mM

′µν

[k2 − a2]3
(1.41)

with the non zero contributing terms of M ′µν :

M
′µν = pµ2p

ν
2(4y2 − 2y) + pµ3p

ν
3(4z2 − 2z) + pµ3p

ν
2(1− 4yz)

+ pµ2p
ν
3(−4yz + 2y + 2z − 1) + gµν(2p2p3yz +m2 − p2p3)

= N
′µν (1.42)

So we find that Iµν = Jµν , therefore the amplitude of the second diagram is exactly the same as the first
one M(1) =M(2); the total squared amplitude is then given by:

|M|2 = 4|M(1)|2 (1.43)

The sum over spins and gluon colours gives:∑
a,b

δabδab =
∑
a

δaa = 8 ;
∑
r2,r3

εa∗ρ,r2ε
a
µ,r2ε

b∗
σ,r3ε

b
ν,r3 = gµρ gσν (1.44)

We obtain the simple formula:∑
r2,r3

|MH→gg|2 = g4
s

8m2

v2
IµνI∗µν ; IµνI∗µν =

m2 (p2p3)2 |C|2
8π4

(1.45)

The squared amplitude than reads: ∑
r2,r3

|MH→gg|2 = g4
s

m4 (p2p3)2

v2 π4
|C|2 (1.46)

Let’s compute now the integral C explicitly:

C =

∫ 1

0

∫ 1−y

0

dy dz
1− 4yz

−a2
=

∫ 1

0

∫ 1−y

0

dy dz
1− 4yz

2p2p3 yz −m2
=

1

2p2p3

∫ 1

0

∫ 1−y

0

dy dz
1− 4yz

yz − m2

2p2p3

=
1

2p2p3

[
− 2 + (4n− 1)

(
Li2

( −2√
1− 4n− 1

)
+ Li2

( 2√
1− 4n+ 1

))]
≡ 1

2p2p3
D(n) =

n

m2
D(n) (1.47)

9



were we have defined n ≡ m2/2p2p3. Taking the limit limm→0 n D(n) we observe that the result is zero,
therefore, if we consider massless quarks as usual, except for the top quark, we only have one contribution,
as we mentioned at the beginning. Moving on, in the center of mass the four-momenta are given by:

pµ1 = (MH ,~0), pµ2 = (p, ~p), pµ3 = (p,−~p) (1.48)

We can easily find that:

MH = 2p→ p2 =
1

4
M2
H → p2p3 = 2p2 =

1

2
M2
H (1.49)

Therefore we can write the squared transition amplitude as:∑
r2,r3

|MH→gg|2 =
4M4

H

v2

(αs
π

)2

n2 |D(n)|2 (1.50)

The phase space integral is easy to compute:∫
dQ2 =

1

2

∫
1

(2π)2

p

4
√
s
dΩCM =

1

16π
(1.51)

Note that we have included the symmetry factor 1/2 in the phase space integral because this time we are
dealing with identical final state particles. Thus, the decay width of the process is given by (n = m2/M2

H):

Γ(H → gg) =
M3
H

8π v2

(αs
π

)2

n2 |D(n)|2 (1.52)

We can plot now our results to see what we are dealing with. Here we see the branching ratios for the
different Higgs decay channels analyzed till now:

b b

Τ Τ

c c

g g

t t
�

Z Z

W W

100 1000500200 300150 700

1.

0.5

0.1

0.05

0.01

0.005

0.001

MH HGevL

B
rH

H
L

100 1000500200 300150 700

0.01

0.1

1

10

100

MH HGevL

G
HH
L

Figure 6: Higgs branching fractions (left) and Higgs decay rate (right) as functions of MH without including 3-body
decays.

Obviously, this doesn’t look very good. In order to have a better vision of the Higgs decay to weak bosons
we need to also include three body Higgs decays, that is, to one real and one virtual weak boson with the
virtual boson decaying to anything. The first process that we shall consider is H → WW ∗, W ∗ → fu fd
(where fu = u, c, t, e, µ, τ and fd = d, s, b, νe, νµ, ντ ). Using this notation we do not distinguish between
quarks and anti-quarks; fu can be either an up quark or an anti-up quark depending if W is W+ or W−.
The only quark that is heavy enough to make an important contribution due to it’s mass it’s the top quark,
therefore it will be the only one that we shall not consider as massless. Thus, we have the following:

H(p1)→W−(p2)W ∗+, W ∗+ → t(p3)b̄(p4)

The amplitude that we find for this process is:

M(1)
(H→Wtb) =

2M2
W

v
εµr2

(
− gµν +

kµkν
M2
W

) 1

k2 −M2
W

g

2
√

2
Vtb ū

r3
t γ

ν(1− γ5)vr4b (1.53)
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H(~p1)

W−(~p2, r2)

t(~p3, r3)

2M2
W

v

b̄(~p4, r4)

g
2
√
2
Vtb

Figure 7: Three body Higgs decay, first contribution to H →Wqq.

where k = p3 + p4. It’s hermitical conjugate is:

M(1)†
(H→Wtb) =

2M2
W

v
εα∗r2

(
− gαβ +

kαkβ
M2
W

) 1

k2 −M2
W

g

2
√

2
V ∗tb v̄

r4
b γ

β(1− γ5)ur3t (1.54)

Thus, the squared transition amplitude of the process is given by:∑
ri

|M(1)
(H→Wtb)|2 =g2M

4
W

2v2
|Vtb|2

(
− gαµ +

pα2 p
µ
2

M2
W

)(
− gµν +

kµkν
M2
W

)(
− gαβ +

kαkβ
M2
W

)
1

[k2 −M2
W ]2

Tr{( /p3 +mt)γ
ν(1− γ5) /p4γ

β(1− γ5)} (1.55)

We shall break down the calculation of the amplitude in two pieces. The first piece is the spinor trace:

T βν ≡ Tr{( /p3 +mt)γ
ν(1− γ5) /p4γ

β(1− γ5)}
= 8(iεβνρσp3ρp4σ + pβ4p

ν
3 + pβ3p

ν
4 − gβνp3p4) (1.56)

The second piece that we have is:

Gβν ≡
(
− gαµ +

pα2 p
µ
2

M2
W

)(
− gµν +

kµkν
M2
W

)(
− gαβ +

kαkβ
M2
W

)
=− gβν +

1

M2
W

(2kβkν + p2βp2ν) +
1

M6
W

[(kp2)2kβkν ]− 1

M4
W

[kp2(p2βkν + kβp2ν) + k2kβkν ] (1.57)

with:

p2
3 = m2

t = m2 ; p2
4 = m2

b ≈ 0 ; kp3 = m2 + p3p4 ; kp4 = p3p4 (1.58)

Now we will define the Lorentz invariant kinematical variables:

s23 ≡ (p2 + p3)2 = M2
W +m2 + 2p2p3 ; s24 ≡ (p2 + p4)2 = M2

W + 2p2p4

s34 ≡ (p3 + p4)2 = m2 + 2p3p4 (1.59)

These 3 variables are not independent. They satisfy:

s23 + s24 + s34 = M2
H +M2

W +m2 (1.60)

In order to be able to express T βνGβν as a function of sij and the three masses we will need the following
expressions:

p2p3 =
1

2
(M2

H − s24 − s34) ; p2p4 =
1

2
(s24 −M2

W ) ; p3p4 =
1

2
(s34 −m2) (1.61)
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Thus, we can express T βνGβν in the Lorentz invariant form:

T βνGβν = −8m2 − 4M2
H + 4s24 + 8s34 −

m2

M6
W

(m2 − s34)(M2
H − s34)2

+
1

M2
W

(
− 9m4 +m2(4s24 + 5s34 + 4M2

H)− 4s24(s24 + s34 −M2
H)
)

+
2m2

M4
W

(
m2(M2

H + s34) + s34(2s24 − s34)−M2
H(2s24 + s34)

)
(1.62)

And the amplitude for this process is:∑
ri

|M(1)
(H→Wtb)|2 =g2M

4
W

2v2
|Vtb|2

1

[s34 −M2
W ]2

GβνTβν (1.63)

The second process that we need to include here is:

H(p1)→W+(p2)W ∗−, W ∗− → t̄(p3)b(p4)

The squared amplitude of this process brings the same contribution as the one before, therefore, we find
that: ∑

ri

|M(H→Wtb)|2 =g2M
4
W

v2
|Vtb|2

1

[s34 −M2
W ]2

GβνTβν (1.64)

So the decay width of this process is given by the formula:

Γ(H →Wtb) =NC
g2

2v2

M4
W

MH
|Vtb|2

∫
dQ3

GβνTβν
[s34 −M2

W ]2
(1.65)

We must consider now the Lorentz invaraiant three body phase space (1→ 2, 3, 4):

d2Q3 =
1

128π3s
ds34 ds24 (1.66)

with s ≡ (p2 + p3 + p4)2 = M2
H and the following kinematical restrictions:

(m2 +m4)2 6 s24 6 (
√
s−m3)2 ; smin34 6 s34 6 smax34 (1.67)

where smin34 and smax34 are given by:

smin34 =
1

4s24

[
(s−m2

2 −m2
3 +m2

4)2 − (λ1/2(s, s24,m
2
3) + λ1/2(s24,m

2
2,m

2
4))2

]
smax34 =

1

4s24

[
(s−m2

2 −m2
3 +m2

4)2 − (λ1/2(s, s24,m
2
3)− λ1/2(s24,m

2
2,m

2
4))2

]
(1.68)

Applied to our configuration we have:

smin34 =
1

4s24

[
(M2

H −M2
W −m2)2 − (λ1/2(M2

H , s24,m
2) + λ1/2(s24,M

2
W , 0))2

]
smax34 =

1

4s24

[
(M2

H −M2
W −m2)2 − (λ1/2(M2

H , s24,m
2)− λ1/2(s24,M

2
W , 0))2

]
(1.69)

and of course:

M2
W 6 s24 6 (MH −m)2 (1.70)

We shall integrate the differential decay width numerically at the end of this section, when plotting the Higgs
different branching ratios as functions of the Higgs mass.
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The next process that we will consider is important for a low mass Higgs; it is the same process as the
one before but with low mass fermions:

H(~p1)

W−(~p2, r2)

fu(~p3, r3)

2M2
W

v

f̄d(~p4, r4)

g
2
√
2
Vfufd

Figure 8: Three body Higgs decay, second contribution to H →Wqq.

