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CHAPTER 1

Weil divisors, Class Group, Linear systems
morphisms and rational maps

1.1. Weil divisors and Class Group

Let us fix an algebraically closed field k, of characteristic 0 (the latter only for
my lazyness), C if you want to have something concrete to test. A polynomial in
one variable p ∈ k[x] is uniquely determined (up to a multiplicative constant) by
its roots (with algebraic multiplicity) that is

p = γΠh
i=1(x− αi)mi .

If we consider k[x] as the affine coordinate ring of A1 this allows to associate to any
set of d points (counted with multiplicity) a polynomial and the other way round.

Thanks to primary decomposition this can be extended to An let p ∈ k[x1, . . . , xn]
be a polynomial then V (p) = D1 ∪ . . . ∪ Dh. Where the Di are irreducible codi-
mension 1 subvarieties. Moreover via Nulltellensatz for any irreducible component
Di there is a unique integer mi such that p ∈ ImiDi

\ Imi+1
Di

. On the other hand any
codimension 1 is the zero locus of some polynomial, therefore (up to a multiplicative
constant) this yields the following bijection

k[x1, . . . , xn]↔ {non negative linear combination of codimension 1 subvarieties of An}

In other words we associate to any regular function on An its zero locus counted
with multiplicities. We can even do something better and more general.

Definition 1.1.1. Let Y be a smooth quasi affine variety and Z ⊂ Y an
irreducible subvariety. For any p ∈ A(Y ) there is an mi such that p ∈ ImiZ \ I

mi+1
Z ,

let

ordZ(p) = mi

Note that, due to Noetherianity, for any p ∈ A(Y ) there are only finitely many
codimension 1 irreducible subvarities on which ordZ(p) 6= 0. Therefore to any
regular function p ∈ A(Y ) we may associate its divisor of zeros given by

(p) =
∑

codY Z=1

ordZ(p)Z.

Equivalently for a rational function f = p/q we may define (f) = (p)− (q).

Remark 1.1.2. It is easy to check that (f) is independent from the choice of
the representative p/q.

In a similar fashion we may argue on Pn and then on any smooth projective
variety X. This time regular functions are constant and therefore we only consider
rational ones. For any f ∈ K(X) we may consider an affine covering {Ui} and
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6 1. NEDDED STUFF

define ordZ(f) on any open set Ui such that Ui ∩ Z 6= ∅. This then extends to
define (f) as in the affine case.

Definition 1.1.3. Let X be a smooth variety. The Weil divisor group is
Div(X), the free abelian group generated by irreducible codimension 1 subvarieties
of X. The latter are called prime divisors.

Remark 1.1.4. For those who are familiar with sheaves and line bundles, since
X is smooth, the group Div(X) is equivalent to the group of Cartier divisors or line
bundles on X.

Definition 1.1.5. A divisor D ∈ Div(X) is effective if D =
∑
niZi with Zi

prime divisors and ni ≥ 0 for any i. The support of an effective divisor D is
Supp(D) = ∪ni>0Zi. Sometimes we may use D ≥ 0 for effective divisors.

We say that a divisor is principal if D = (f), for some rational function f ∈
K(X).

Principal divisors are clearly a subgroup of Div(X) and we say that D is linearly
equivalent to D1, D ∼ D1, if D − D1 is principal. The class group Cl(X) :=
Div(X)/∼

Remark 1.1.6. For smooth varieties X the group is also called Picard group
of X, Pic(X), and it is the group of line bundles up to linear equivalence.

Example 1.1.7. Let X = An then any codimension 1 is defined by a single
equation and every prime divisor is principal. In other words Cl(An) = 0. Note
more generally that a Noetherian ring A is UFD if and only if every prime ideal of
height 1 is principal. In particular if X is quasi affine (smooth) and A(X) is UFD
then Cl(X) = 0.

Remark 1.1.8. Note that the notion of order works on an affine variety non
singular in codimension 1. But one could loose the bijection between codimension 1
subvarieties and zero locus of regular functions. Think to the quadric cone Q ⊂ P3

with I(Q) = (x0x1−x2
2). The lines of the ruling are codimension 1 subvarieties but

cannot be defined (with multiplicity 1) by one single equation. This is because the
local ring at [0, 0, 0, 1] is not factorial.

Let us work it out in greater details. Let l = (x0 = x2 = 0) ⊂ Q be a line and
U = Q \ l. It is clear that any divisor on Q can be written as a divisor in U plus
some multiple of l. That is

Cl(Q) = Cl(U) + Z < l > .

Next observe that

A(U) = A(Q)x0 = k[x0, x1, x2, x
−1
0 ]/(x0x1 − x2

2) ∼= k[x0, x
−1
0 , x2].

The latter is UFD ( k[x, x−1] is UFD because any element is of the form P =∑d2
−d1 aix

i and therefore xd1P ∈ k[x] has a unique factorization) therefore Cl(U) =

0. Moreover (x0) = 2l therefore 2l is principal. A bit more of algebra shows that l
itself is not principal and proves that Cl(Q) ∼= Z2 and generated by l, see also [Ha].

Example 1.1.9. Let X = Pn and H = (x0 = 0) ⊂ Pn be an hyperplane. Let Z
be a prime divisor with Z = V (F ) for some homogeneous polynomial F of degree
d. Then F/xd0 is a rational function, that is Z − dH is principal. Assume that
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D =
∑
diZi then D − (

∑
di degZi)H is principal. This yields the following group

morphism
deg : Cl(Pn)→ Z

sending [D] to its degree. The morphism deg is clearly surjective. Assume that
deg[D] = 0, let D = D+ −D− with D± ≥ 0. Then deg[D] = 0 forces deg[D+] =
deg[D−] and therefore D is principal.

It is important to summarize the above example for future reference

Proposition 1.1.10. Let D ∈ Cl(Pn) be a divisor of degree d, that is the zero
locus of a polynomial of degree d, and H an hyperplane. Then

i) D ∼ dH
ii) for any non vanishing function f ∈ K(Pn), deg(f) = 0
iii) Cl(Pn) ∼= Z via the degree map.

1.2. The canonical divisor

Let X be a smooth variety of dimension n over the complex numbers (this is
necessary only for the treatment we are going to do, not for the results obtained).
Then we may consider a meromorphic n-form that is