Here fu = u, c, e, µ, τ and fd = d, s, νe, νµ, ντ . Neglecting all fermion masses we find that:

Γ(H →Wfu fd) =
g2

2v2

M4
W

MH

(
3 +NC

∑
qu,qd

|Vquqd |2
)∫

dQ3

G′βνT ′βν
[s34 −M2

W ]2
(1.71)

with a simpler expresion for the tensorial contraction:

G′βνT ′βν = −4M2
H + 4s24 + 8s34 −

4s24

M2
W

(s24 + s34 −M2
H) (1.72)

In this case we have:

smax34 = M2
H +M2

W − s24 −
M2
HM

2
W

s24
; smin34 = 0 ; M2

W 6 s24 6M2
H (1.73)

Integrating with these limits, and introducing the notation x ≡M2
W /M

2
H we obtain the following :∫

dQ3

G′βνT ′βν
[s34 −M2

W ]2
=

1

384π3x
S(x) (1.74)

with S(x) being:

S(x) =47x2 − 60x+ 15− 2

x
− 3(4x2 − 6x+ 1) ln(x)− 6(20x2 − 8x+ 1)

(4x− 1)1/2
arccos

(3x− 1

2x3/2

)
(1.75)

So we finally obtain, for massless fermions (all except the top quark):

Γ(H →Wfu fd) =
g2

v2

3M2
W

256π3
MH S(x) (1.76)

The next process that we will be concerned with is a Higgs decay in a real and a virtual Z boson. We shall
consider, as in the previous section, a massive top quark and all other fermions as massless. So the first
process is:

H(p1)→ Z(p2)Z∗, Z∗ → t(p3)t̄(p4)

13



H(~p1)

Z(~p2, r2)

t(~p3, r3)

2M2
Z

v

t̄(~p4, r4)

e(vt−atγ5)
2cwsw

Figure 9: Three body Higgs decay, first contribution to H → Zqq.

where sw ≡ sinθw and cw ≡ cosθw with θw the weak mixing angle; vt = 1
2 − 4

3s
2
w and af = 1

2 . We have the
following amplitude for this process:

M(H→Ztt̄) =
M2
Z

v

e

cwsw
εµr2

(
− gµν +

kµkν
M2
Z

) 1

k2 −M2
Z

ūr3t γ
ν(vt − atγ5)vr4t (1.77)

where k = p3 + p4. It’s hermitical conjugate is:

M†(H→Ztt̄) =
M2
Z

v

e

cwsw
εα∗r2

(
− gαβ +

kαkβ
M2
Z

) 1

k2 −M2
Z

v̄r4t γ
β(vt − atγ5)ur3t (1.78)

Therefore we find that: ∑
ri

|M(H→Ztt̄)|2 =
M4
Z

v2

e2

c2ws
2
w

T βνGβν
[k2 −M2

Z ]2
(1.79)

with the tensor Gβν the same as in the W case, changing of course, MW with MZ and with T βν given by
(m ≡ mt):

T βν = Tr{γβ(vt − atγ5)( /p3 +m)γν(vt − atγ5)( /p4−m)} (1.80)

Calculating the tensor contaction T βνGβν , introducing the kinematical variables sij and defining x ≡ M2
Z/

M2
H , y ≡ m2/M2

H we obtain:

T βνGβν =− 1

2M4
Hx

3
(((4(9y + 1)x3 + 3y(3y − 4)x2 − 2(y − 2)yx+ y2)M6

H

− (s34(8x3 + (15x+ 2)yx+ 2(x+ 1)y2 + 3y) + 4s24x(x(x+ y + 1)− y))M4
H

+ (y(10x+ y + 6)s2
34 + 4s24x(x− y)s34 + 4s2

24x
2)M2

H − 3s3
34y)a2

+ v2((4(1− 5y)x3 + y(9y + 4)x2 − 2y(y + 2)x+ y2)M6
H

+ (s34(−8x3 + (5x+ 6)yx− 2(x+ 1)y2 + y)− 4s24x(x(x+ y + 1)− y))M4
H

+ (4s24(s24 + s34)x2 + s2
34y

2 − 2s34(3xs34 + s34 + 2s24x)y)M2
H + s3

34y)) (1.81)

We shall also integrate this result numerically when plotting the Higgs branching ratios. For a low mass
Higgs contribution we consider all other fermions as massless, therefore in the previous result we need to set
y = 0, we finally obtain:

T ′βνG′βν =− 1

M2
Hx

2(a2
f + v2

f )(xM4
H − (xs24 + s24 + 2s34x)M2

H + s24(s24 + s34))

where f = u, d, c, s, b, e, µ, τ, νe, νµ, ντ . Integrating over the same interval as in the W case we obtain:∫
dQ3

G′βνT ′βν
[s34 −M2

Z ]2
=

1

768π3x
S(x) (1.82)
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with S(x) being the same as before. We finally obtain, for massless fermions (all except the top quark):

Γ(H → Zff̄) =
e2

c2ws
2
w

M2
Z

1536 v2π3
MH S(x)

∑
f

(a2
f + v2

f ) (1.83)

We have the following values of vf and af :

uj dj νl l

vf
1
2 − 4

3 sin2 θw − 1
2 + 2

3 sin2 θw
1
2 − 1

2 + 2 sin2 θw

af
1
2 - 1

2
1
2 - 1

2

Therefore, performing the sum, we obtain:

∑
f

(a2
f + v2

f ) = NC
∑
j=u,c

(a2
j + v2

j ) +NC
∑

j=d,s,b

(a2
j + v2

j ) + 3(a2
l + v2

l ) + 3(a2
νl

+ v2
νl

)

= 3( 2(a2
u + v2

u) + 3(a2
d + v2

d) + (a2
l + v2

l ) + (a2
νl

+ v2
νl

) )

= 3
(7

2
− 20

3
sin2 θw +

80

9
sin4 θw

)
= 18

( 7

12
− 10

9
sin2 θw +

40

27
sin4 θw

)
≡ 18R(θw) (1.84)

Thus we find the following decay width:

Γ(H → Zff̄) =
g2

v2

3M2
Z

256π3
MH S(x)

R(θw)

cos2 θw
(1.85)

Let’s plot again the Higgs branching ratios including the three body decays described earlier and also the
total Higgs decay width as a function of MH :

W W

Z Z
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1.

0.5
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B
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H
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100 1000500200 300150 700
0.001

0.01

0.1

1
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100

1000

MH HGevL

G
HH
L

Figure 10: Higgs branching fractions (left) and Higgs decay rate (right) as functions of MH including 3-body decays
without including higher order corrections to the W/Z propagator.

As expecteted they behave badly close to the W and Z on-shell region. Therefore we need to include higher
order corrections in order to eliminate the apparently singular behaviour. As we shall prove later, all we
need to do, as a first order approximation, is to include the W/Z total decay width in the W/Z propagator
as it follows: (

− gµν +
kµkν

M2
W/Z

) 1

k2 −M2
W/Z + i

√
sΓW/Z(s)

(1.86)
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We have the following decay widths for the W and the Z boson for massless fermions:

ΓW =
3g2

16π
MW ⇒ ΓW (s) =

3g2

16π

√
s

ΓZ =
3R(θw)g2

8π cos2 θw
MZ ⇒ ΓZ(s) =

3R(θw)g2

8π cos2 θw

√
s (1.87)

Besides this correction for the propagators we shall also include in the Branching Rations plot the two
channels that we have ignored until now, H → γγ and H → γZ [16]. These processes also take place
through loop diagrams, but they have much smaller decay rates because of the e.m. coupling constant
(α << αS).

H

γ

γ γ

γ, Z

γ γ

γ, Z γ, Z γ, Z

γ, Z

W

W W

f f

Figure 11: Diagrams that contribute to the H → γγ and to H → γZ processes.

Thus, putting it all together we find the following:

b b

Τ
+ Τ-

c c

g g

Γ Γ
Γ Z

t t
�
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Figure 12: Higgs branching fractions (left) and Higgs decay rate (right) as functions of MH including 3-body decays
including higher order corrections to the W/Z propagator.

In order to get an even more precise result we would still need to include higher order QCD and EW
corrections. The H → γZ and H → γγ have very small decay width as we mentioned earlier. We can
observe here that for a low mass Higgs the dominating decay channel is H → bb̄ whereas for a high mass
Higgs, the H → WW,ZZ are the dominating ones. Also, as we mentioned before, the H → tt̄ channel
brings important contributions due to the top quark large mass. We can also observe that the total decay
width increases with the Higgs mass. This process becomes very strong above the H → WW production
threshold. By the time MH reaches 800-1000 GeV it’s decay rate becomes very broad, same size or bigger
than it’s mass. A direct measure of the Higgs couplings will be necessary if a Higgs particle is discovered. It
would be necessary to detect it’s decay into several decay channels in order to check if the coupling strength
is proportional to the mass for all massive particles as the standard model predicts. This is probably an
even more difficult task for a Higgs hunter than the actual discovery of a Higgs boson.
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2 Higgs Main Production Channels

We are now in position to analyze three of the most important Higgs production channels at the LHC,
gluon-gluon fusion, weak boson fusion and Higgs-strahlung. We shall start here with the first one, by com-
puting the transition amplitude of the process gg → H through a top triangle loop and afterwards we will
integrate the cross section with the PDFs. The same will be done for the second and third channel.

2.1 Gluon-Gluon Fusion
g(p1)g(p2)→ H(p3):

H(p3)

t

g(p1)

g(p2)

t

t

Figure 13: Gluon-gluon fusion process.

Obviously, this is the same amplitude as in the previous section. Let’s see how the one particle phase space
looks like: ∫

dQ1 = 2π

∫
d3p

2E
δ(4)(Pi − Pf ) = 2πδ(s−M2

H) (2.1)

Therefore we easily find that:

σ(gg → H) =
π2

8MH
Γ(H → gg) δ(s−M2

H) =
M2
H

64 v2

(α2
s

π

)
n2 |D(n)|2 δ(s−M2

H) (2.2)

with n2 = m4/M4
H . Now we move to the next section and calculate the cross section for the next channel.

2.2 Weak Boson Fusion
q(p1)q(p2)→ q(p3)q(p3)H(k):

We have two contributions, one from Z bosons and another one from W bosons. The first one that we
analyze is the W boson fusion which can be achieved in a couple of ways:

di(p1, r1)

ul(p2, r2)

uj(p3, r3)

dm(p4, r4)

H(k)
W (p1 − p3)

W (p2 − p4)

µ

ν

ρ

Figure 14: W boson fusion process, first contribution to qq → qqH.

The amplitude we get is:

M =
2M2

W

v

g2

8
Vij Vlm

(
− g ρ

µ +
k1µk

ρ
1

M2
W

)(
− gνρ +

k2νk2ρ

M2
W

) ūr4Γνur2 ūr3Γµur1
(k2

1 −M2
W )(k2

2 −M2
W )

(2.3)
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Where we have defined the following:

k1 ≡ p1 − p3 ; k2 ≡ p2 − p4 ; Γµ ≡ γµ(1− γ5) (2.4)

Calculating the tensor contraction of the two propagators:

M =
2M2

W

v

g2

8
Vij Vlm

(
gµν −

k1µk1ν + k2µk2ν

M2
W

+
k1µk2ν (k1k2)

M4
W

) ūr4Γνur2 ūr3Γµur1
(k2

1 −M2
W )(k2

2 −M2
W )

(2.5)

It’s hermitical conjugate gives:

M† =
2M2

W

v

g2

8
V ∗ij V

∗
lm

(
gαβ −

k1αk1β + k2αk2β

M2
W

+
k1αk2β (k1k2)

M4
W

) ūr1Γαur3 ūr2Γβur4
(k2

1 −M2
W )(k2

2 −M2
W )

(2.6)

In order to keep the notation simple we define the folowing quantities:

b ≡ 2M2
W

v

g2

8
; Dij ≡ (k2

i −M2
W )(k2

j −M2
W ) ; T ijαβ ≡

(
gαβ −

kiαkiβ + kjαkjβ
M2
W

+
kiαkjβ (kikj)

M4
W

)
(2.7)

Therefore, with this new notation we have:

M =
b

D12
Vij Vlm T

12
µν ūr4Γνur2 ūr3Γµur1 ; M† =

b

D12
V ∗ij V

∗
lm T

12
αβ ūr1Γαur3 ūr2Γβur4 (2.8)

The squared averaged transition amplitude that we obtain is:∑
|M|2 ≡ N2

C

4N2
C

∑
ri

|M(1)|2 =
b2

4 (D12)2
|Vij |2 |Vlm|2 T 12

µν T
12
αβ G

αµβν (2.9)

Where we have defined:

Gαµβν ≡ Tr{Γα /p3Γµ /p1}Tr{Γβ /p4Γν /p2} (2.10)

Calculating the spinor trace and the remaining tensor contraction we find:

Gαµβν = 64(−iεαµγρp1,γp3,ρ + pα3 p
µ
1 + pα1 p

µ
3 − gαµ(p1p3))(−iεβντξp2,τp4,ξ + pβ4p

ν
2 + pβ2p

ν
4 − gβν(p2p4))

T 12
µν T

12
αβ G

αµβν = 256(p1 · p2)(p3 · p4) (2.11)

The final expression for the squared matrix amplitude is:∑
|Mdiul→ujdmH |2 =

64M8
W

v6
|Vij |2 |Vlm|2

(p1 · p2)(p3 · p4)

[(p1 − p3)2 −M2
W ]2 [(p2 − p4)2 −M2

W ]2
(2.12)

The next diagram that we can include here is:

di(p1, r1)

d̄l(p2, r2)

uj(p3, r3)

ūm(p4, r4)

H(k)
W (p1 − p3)

W (p2 − p4)

µ

ν

ρ

Figure 15: W boson fusion process, second contribution to qq → qqH.
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In order to obtain this amplitude we only have to change the spinor trace for:

G′αµβν =
∑
ri

ūr1Γαur3 v̄r4Γβur2 ūr2Γνvr4 ūr3Γµur1 = Tr{Γα /p3Γµ /p1}Tr{Γβ /p2Γν /p4} (2.13)

Calculating the spinor trace we obtain:

G′αµβν = 64(−iεαµγρp1,γp3,ρ + pα3 p
µ
1 + pα1 p

µ
3 − gαµ(p1p3))×

(+iεβντξp2,τp4,ξ + pβ4p
ν
2 + pβ2p

ν
4 − gβν(p2p4)) (2.14)

The tensor contraction then gives:

T 12
µν T

12
αβ G

′αµβν = 256(p1 · p4)(p2 · p3) (2.15)

Thus, in this case we find a similar cross section:∑
|Mdid̄l→uj ūmH |2 =

64M8
W

v6
|Vij |2 |Vlm|2

(p1 · p4)(p2 · p3)

[(p1 − p3)2 −M2
W ]2 [(p2 − p4)2 −M2

W ]2
(2.16)

We now analyze the diagrams corresponding Z boson fusion. We shall see that for this process there are a
lot more diagrams that contribute then the ones coming from W fusion. The interference between Z and W
diagrams is less than 1 %, so we can neglect it [16]. What we have left is:

q(p1, r1)

q′(p2, r2)

q(p3, r3)

q′(p4, r4)

H(k)
Z(p1 − p3)

Z(p2 − p4)

µ

ν

ρ

Figure 16: Z boson fusion process, third contribution to qq → qqH.

The scattering amplitude and its hermitical conjugate is:

M =
2M2

Z

v

e2

4 c2θw s2θw

(
− g ρ

µ +
k1µk

ρ
1

M2
Z

)(
− gνρ +

k2νk2ρ

M2
Z

) ūr4Γ′νur2 ūr3Γµur1
(k2

1 −M2
Z)(k2

2 −M2
Z)

M† =
2M2

Z

v

e2

4 c2θw s2θw

(
gαβ −

k1αk1β + k2αk2β

M2
Z

+
k1αk2β (k1k2)

M4
Z

) ūr1Γαur3 ūr2Γ′βur4
(k2

1 −M2
Z)(k2

2 −M2
Z)

(2.17)

where we have defined

Γµ ≡ γµ(vq − aqγ5) ; Γ′β ≡ γβ(vq′ − aq′γ5) (2.18)

We easily obtain the following result:∑
|Mqq′→qq′H |2 =

M4
Z

2v2

e4

c4θw s4θw

(p1 · p4)(p2 · p3) Cqq′ + (p1 · p2)(p3 · p4) Dqq′

[(p1 − p3)2 −M2
W ]2 [(p2 − p4)2 −M2

W ]2
(2.19)

with Cqq′ = (a2
q′ + v2

q′)(a
2
q + v2

q )− 4aqaq′vqvq′ and Dqq′ = (a2
q′ + v2

q′)(a
2
q + v2

q ) + 4aqaq′vqvq′ .
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The next contribution comes from the following process:

q(p1, r1)

q̄ ′(p2, r2)

q(p3, r3)

q̄ ′(p4, r4)

H(k)
Z(p1 − p3)

Z(p2 − p4)

µ

ν

ρ

Figure 17: Z boson fusion process, fourth contribution to qq → qqH.

with q 6= q′. Again, it’s easy to find the squared transition amplitude for this process:∑
|Mqq̄′→qq̄′H |2 =

M4
Z

2v2

e4

c4θw s4θw

(p1 · p4)(p2 · p3) Dqq′ + (p1 · p2)(p3 · p4) Cqq′

[(p1 − p3)2 −M2
W ]2 [(p2 − p4)2 −M2

W ]2
(2.20)

If q = q′ we have an additional diagram that contributes to the process:

q(p1, r1)

q̄ (p2, r2)

q(p3, r3)

q̄ (p4, r4)

H(k)
Z(p1 − p3)

Z(p2 − p4)

µ

ν

ρ

q(p1, r1)

q̄ (p2, r2)

q(p3, r3)

q̄ (p4, r4)

H(k)

+

Z(p1 + p2) Z(p3 + p4)

µ ρ ν

Figure 18: Z boson fusion process, fifth and sixth contributions to qq → qqH.

The first diagram is easy to compute by setting vq = v′q and aq = a′q for the last process:

∑
|M(1)|2 =

M4
Z

2v2

e4

c4θw s4θw

(p1 · p4)(p2 · p3) (a4
q + 6v2

qa
2
q + v4

q ) + (p1 · p2)(p3 · p4) (a2
q − v2

q )2

[(p1 − p3)2 −M2
W ]2 [(p2 − p4)2 −M2

W ]2
(2.21)

The second digram gives the following contribution:

M(2) =
2M2

Z

v

e2

4 c2θw s2θw

(
− g ρ

µ +
k′1µk

′ρ
1

M2
Z

)(
− gνρ +

k′2νk
′
2ρ

M2
Z

) v̄r2Γµur1 ūr3Γνvr4
[(p1 + p2)2 −M2

Z ] [(p3 + p4)2 −M2
Z ]

M†(2) =
2M2

Z

v

e2

4 c2θw s2θw

(
− g ρ

α +
k′1αk

′ρ
1

M2
Z

)(
− gβρ +

k′2βk
′
2ρ

M2
Z

) v̄r4Γβur3 ūr1Γαvr2
[(p1 + p2)2 −M2

Z ] [(p3 + p4)2 −M2
Z ]

(2.22)

where we have defined k′1 = p1 + p2 and k′2 = p3 + p4. The squared amplitude of the second diagram,
therefore, reads:∑

|M(2)|2 =
M4
Z

2v2

e4

c4θw s4θw

(p1 · p4)(p2 · p3) (a4
q + 6v2

qa
2
q + v4

q ) + (p1 · p3)(p2 · p4) (a2
q − v2

q )2

[(p1 + p2)2 −M2
W ]2 [(p3 + p4)2 −M2

W ]2
(2.23)

We shall not write down the contribution coming from the crossed term because it’s a very large term.
In order to compute this term we would need numerical integration procedures for the three body phase
space and also for the convolution with the PDFs. We shall use the data from [18, 19] in order to plot the
Weak-Boson Fusion cross section in the next section.
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There is another process that also contributes to this production channel that we need to include in our
discussion:

+

q(p1, r1)

q (p2, r2)

q(p3, r3)

q (p4, r4)

H(k)
Z

Z

q(p1, r1)

q (p2, r2)

q(p3, r3)

q (p4, r4)

H(k)
Z

Z

Figure 19: Z boson fusion process, last two contributions to qq → qqH.

Again, these diagrams have the same problem with a very large cross term. We move on now and calculate
the cross section for the next Higgs production channel.

2.3 Higgs-strahlung
q(p1)q(p2)→ H(p3) W,Z(p4):

The first process that we shall analyze is the one corresponding to a Z boson production and a radiated
Higgs:

q̄i(p1, r1)

qi(p2, r2)

Z∗(p3 + p4)

Z(p3)

H(p4)

Figure 20: Higgs-strahlung, first diagram.

defining k ≡ p1 + p2 = p3 + p4, the scattering amplitude that we find for this first process and it’s hermitical
conjugate read:

Mq̄iqi→HZ =
2M2

Z

v

e

2cθwsθw
ενr3 v̄r1γ

µ(vqi − aqiγ5)ur2

(
− gµν +

kµkν
M2
Z

) 1

k2 −M2
Z

M†q̄iqi→HZ =
2M2

Z

v

e

2cθwsθw
εβ∗r3 ūr2γ

α(vqi − aqiγ5)vr1

(
− gαβ +

kαkβ
M2
Z

) 1

k2 −M2
Z

(2.24)

Therefore we find the following squared transition matrix:∑
r1,r2

|Mq̄iqi→HZ |2 =
e2M4

Z

v2 c2θws
2
θw

εβ∗r3 ε
ν
r3

(
− gµν +

kµkν

M2
Z

)(
− gαβ +

kαkβ
M2
Z

)
1

[k2 −M2
Z ]2

Tr{γα(vqi − aqiγ5) /p1γ
µ(vqi − aqiγ5) /p2} (2.25)

Calculating the spinorial trace an performing the tensor contraction we obtain the simple result:∑
|Mq̄iqi→HZ |2 ≡

1

4N2
C

∑
ri

NC |Mq̄iqi→HZ |2 =
1

NC

e2M2
Z

v2 c2θws
2
θw

a2
qi + v2

qi

[k2 −M2
Z ]2

(p1p2M
2
Z + 2(p1p3)(p2p3))

(2.26)
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In the partonic center of mass frame we have the following:

pµ1 = (p, ~p) ; pµ2 = (p,−~p) ; pµ3 = (EZ , ~p
′) ; pµ4 = (EH ,−~p ′) . (2.27)

Therefore we find the following results:

→ p1p2 = 2p2 = s/2 ; p1p3 = pEZ − ~p~p ′ = pEZ − pp′ cos θ ; p2p3 = pEZ + ~p~p ′ = pEZ + pp′ cos θ .

→ 2(p1p3)(p2p3) = 2(p2E2
Z − p2p′2 cos2 θ) = 2p2(M2

Z + p′2 − p′2 cos2 θ) = 2p2(M2
Z + p′2 sin2 θ)

→ p1p2M
2
Z + 2(p1p3)(p2p3) =

sM2
Z

2
+
s

2
(M2

Z + p′2 sin2 θ) = sM2
Z +

s

2
p′2 sin2 θ (2.28)

The 2-body phase space does not depend on φ thus:

dQ2 =
1

2π

p′

4
√
s
d cos θ (2.29)

Integrating we obtain: ∫
dQ2 (p1p2M

2
Z + 2(p1p3)(p2p3)) =

s p′

4π
√
s

(M2
Z +

1

3
p′2) (2.30)

Knowing that p′ can be written as p′ = λ1/2(s,M2
Z ,M

2
H)/(2

√
s) and doing all the simplifications we get to

the following:

σ(q̄iqi → HZ) =
M4
Z λ1/2 (s,M2

Z ,M
2
H)

144π s2 v4

λ(s,M2
Z ,M

2
H) + 12sM2

Z

[s−M2
Z ]2

(a2
qi + v2

qi) (2.31)

The second process that we shall analyze corresponds to a W+ boson production and a radiated Higgs:

f̄d(p1, r1)

fu(p2, r2)

W+(p3 + p4)

W+(p3)

H(p4)

Figure 21: Higgs-strahlung, second diagram.

Here we have defined k ≡ p1 + p2 = p3 + p4 and fu = u, c, fd = d, s, b massless as in the previous sections;
the scattering amplitude that we find for this first process and it’s hermitical conjugate read:

Mf̄dfu→HW+ =
2M2

W

v

g

2
√

2
ενr3 v̄r1γ

µ(1− γ5)ur2

(
− gµν +

kµkν
M2
W

) Vf̄ufd
k2 −M2

W

M†
f̄dfu→HW+ =

2M2
W

v

g

2
√

2
εβ∗r3 ūr2γ

α(1− γ5)vr1

(
− gαβ +

kαkβ
M2
W

) V ∗
f̄ufd

k2 −M2
W

(2.32)

Therefore we find the following squared transition matrix:∑
r1,r2

|Mf̄dfu→HW+ |2 =
g2M4

W

2v2
εβ∗r3 ε

ν
r3

(
− gµν +

kµkν
M2
W

)(
− gαβ +

kαkβ
M2
W

)
|Vf̄ufd |2

[k2 −M2
W ]2

Tr{γα(1− γ5) /p1γ
µ(1− γ5) /p2} (2.33)
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Again, calculating the spinorial trace an performing the tensor contraction we obtain a simple result:

∑
|Mf̄dfu→HW+ |2 ≡ 1

4N2
C

∑
ri

NC |Mf̄dfu→HW+ |2 =
1

NC

g2M2
W

v2

|Vf̄ufd |2
[k2 −M2

W ]2
(p1p2M

2
W + 2(p1p3)(p2p3))

(2.34)

In the partonic center of mass frame we have the same as before; the only thing we need to do is substitute
MZ for MW . Therefore we obtain the following cross section:

σ(f̄dfu → HW+) =
M4
W λ1/2 (s,M2

W ,M
2
H)

144π s2 v4

λ(s,M2
W ,M

2
H) + 12sM2

W

[s−M2
W ]2

|Vf̄ufd |2 (2.35)

The second process that contributes to a W production corresponds to a W− and a radiated Higgs giving
the same contribution as the one calculated before for a W+. The total cross section is then given by:

σ(q̄iqj → HW ) = σ(f̄dfu → HW+) + σ(fdf̄u → HW−) = 2σ(fdf̄u → HW−) = 2σ(f̄dfu → HW+) (2.36)

2.4 Parton Distribution Functions and Integrated Cross Sections

The basic assumption of the partonic model is that all known hadrons are composed by partons, point-
like particles which can be quarks or gluons. For example, as we all know, a proton, at low energies appears
to be made out of two up quarks and one down quark which we shall call the valence quarks. However, deep
inelastic scattering experiments show that at higher energies, besides the valence quarks, we can find other
quarks, antiquarks and gluons inside the proton. This can be easily interpreted; at high enough energies any
virtual gluon can become a quark-antiquark pair:

q

q

g

q

q̄

Figure 22: Pair production by a virtual gluon inside a proton.

This gives rise to the parton distribution functions which are scale dependent. Using the MSTW PDFs
database (http://projects.hepforge.org/mstwpdf/) we can make the following example plots (Fig. 23) for
µ2= 10 GeV2 and µ2= 104 GeV2 hadronic center of mass energy at NNLO, with µ being the PDFs energy
scale, also known as the factorization scale. If we also wish to include the errors then we obtain Fig. 24.
Note that our plots are slightly different from the ones found in the MSTW website, and it is because they
use different confidence levels (the 68% CL instead of 95% CL sets that we use). The PDFs scale that we
are going to use here is µ = MH which goes from 100 GeV to 1000 TeV. Another interesting thing that we
should learn here is that there is no top quark inside a proton at these energy scales; that is why in previous
scattering processes like (q q′ → anything) we have never considered a possible top quark. The plot from
Fig. 25 shows the top and bottom PDFs as a function of the momentum fraction x and the scale µ.
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Figure 23: Parton Distribution Functions at two energy scales without including errors.
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Figure 24: Parton Distribution Functions including errors.

200
400

600
800

1000

Μ HGeVL

-8
-6

-4

-2

0

log 10HxL

-1.0

-0.5

0.0

0.5

1.0

x × topHxL

200
400

600
800

1000

Μ HGeVL

-8

-6

-4

-2

0

log 10HxL

0

20

40

60

80

x × bottomHxL

Figure 25: Top (left) and bottom (right) distribution functions as functions of MH and the energy scale µ.

The first process that we shall convolute with the PDF’s is the gluon-gluon fusion process. In the hadonic
center of mass the process can be visualised like this:

P1

P2

x1P1

x2P2

g(x1, µ)

g(x2, µ)

Figure 26: Partonic model of the gluon-gluon scattering process.
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The two colliding protons carry momenta P1 and P2, thus, a gluon from the first proton with momentum
pg1 = x1P1 is scattered by another gluon with momentum pg2 = x2P2 from the second proton. x1 and x2 are
called momentum fractions and 0 6 x1,2 6 1; g(xi, µ) are the parton distribution functions for the gluons.
They represent the probability density of finding a gluon with momentum pgi inside a proton that carries a
momentum Pi at a enegy scale µ. Let’s relate now the parton center of mass frame (PCM) with the hadronic
center of mass (HCM). We are going to plot the cross section for very high HCM energies so we can consider
the proton as massless. Therefore in the HCM frame we can write:

Pµ1 = (p,−~p) ; Pµ2 = (p, ~p) ⇒ S = (P1 + P2)2 = 2P1P2 = 4p2 (2.37)

Thus we can easily relate s with S:

s = (pg1 + pg2)2 = (x1P1 + x2P2)2 = x1x2S ≡ τS (2.38)

Let us also define the following quantity: τ0 ≡ M2
H/S. Let’s also remember how the cross section in the

PCM frame looked like (from now on we shall write all the cross sections calculated in the PCM as σ̂):

σ̂(gg → H) =
M2
H

64 v2

(α2
s

π

)
n2 |D(n)|2 δ(s−M2

H) (2.39)

Let’s express the Dirac delta function in terms of x1, x2 and τ0:

δ(s−M2
H) = δ(x1x2S −M2

H) = δ(x1S (x2 −
M2
H

x1S
) ) =

1

x1S
δ(x2 −

τ0
x1

) (2.40)

The total integrated cross section is given by the expression:

σ(gg → H) =

∫
dx1

∫
dx2 g(x1, µ) g(x2, µ) σ̂(gg → H)

=
n2

64 v2

(α2
s

π

)
|D(n)|2

∫
dx1

∫
dx2 g(x1, µ) g(x2, µ)

τ0
x1

δ(x2 −
τ0
x1

)

=
n2 τ0
64 v2

(α2
s

π

)
|D(n)|2

∫ 1

τ0

dx1

x1
g(x1, µ) g(τ0/x1, µ) (2.41)

This cross section is to be integrated numerically. The following plot shows the dependence of σ(gg → H)
with the Higgs mass at three different HCM energies,

√
S = 1.96 , 7 and 14 TeV. As expected, the LHC

cross section at
√
S=14 TeV is the dominating one. It reaches σ ≈ 30 pb for a 100 GeV Higgs mass. The

cross section at
√
S = 7 TeV is approximately three times lower and finally the one corresponding to the

Tevatron energy is very low, more than one order of magnitude smaller. The bump in the cross section is
originated by the imaginary part of D(n) which becomes non-zero at MH = 2mt.
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Figure 27: Gluon-gluon fusion cross section at
√
S = 7 and 14 TeV for pp collisions at the LHC and at

√
S = 1.96

TeV for pp̄ collisions at Tevatron.
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The second process that we analyze is the Higgs-strahlung process. The total hadronic cross section for
the HW case takes this form:

σ(q̄q → HW ) =
∑
f̄d,fu

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2

(
f̄d(x1, µ) fu(x2, µ) + f̄d(x2, µ) fu(x1, µ)

)
σ̂(f̄dfu,→ HW+)

+
∑
f̄u,fd

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2

(
f̄u(x1, µ) fd(x2, µ) + f̄u(x2, µ) fd(x1, µ)

)
σ̂(f̄ufd,→ HW−) (2.42)

with the kinematical restrictions σ̂(s) = σ̂(x1x2S) and τ0 = (MH + MW )2/S. Integrating σ̂ for the same
three different values of S as in the previous example, and plotting it as a function of MH we find the
following:
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Figure 28: qq → WH cross section at
√
S = 7 and 14 TeV for pp collisions at the LHC and at

√
S = 1.96 TeV for

pp̄ collisions at Tevatron.

As for the HZ process, we have the following:

σ(q̄q → HZ) =
∑
i

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2

(
q̄i(x1, µ) qi(x2, µ) + q̄i(x2, µ) qi(x1, µ)

)
σ̂(q̄iqi,→ HZ) (2.43)

We do the same plot for this cross section:
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Figure 29: qq → ZH cross section at
√
S = 7 and 14 TeV for pp collisions at the LHC and at

√
S = 1.96 TeV for

pp̄ collisions at Tevatron.

As we mentioned before, we shall also include here the Weak Boson Fusion integrated cross section at the
same three different energies. Using [18, 19] we find the following cross sections:
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Figure 30: qq → Hqq cross section at
√
S = 7 and 14 TeV for pp collisions at the LHC and at

√
S = 1.96 TeV for

pp̄ collisions at Tevatron.

Therefore, we can now plot the cross sections as a function of the Higgs mass for the three different center
of mass energies, 7 and 14 TeV for the LHC pp collision and 1.96 Tev for the Tevatron pp̄ collision. For the
Tevatron at 1.96 TeV hadronic center of mass energy we find:

ΣH gg ® H L

ΣH qq ® WH L

ΣH qq ® ZH L

ΣH qq ® Hqq L
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Figure 31: Tevatron main Higgs production channels at
√
S = 1.96 TeV.

For the LHC at 7 and 14 TeV hadronic center of mass energy we find:
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Figure 32: LHC main Higgs production channels at
√
S = 14 TeV (left) and at

√
S = 7 TeV (right).

We can see that in all three cases the dominating production channel is the gluon-gluon fusion. It is at least
one order of magnitude higher than al the others. The distance between this channel and Higgs-strahlung
channels gets higher as the Higgs mass increases. This is not the case for weak boson fusion channel.
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At MH ∼ 700 -1000 GeV, gg → H and qq →W/ZH get very close. However, a SM Higgs mass this high is
not so probable based on the latest electroweak precision fits that we shall talk about in section 4. A natural
question now arises. Are these LO cross sections precise enough? How badly do they get modified by higher
order QCD and EW corrections? Let’s consider for instance the gluon fusion channel. At higher orders we
find a lot more diagrams that contribute to the process (Fig.33).

Figure 33: Some NLO and NNLO diagrams that contribute to the gg → H process.

Contributions are known up to NNLO for QCD and NLO for EW theory. Using the data from [18] we can
actually plot the cross section including these higher order corrections (σHO) and compare it with our LO
cross section (σLO) at, for example,

√
S = 14 TeV.
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Figure 34: LO and NNLO gg → H cross sections as functions of MH at
√
S= 14 TeV.

We can observe that σHO is ∼ 3 times bigger than σLO. In order to quantify the enhancement of the
cross section due to higher order corrections it is usual to define the K-factor: K ≡ σHO/σLO. Therefore, K
depends on MH and is ∼ 2-3 at NNLO for the gluon fusion channel. As we can see, we need a good knowledge
of this factor in order to give a precise prediction of the cross sections. We can take another example and
see that in general this factor is very important and can be very peculiar. For the Higgs-strahlung channel
we find [16]:

Figure 35: K - factor as function of MH including NNLO QCD and NLO EW corrections.
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So, not only is important to know the QCD corrections but also the EW ones. In this example, the NLO
EW corrections change a little bit the behaviour of the K-factor; they reduce the enhancement produced by
the NNLO QCD corrections and two peaks appear for the W and Z on-shell regions. If we ignore the two
peaks the difference between them is less than 0.1. But the interesting fact is that these corrections can,
at least partially, cancel each other (if we consider the fermionic contributions negative then the bosonic
ones are positive, therefore a cancellation occurs). A comparison plot is shown bellow for all the channels
discussed here.
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Figure 36: LHC main Higgs production channels at
√
S = 14 TeV at LO (left) and including all known higher order

corrections (right).
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2.5 Fourth generation SM extension (SM4)

It has been experimentally established that there are at least three generations of leptons and quarks.
This is, in fact, one of the basic assumptions of the SM. However, there is no reason to believe that there
couldn’t be more generations not yet discovered. The simplest model that includes a fourth generation is
the extended Standard Model (SM4). Experiments like LHC and Tevatron are looking for fourth generation
leptons. Until now there hasn’t been found any trace of these new particles, therefore, this allows us to
establish lower mass limits for the fermions [12, 13]:

mν4 > 80.5 - 101.5 GeV ; ml4 > 100.8 GeV ; mb4 > 372 GeV ; mt4 > 335 GeV .

An upper limit due to unitarity for t4 is close to 500 GeV, however, we are not interested in the upper limits
here. We shall consider minimum t4 and b4 masses in order to see the minimum effect that produces the
presence of the fourth generation in the SM. As we have seen in the previous section, the dominating Higgs
production channel is by far the gluon-gluon fusion. Let’s first see how this channel gets modified when we
introduce a fourth generation quarks with their minimum masses:

S = 7 TeV
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SM

100 1000500200 300150 700
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Figure 37: Gluon fusion cross section at
√
S = 7 TeV for SM4 and SM as functions of MH .

Because of the imaginary part of the form factor D(n) we now find three bumps in the cross section. This
globally makes the σSM4 become way bigger than the one predicted by the SM. Let’s define the quotient
R ≡ σ(gg → H)SM4/σ(gg → H)SM and plot it as a function of the Higgs mass. We obtain the following
result:
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Figure 38: R quotient as a function of MH .
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We observe that it starts with a value of 9 approximately for 100 GeV Higgs mass, it reaches a minumum
of about 4 for 400-500 GeV Higgs mass and afterwards it increases very rapidly. Let’s compare this plot
with the latest experimental results presented at the International Europhysics Conference on High Energy
Physics in Grenoble, France, this year in July. If we take a look at the combined results on SM Higgs search
with the CMS detector we find the following plot [15]:

Figure 39: Experimental limit on σ95%/σSM as a function of MH including statistical errors.

Here σ95% is the observed cross section with 95% confidence level. We can see that close to 100-110 GeV
for the Higgs mass, it reaches values close to SM4 predictions so we can not draw any clear conclusion in
that region. However, we can safely discard a fourth generation in the 120 - 600 GeV region. There the
value of σ95%/σSM stays way lower than one, therefore it stays far away from the minimum value of the
SM4 prediction, which is ≈ 4. This next plot confirms our conclusion [15]:

Figure 40: Experimental limit on σ95%/σSM4 as a function of MH including statistical errors.

Here we can see the quotient σ95%/σSM4 as a function of MH . We can see that in the region we mentioned
above it stays bellow 1. Therefore we can safely exclude a fourth generation SM for a MH in between 120
and 600 GeV.
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3. Higgs Mass Renormalization

Let us consider only the pieces of the electroweak lagrangian that we wish to renormalize in terms of
bare parameters. We have the following terms:

L(x) =
1

2
∂µH0∂

µH0 −
1

2
M2

0H
2
0 −

M2
0

2v
H3

0 + LkinW + LkinZ

+
2M2

W

v
W †µW

µH0 +
M2
Z

v
ZµZ

µH0 −
m

v
H0f̄f (3.1)

where the terms with index 0 are the bare parameters and the terms with the kin upper index are the
kinetic terms corresponding to the W and Z fields. Note that the weak boson fields W and Z do not
carry 0 index because here we are not considering their renormalization, but only the Higgs mass and field
renormalization. Now let’s consider the one-loop self-energy diagrams that will contribute to the Higgs field
and mass renormalization:

q

W, Z Ht

= + +

iΠ(q2)

1PI

++ +

++

Figure 41: One particle irreducible (1PI) diagrams contributing to Higgs one loop renormalization.

This reads:

iΠ(q2) = iΠ(t)(q2) + iΠ(W1)(q2) + iΠ(Z1)(q2) + iΠ(H1)(q2) + iΠ(W2)(q2) + iΠ(Z2)(q2) + ... (3.2)

We will be working in the unitary gauge, thus, we have no goldstone bosons besides the physical Higgs, nor
ghosts to deal with. The one loop diagrams Π(q2) can be split in two pieces, one that contains the Gamma
pole 1/ε and another one that is free of ultraviolet divergences:

Π(q2) = Πε(µ) + ΠR(q2, µ2) (3.3)

In order to renormalize the Higgs propagator we shall perform the Dyson summation of one particle irre-
ducible (1PI) one-loop diagrams:

= + + .....1PI 1PI 1PI+

Figure 42: Renormalization using Dyson summation.

This reads:

iS(q2) = iS(0)(q2) + iS(0)(q2)iΠ(q2)iS(0)(q2) + ...

S(q2) = S(0)(q2)− S(0)(q2)Π(q2)S(0)(q2) + ... (3.4)
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Writing the scalar field propagators explicitly we have:

S(q2) =
1

q2 −M2
0

− Π(q2)

[q2 −M2
0 ]2

+ ... =
1

q2 −M2
0 + Π(q2)

(3.5)

We follow the standard procedure to relate the non-renormalized propagator S(q2) with the renormalized
one SR(q2):

S(q2) =
1

q2 −M2
0 + Π(q2)

≡ Z1SR(q2) =
Z1

q2 −M2 + ΠR(q2, µ2)
(3.6)

M is the renormalised Higgs mass and we define it the following way:

M2 ≡M2
0 + δM2 = Z1 Z

−1
2 M2

0 ⇒ M2
0 = Z−1

1 Z2M
2 (3.7)

Using the relation between the T-ordered product and the propagator we find H0 = Z
1/2
1 H. Now we can

write the initial lagrangian in terms of the renormalized quantities. We have the following:

L(x) = Z1
1

2
∂µH∂

µH − Z2
1

2
M2H2 − Z2Z

1/2
1

M2

2v
H3 + LkinW + LkinZ

+ Z
1/2
1

2M2
W

v
W †µW

µH + Z
1/2
1

M2
Z

v
ZµZ

µH + Z
1/2
1

m

v
Hf̄f (3.8)

This lagrangian is now expressed in terms of the renormalized physical parameters and is free of ultraviolet
divergences. Therefore, in our Feynman diagrams we must switch the bare Higgs propagator with the
renormalized one:

q
→ i

q2 −M2 + ΠR(q2)

Let’s take a closer look at the denominator:

i

q2 −M2 + ΠR(q2)
=

i

q2 −M2 +Re{ΠR(q2)}+ i Im{ΠR(q2)} (3.9)

If we ignore, as a first order approximation, the real part of ΠR(q2) then, what we have left is the imaginary
part, which, carries away the propagator’s pole from the real to the complex plane. If we refer to the cross
section, this will be proportional to the squared complex modulus of the propagator, which, no longer goes to
infinity nowhere in the real plane. Thus, only by computing the imaginary parts of the self-energy diagrams
we obtain a well behaved, physical cross section. There is an easy way to obtain the imaginary part of
iΠ(q2), without having to calculate it explicitly, by using the Optical Theorem:

3.1 Optical Theorem:

We know that the scattering operator S can be written as S = I − iM, also that unitarity garanties that
S†S = I. Therefore, we can write the following:

S†S = (I + iM†)(I − iM) = I − iM+ iM† +M†M (3.10)

Thus, we obtain:

i(M−M†) =M†M (3.11)

Now, let’s analyze the transition between a initial state |i〉 and a final state |f〉:

i〈f |M−M†|i〉 = 〈f |M†M|i〉 with 〈f |M|i〉 = (2π)4δ(4)(Pf − Pi)Mi→f (3.12)
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If we introduce the closure relation in between M† and M we get:

i〈f |M−M†|i〉 =
∑̃
n

〈f |M†|n〉〈n|M|i〉 (3.13)

where |n〉 is a complete basis of orthogonal states and
∑̃
n is defined as:

∑̃
n

≡
∑
n

1

(2π)3nj

∫ nj∏
l=1

d3pl
2El

(3.14)

with nj the number of particles in the state |n〉 (we can also consider a sum over final spin states, colours
etc.). Let’s suppose that the initial and final states are the same:

〈i|M†|n〉〈n|M|i〉 = 〈n|M|i〉†〈n|M|i〉 =
(

(2π)δ(4)(Pi − Pn)
)2

|Mi→n|2 (3.15)

Thus, we obtain the standard form of the Optical Theorem:

−2Im(Mi→i) =
∑
n

1

(2π)3nj−4

∫ nj∏
l=1

d3pl
2El

δ(4)(Pi − Pn)|Mi→n|2 (3.16)

If the initial state is a two particle state, then we are dealing with elastic scattering and the theorem takes
the form:

−2Im(
∑
Mi→i) = 2λ1/2(s,m2

a,m
2
b)
∑
n

σ(a+ b→ n) = 2λ1/2 σ(a+ b→ all) (3.17)

If the initial state is a one particle state, we are dealing with self energy diagrams therefore:

−2Im(
∑
Mi→i) = 2Ma

∑
n

Γ(a→ n) = 2Ma Γ(a→ all) (3.18)

If we apply this to one of our Higgs self energy diagrams, (with no tadpoles) the theorem tells us:

∼

2

Im

Figure 43: Diagrammatic representation for the Optical Theorem.

This justifies the modification that we made in the W and Z propagators (1.86) when we were analyzing the
Higgs main decay channels. The next section will be dedicated to the calculation of the Higgs self-energy
diagrams one by one.
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3.2 Self Energy diagrams

Now we can proceed to calculate the Higgs self-energy diagrams, one by one, in order to obtain the
needed quantum correction for the cross section.

Higgs self-energy first diagram:

H(q)

k + q

k

Figure 44: Higgs self-energy contribution coming from the top quark.

iΠ(t)(q2) ≡ −NC
m2

v2

∫
dDk

(2π)D
Tr{(/k + /q +m)(/k +m)}
(k2 −m2)[(k + q)2 −m2]

(3.19)

Spinor trace in D dimensions:

Tr{(/p+ /q +m)(/k +m)} = 4(k2 +m2 + kq) (3.20)

Feynman parametrization of the propagator:

1

AB
=

∫ 1

0

dx
1

[Ax+B(1− x)]2
(3.21)

Taking A = (k + q)2 −m2 and B = k2 −m2 we get:

1

(k2 −m2)[(k + q)2 −m2]
=

∫ 1

0

dx
1

[(k + qx)2 − a2]2
(3.22)

where we have defined a2 ≡ −q2x(1− x) + m2 − iε. We obtain the following expression:

iΠ(t)(q2) = −NC
4m2

v2

∫ 1

0

dx

∫
dDk

(2π)D
k2 +m2 + kq

[(k + qx)2 − a2]2
(3.23)

After performing the variable shift k → k + xq and eliminating all the linear terms in kµ we obtain:

iΠ(t)(q2) = −NC
4m2

v2

∫ 1

0

dx

∫
dDk

(2π)D
k2 + a2

[k2 − a2]2
(3.24)

Let us compute the first term:∫ 1

0

dx

∫
dDk

(2π)D
k2

[k2 − a2]2
=

∫ 1

0

dx J(D, 1, 2, a2) =

∫ 1

0

dx
a2D

D − 2
J(D, 0, 2, a2) (3.25)

The second term that we have is:∫ 1

0

dx

∫
dDk

(2π)D
a2

[k2 − a2]2
=

∫ 1

0

dx a2 J(D, 0, 2, a2) (3.26)

We take D to be D = 4 + 2ε, therefore our expression of Π(t)(q2) becomes:

iΠ(t)(q2) = −NC
4m2

v2

∫ 1

0

dx (3− ε) a2 J(D, 0, 2, a2) +O(ε2) (3.27)
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It is inmediate to show that J(D, 0, 2, a2) is equal to:

J(D, 0, 2, a2) =
−i

(4π)2
µ2ε
( 1

ε̂
+ ln

(a2

µ2

)
+O(ε)

)
(3.28)

where we have defined 1/ε̂ ≡ 1/ε + γE − ln(4π), with γE the Euler-Mascheroni constant and 1/ε the Euler
gamma funtion pole. Up to O(ε) we have:

Π(t)(q2) = NC
12m2

(4πv)2
µ2ε

∫ 1

0

dx a2
( 1

ε̂
+ ln

(a2

µ2

)
− 1

3

)
(3.29)

Let’s calculate the integral: ∫ 1

0

dx a2 =

∫ 1

0

dx (−q2x(1− x) +m2) = m2 − q2

6
(3.30)

Thus, we can write the following:

Π(t)(q2) = NC
12m2

(4πv)2
µ2ε
[ 1

ε̂

(
m2 − q2

6

)
+
q2

18
− m2

3
+

∫ 1

0

dx a2 ln
(a2

µ2

)]
(3.31)

Using the MS scheme we obtain:

Π(t)
ε (µ) = NC

12m2

(4πv)2
µ2ε
(
m2 − q2

6

)1

ε̂

Π
(t)
R (q, µ) = NC

12m2

(4πv)2

( q2

18
− m2

3
+

∫ 1

0

dx a2 ln
(a2

µ2

))
(3.32)

After calculating the first Higgs energy diagram we can use its explicit expression to check on the optical

theorem we have deduced previously. The only piece of Π
(t)
R that develops an imaginary part is the one

defined bellow:

T (q2,m2) = NC
12m2

(4πv)2

∫ 1

0

dx a2 ln
(a2

µ2

)
= NC

12m2

(4πv)2

∫ 1

0

dx [−q2x(1− x) +m2] ln
(−q2x(1− x) +m2 − iε

µ2

)
(3.33)

In order to find the imaginary part we have to find the roots of the equation:

−q2x(1− x) +m2 = 0 ⇒ x1,2 =
1

2
± 1

2

√
1− 4m2

q2
(3.34)

In the region in between x1 and x2 the logarithm’s only imaginary part is the one that comes from −iε, and
it is ±iπ depending on the sign rules we adopt. So, except a global sign we find:

−πNC
12m2

(4πv)2

∫ x1

x2

dx [−q2x(1− x) +m2] =
NC
8π

m2

v2
q2
(

1− 4m2

q2

)3/2

(3.35)

We finaly obtain that:

Im( Π(t)(q2 = M2
H) ) = MH Γ(H → tt̄) (3.36)

and this is exactly what we were intending to prove. We should also observe here that, as expected, the
imaginary part does not depend on the renormalization scale µ.
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Now let us take a look at another Higgs self energy process:

k + q

H(q)

k

W, Z

Figure 45: Higgs self-energy contribution coming from weak vector bosons.

We shall calculate the process for a W boson. The same result is valid for a Z boson by only changing the
masses and multiplying by a 1/2 symmetry factor; (k′ ≡ k + q):

iΠ(W1)(q2) =
4M4

W

v2

∫
dDk

(2π)D

(
− gµν +

kµkν
M2
W

)(
− gµν +

k′µk′ν

M2
W

) 1

(k2 −M2
W )[(k + q)2 −M2

W ]

=
4

v2

∫
dDk

(2π)D
(k2 + kq)2 −M2

W (2k2 + q2 + 2kq) +DM4
W

(k2 −M2
W )[(k + q)2 −M2

W ]
(3.37)

We have the same propagators as in the previous case so, using the same Feynman parameterization this
time using the letter b2 ≡ −q2x(1− x) + M2

W we get:

iΠ(W1)(q2) =
4

v2

∫ 1

0

dx

∫
dDk

(2π)D
(k2)2 + (kq)2 + 2k2(kq)−M2

W (2k2 + q2 + 2kq) +DM4
W

[(k + qx)2 − b2]2

=
4

v2

∫ 1

0

dx

∫
dDk

(2π)D
1

[k2 − b2]2

{
(k2)2 + (q2)2x2(x− 1)2 + 2k2q2x(x− 1)+

(1− 2x)2(kq)2 − 2M2
W k

2 −M2
W q

2(2x2 − 2x+ 1) +DM4
W

}
(3.38)

As we have seen in the previous sections we can make the following substitutions:

(kq)2 = kµkνqµqν →
gµν

D
k2 qµqν =

q2

D
k2 (3.39)

Rearranging terms we get to the following:

iΠ(W1)(q2) =
4

v2

∫ 1

0

dx

∫
dDk

(2π)D
1

[k2 − b2]2

{
k2
(

2q2x(x− 1) +
q2

D
(1− 2x)2 − 2M2

W

)
+ (k2)2 + (q2)2x2(x− 1)2 −M2

W q
2(2x2 − 2x+ 1) +DM4

W

}
=

4

v2

∫ 1

0

dx
{
J(D, 1, 2, b2)

(
2q2x(x− 1) +

q2

D
(1− 2x)2 − 2M2

W

)
+ J(D, 2, 2, b2)

+ J(D, 0, 2, b2)
(

(q2)2x2(x− 1)2 −M2
W q

2(2x2 − 2x+ 1) +DM4
W

)}
(3.40)

Using Euler’s gamma function properties it is easy to find:

J(D, 1, 2, b2) =
b2D

D − 2
J(D, 0, 2, b2)

J(D, 2, 2, b2) =
b2(D + 2)

D
J(D, 1, 2, b2) =

b4(D + 2)

D − 2
J(D, 0, 2, b2) (3.41)
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Grouping terms, we can express iΠ(W1)(q2) as:

iΠ(W1)(q2) =
4

v2

∫ 1

0

dx
{
J(D, 0, 2, b2)

b2D

D − 2

(
2q2x(x− 1) +

q2

D
(1− 2x)2 − 2M2

W

)
+ J(D, 0, 2, b2)

(
(q2)2x2(x− 1)2 −M2

W q
2(2x2 − 2x+ 1) +DM4

W

)
+ J(D, 0, 2, b2)

b4(D + 2)

D − 2

}
=

4

v2

∫ 1

0

dx J(D, 0, 2, b2)
{ b2D

D − 2

(
2q2x(x− 1) +

q2

D
(1− 2x)2 − 2M2

W

)
+ (q2)2x2(x− 1)2 −M2

W q
2(2x2 − 2x+ 1) +DM4

W +
b4(D + 2)

D − 2

}
(3.42)

Taking as usual D = 4 + 2ε, then up to order ε we have:

iΠ(W1)(q2) =
4

v2

∫ 1

0

dx J(D, 0, 2, b2)
{
b2(2− ε)

(
2q2x(x− 1) +

2− ε
8

q2(1− 2x)2 − 2M2
W

)
+ (q2)2x2(x− 1)2 −M2

W q
2(2x2 − 2x+ 1) + (4 + 2ε)M4

W + b4(3− 2ε)
}

(3.43)

We have seen that we can express J(D, 0, 2, b2) in terms of the Gamma function pole as:

J(D, 0, 2, b2) =
−i

(4π)2
µ2ε
(1

ε̂
+ ln

(a2

µ2

)
+O(ε)

)
(3.44)

We obtain:

iΠ(W1)(q2) =
−4i

(4πv)2
µ2ε

∫ 1

0

dx
(1

ε̂
+ ln

( b2
µ2

)){
b2(2− ε)

(
2q2x(x− 1)− 2M2

W

)
+
b2

2
(1− ε)q2(1− 2x)2 + (q2)2x2(x− 1)2 −M2

W q
2(2x2 − 2x+ 1)

+ (4 + 2ε)M4
W + b4(3− 2ε)

}
(3.45)

In order to simplify our calculation we need to make some definitions:

A ≡ b2(2q2x(x− 1)− 2M2
W )

B ≡ b2

2
q2(1− 2x)2

C ≡ (q2)2x2(x− 1)2 −M2
W q

2(2x2 − 2x+ 1)

E ≡M4
W

F ≡ b4 (3.46)

We find the following expression.

iΠ(W1)(q2) =
−4i

(4πv)2
µ2ε

∫ 1

0

dx
1

ε̂
(2A+B + C + 4E + 3F )

+
−4i

(4πv)2
µ2ε

∫ 1

0

dx (−A−B + 2E − 2F )

+
−4i

(4πv)2
µ2ε

∫ 1

0

dx ln
( b2
µ2

)
(2A+B + C + 4E + 3F ) (3.47)
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Performing some integrals:

∫ 1

0

dxA =
(q2)2

15
− 2M4

W∫ 1

0

dxB =
1

6
M2
W q

2 − (q2)2

60∫ 1

0

dxC = −2

3
M2
W q

2 +
(q2)2

30∫ 1

0

dxE = E = M4
W∫ 1

0

dxF = M4
W −

q2M2
W

3
+

(q2)2

30
(3.48)

Therefore we find the following expressions:

Π(W1)
ε (q2) =

−µ2ε

(4πv)2

1

ε̂

(
12M4

W − 6q2M2
W + (q2)2

)
Π

(W1)
R (q2) =

−4

(4πv)2

(
2M4

W +
1

2
q2M2

W −
7

60
(q2)2

)
+
−4

(4πv)2

∫ 1

0

dx ln
( b2
µ2

)
(2A+B + C + 4E + 3F ) (3.49)

So, for the Z diagram we obtain:

Π(Z1)
ε (q2) =

(1

2

) −µ2ε

(4πv)2

1

ε̂

(
12M4

Z − 6q2M2
Z + (q2)2

)
Π

(Z1)
R (q2) =

(1

2

) −4

(4πv)2

(
2M4

Z +
1

2
q2M2

Z −
7

60
(q2)2

)
+
(1

2

) −4

(4πv)2

∫ 1

0

dx ln
(b′2
µ2

)
(2A+B + C + 4E + 3F ) (3.50)

where b′2 ≡ −q2x(1− x) + M2
Z.

Now, to find the imaginary part, we have to integrate the piece that contains the logarithm over the limits
x1,2 = 1/2± (1/2)(1− 4M2

W /q
2)1/2. We obtain the following result:

−π −4

(4πv)2

∫ x1

x2

dx (2A+B + C + 4E + 3F ) =
1

4πv2

1

4

(
1− 4M2

W

q2

)1/2

(12M4
W − 4q2M2

W + q4)

=
M4
W

4πv2

(
1− 4M2

W

q2

)1/2

(3− q2

M2
W

+
q4

4M4
W

) (3.51)

Again we obtain a direct confirmation of the optical theorem:

Im( Π(W1)(q2 = M2
H) ) = MH Γ(H →WW ) (3.52)
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The next process that we look at is the self-Higgs interaction:

q

k

k + q

Figure 46: Higgs self-energy first contribution from self Higgs interaction.

iΠ(H1)(q2) =
3! 3!

2!

(M2

2v

)2
∫

dDk

(2π)D
1

[k2 −M2][(k + q)2 −M2]

=
9M4

2v2

∫ 1

0

dx

∫
dDk

(2π)D
1

[(k + xq)2 − c2]2

=
9M4

2v2

∫ 1

0

dx

∫
dDk

(2π)D
1

[k2 − c2]2

=
9M4

2v2

∫ 1

0

dx J(D, 0, 2, c2)

=
9M4

2v2

∫ 1

0

dx
−i

(4π)2
µ2ε
(1

ε̂
+ ln

( c2
µ2

)
+O(ε)

)
=
−i

(4π)2
µ2ε 9M4

2v2

(1

ε̂
+

∫ 1

0

dx ln
( c2
µ2

))
(3.53)

where we have defined c2 ≡ −q2x(1− x) + M2. Using the MS scheme we obtain:

Π(H1)
ε (µ) = −9M4

2

µ2ε

(4πv)2

1

ε̂

Π
(H1)
R (q, µ) = −9M4

2

1

(4πv)2

∫ 1

0

dx ln
( c2
µ2

)
(3.54)

Calculating the last integral we find that the argument of the logarithm is always positive, therefore this
diagram has no imaginary part. This is exactly what we were expecting for because Γ(H → 2H) does not
exist due to the kinematical restrictions q2 < 4M2.
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We will deal now with the next set of diagrams (tadpoles). The first one is the second W diagram. The one
corresponding to the Z boson will have the same expression, except for the usual 1/2 symmetry factor.

q

k

Figure 47: Higgs self-energy second contribution coming from weak bosons.

iΠ(W2) =
2M2

W

v2

∫
dDk

(2π)D

(
− gµµ +

kµk
µ

M2
W

) i2

k2 −M2
W

= − 2

v2

∫
dDk

(2π)D
−DM2

W + k2

k2 −M2
W

= − 2

v2
{−DM2

W J(D, 0, 1,M2
W ) + J(D, 1, 1,M2

W )} (3.55)

It is easy to show that:

J(D, 1, 1,M2
W )

J(D, 0, 2,M2
W )

=
M4
W

D/2− 1
;

J(D, 0, 1,M2
W )

J(D, 0, 2,M2
W )

=
M2
W

D/2− 1
(3.56)

Therefore, we have the following:

iΠ(W2) = − 2

v2
M4
W

( 1−D
D/2− 1

)
J(D, 0, 2,M2

W )

=
2

v2
M4
W (−ε+ 3)

−i
(4π)2

µ2ε
(1

ε̂
+ ln

(M2
W

µ2

)
+O(ε)

)
(3.57)

So we can write the following expression for this process:

Π(W2) =
−µ2ε

(4πv)2
M4
W (−2ε+ 6)

(1

ε̂
+ ln

(M2
W

µ2

)
+O(ε)

)
(3.58)

Thus, we find the following expression for the infinite and renormalized parts of the diagram:

Π(W2)
ε =

−µ2ε

(4πv)2

1

ε̂
6M4

W

Π
(W2)
R =

−4

(4πv)2

(3M4
W

2
ln
(M2

W

µ2

)
− M4

W

2

)
(3.59)

As expected, the result does not depend on q2 and it does not have an imaginary part. For the Z diagram
we have:

Π(Z2)
ε =

−µ2ε

(4πv)2

1

ε̂
3M4

Z

Π
(Z2)
R =

−4

(4πv)2

(3M4
Z

4
ln
(M2

Z

µ2

)
− M4

Z

4

)
(3.60)
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The next processes that we are going to look at are the Higgs self-energy tadpole diagrams due to self-Higgs
interactions:

q

k

Figure 48: Higgs self-energy second contribution coming from self Higgs interactions.

iΠ(H2) =
3M2

2v2

∫
dDk

(2π)D
−i2

k2 −M2
=

3M2

2v2
J(D, 0, 1,M2) (3.61)

We can easily find that:

J(D, 0, 1,M2) =
2M2

D − 2
J(D, 0, 2,M2) = M2(1− ε) −i

(4π)2
µ2ε
(1

ε̂
+ ln

(M2

µ2

)
+O(ε2)

)
(3.62)

Therefore, the expression for this diagram is simply:

iΠ(H2) =
−i

(4πv)2

3M4

2
µ2ε
(1

ε̂
+ ln

(M2

µ2

)
− 1
)

(3.63)

The infinite and the renormalized part, then, read:

Π(H2)
ε =

−1

(4πv)2

3M4

2
µ2ε 1

ε̂

Π
(H2)
R =

−1

(4πv)2

3M4

2

(
ln
(M2

µ2

)
− 1
)

(3.64)

The second tadpole diagram is:

q

k

0

Figure 49: Higgs self-energy third contribution from Higgs self interactions.

iΠ(H3) =
3!3!

2

M4

4v2

1

−M2

∫
dDk

(2π)D
1

k2 −M2
= −9M2

v2
J(D, 0, 1,M2) (3.65)

The result is straightforward:

Π(H3)
ε =

1

(4πv)2

9M4

2
µ2ε 1

ε̂

Π
(H3)
R =

1

(4πv)2

9M4

2

(
ln
(M2

µ2

)
− 1
)

(3.66)

42



The second W tadpole diagram that we have is:

q

k

0

Figure 50: Higgs self-energy third contribution from weak bosons.

iΠ(W3) =
3!

2

2M2
W

v2

∫
dDk

(2π)D

(
− gµµ +

kµk
µ

M2
W

) 1

k2 −M2
W

(3.67)

Thus we have the following resuls for the W diagram:

Π(W3)
ε =

µ2ε

(4πv)2

1

ε̂
18M4

W

Π
(W3)
R =

4

(4πv)2

(9M4
W

2
ln
(M2

W

µ2

)
− 3M4

W

2

)
(3.68)

For the Z diagram we have:

Π(Z3)
ε =

µ2ε

(4πv)2

1

ε̂
9M4

Z

Π
(Z3)
R =

4

(4πv)2

(9M4
Z

4
ln
(M2

Z

µ2

)
− 3M4

Z

4

)
(3.69)

As for the top tadpole we have:

q

t

0

Figure 51: Higgs self-energy second contribution from the top quark.

iΠ(t,2) =
3!

2
NC

m

v2

∫
dDk

(2π)D
Tr{/k +m}
k2 −m2

= 12NC
m2

v2

∫
dDk

(2π)D
1

k2 −m2
(3.70)

It is also straightforward that:

Π(t2)
ε =

−1

(4πv)2
12NC m

4 µ2ε 1

ε̂

Π
(t2)
R =

1

(4πv)2
12NC m

4
(

ln
(m2

µ2

)
− 1
)

(3.71)

Now, we have all the necessary ingredients to analyze the Higgs boson running mass.
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3.3 Higgs Running Mass

Remember that from the Higgs renormalization process we got to the following expression:

1

q2 −M2
0 + Π(q2)

=
Z1

q2 −M2 + ΠR(q2, µ2)
(3.72)

To obtain the expression for the Higgs running mass we must make the following parameterization:

Π(q2) = (q2 −M2)Π1 + Π2 (3.73)

Now we are able to calculate Z1, Z2 and δM2:

Z1 =
(q2 −M2)(1 + Π1,R) + Π2,R

q2 −M2
0 + Π

=
(q2 −M2)(1 + Π1,R) + Π2,R

q2 −M2 + δM2 + Π

=
(q2 −M2)(1 + Π1,R) + Π2,R

q2 −M2

(
1− δM2 + Π

q2 −M2

)
=
(

1 + Π1,R +
Π2,R

q2 −M2

)(
1−Π1 −

δM2 + Π2

q2 −M2

)
= 1−Π1,ε −

δM2 + Π2,ε

q2 −M2
(3.74)

thus, we define the following:

δM2 = −Π2,ε ⇒ Z1 = 1−Π1,ε ⇒ Z2 = 1−Π1,ε +
Π2,ε

M2
0

(3.75)

The renormalization group equation:

µ
dM2

dµ
= −M2γ = −M2(γ1

1

π
+ γ2

( 1

π

)2

+ ...) (3.76)

So far, we have found the following divergent parts of the Higgs self energy diagrams:
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Now, we need to factorize Πε(q
2) as we mentioned before:(
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6

)
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6

(12M4
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So we finally find that:

M2 = M2
0 + δM2 = M2

0 −Π2,ε = M2
0 +

µ2ε

(4πv)2
M2

0

[
2NC m

2 − 6M2
W − 3M2

Z + 3M2
0

]1

ε̂
(3.78)

Therefore, the renormalization group equation becomes:

µ
dM2

dµ
=

2M2

(4πv)2

[
2NC m

2 − 6M2
W − 3M2

Z + 3M2
]

(3.79)

The solution to this at O(1/v2) is:

M2(µ2) = M2(µ2
0) +

M2(µ2
0)

(4πv)2

[
2NC m

2(µ2
0)− 6M2

W (µ2
0)− 3M2

Z(µ2
0) + 3M2(µ2

0)
]

ln
(µ2

µ2
0

)
≡M2(µ2

0) + C(M2
i , µ0)

M2(µ0)

(4πv)2
ln
(µ2

µ2
0

)
(3.80)

The interesting thing that we observe here is the Higgs mass dependence with all the other massive particles.
This gives rise to the hierarchy and the fine tuning problem. If we consider that there is new physics at
higher energies, than we can see the SM as an effective theory. If there is new physics at higher energies than
there must be other massive particles and the Higgs boson would also have Yukawa couplings to to them, in
consequence, there would appear new terms in the Higgs renormalization corresponding to the new particles.
Therefore, the Higgs mass could run to that scale. We say could because, it doesn’t necessarily have to. In
eq. (3.80) we see that the correction term to the Higgs mass is proportional to M2

H and the terms contained
in C(M2

i ) are quadratic. Therefore, for a small Higgs mass the correction term doesn’t have to be big. The
problem would arise, if somehow, the term C(M2

i ) contained terms proportional to M4
N where MN is a new

heavy particle at higher energy scales. If this happend, how could we still have a low mass Higgs boson in
our theory as all the electroweak precisions constraints (Section 4) indicate? In order for this mass to be
small, tremendous cancellations would have to occur at higher orders (fine tuning). Moreover, if we impose
this cancellation to occur at some order in perturbation theory, then we would obtain some conditions on
the masses of the particles involved; if we go to higher orders this condition will be spoiled by new terms and
some new conditions would appear. This means that the physics at the energy scale we are at now, depends
on some finely tuned parameters, that, if modified, would give rise to a whole different world then the one
we know. This is a generic problem of theories containing fundamental scalars. Super-Symmetry (SUSY)
provides an elegant solution through the cancellation of fermionic and bosonic contributions. Unfortunately,
no traces of SUSY have been found yet. The present experimental constraints imply that SUSY should be
badly broken and the cancellations are no longer enforced by symmetry. Therefore, the fine tuning problem
remains open.
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4. Final Conclusions

As a final conclusion, let us talk a little bit about the electroweak precision fits and experimental mass
exclusions for the Higgs boson. Precision electroweak measurements provide sensitivity to mass scales higher
than the available experimental energies. This is done by exploiting contributions from quantum loops, for
example, loops that involve a Higgs particle:

W, Z

H
H

W, Z

Figure 52: Some loops needed for electroweak precision fits.

This type of loop quantum corrections, with a proper choice of input parameters, allow us to give some
constraints on the Higgs mass and other parameters. The basic inputs usually are α(MZ), GF and MZ . It
is also a powerful tool to look for new physics; electroweak quantum corrections predicted correctly the mass
of the top quark before its actual discovery. Let’s discuss the following example equation [23]:

M2
W

(
1− M2

W

M2
Z

)
=

πα√
2GF

(1 + ∆r) (3.81)

∆r is a term that stands for the electroweak corrections. It contains a term proportional to ∆α, a negative
term proportional to m2

t and another term proportional to ln(MH). Therefore, the electroweak precision
fits are sensitive to the top mass and the Higgs mass. However, owing to an accidental SU(2)C symmetry
of the scalar sector (the so-called custodial symmetry), the constraints on the Higgs mass are much weaker
than the ones on the top quark (logarithmic instead of quadratic). After its experimental measurement, mt

was used to put further constraints on the Higgs mass. The latest one [14], uses the ∆χ2 estimator to find
the following: for a standard fit MH = 96+31

−24 GeV and for a complete fit MH = 120+12
−15 GeV, with the upper

bounds 200 GeV (99 % CL standard fit) and 149 GeV (99 % CL complete fit) (Fig. 53). These results are
quite sensitive to the input value of α(M2

Z)−1; using, α(M2
Z)−1 = 128.944 ± 0.019, the result MH = 88+29

−23

has been recently quoted [11]. With these data fits a fourth family of leptons and quarks is allowed with
large MH [14]. This is, of course, compatible with our conclusion from section 2.5. Five or more generation
are disfavoured [14].
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Figure 53: ∆χ2 as a function of MH for the standard fit (left) and for the complete fit (right).
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Now, let’s take a look at the latest experimental mass exclusions at the LHC and Tevatron and LEP. The
plot we see below shows the latest for Tevatron experimental limits on the Higgs production cross section,
normalized to the Standard Model one, combining the CDF and D0 data [9] (Fig. 54). The Tevatron
excluded regions at 95 % CL are 156 < MH < 177 GeV and 100 < MH < 108 GeV with luminosity in
between 4.0 and 8.6 fb−1. The expected exclusion region with the current sensitivity is 148 < MH < 180
GeV and 100 < MH < 109 GeV. Very low Higgs masses, below 100 GeV were not studied. One of the most
relevant conclusion that we can read in the same reference is that the sensitivity of this combined search is
sufficient to exclude a high mass Higgs boson. This in agreement with the Atlas collaboration, that, sees
very stringent constraints for a Higgs mass above 250 GeV [7]. The LEP constraints on Higgs mass is MH >
114.4 GeV.

Figure 54: Higgs mass exclusions at Tevatron and LEP at 95% CL.

Let’s now take a look at the exclusions provided by the combined Atlas exclusion data at 1-1.7 fb−1 [20].
The excluded regions are 146 < MH < 232, 256 < MH < 282 and 296 < MH < 466. We can also read [7]
that they also exclude a fourth generation SM between 140 and 185 GeV. This exclusion is less stringent
than the one from CMS.

Figure 55: SM4 Higgs mass exlusions at ATLAS.

The CMS collaboration also provides three mass range exclusions [21] very similar to the ones from ATLAS
(Fig.56). Their excluded mass ranges are 145 < MH < 216, 226 < MH < 288 and 310 < MH < 340.
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Figure 56: Higgs mass exclusions at CMS at 95% CL.

As we saw earlier, EW precision tests prefer a low mass SM Higgs. In Fig. 57 we show the remaining,
non-excluded region for a low mass Higgs (white fringe). This remaining region is centered on the two photon
region. We insisted in including this channel in our plot because its signal is the cleanest one. In this region
the dominant decay is H → bb̄ but with a large QCD background. All the other channels suffer from the
same inconvenience except for the two photon decay. Moreover, the radiative corrections to the H → γγ
decay width only affect the top quark loop. The W loop nor the final states are affected by higher order
corrections [22]. These corrections are below 3% therefore, they are practically insignificant. These are the
main reasons why this is the most promising decay channel in this region.

Figure 57: Non-excluded low mass Higgs region.

Perhaps, in one year or so we can definitely exclude a SM Higgs boson and discover new physics or, on the
contrary, discover the SM Higgs boson and confirm the model. In any of these cases we need to go beyond
the SM. Even with the discovery of the Higgs boson there are still going to be many unanswered questions.
Why three generations? Why this type symmetry breaking? Why three colours of quarks? Why no quantum
gravity? And what about neutrinos? There will still be many interesting new physics to discover. Even
if the SM proves to be right, we must necessarily ask why the SM and not other symmetries? There will
always be a bigger picture to be looking for.
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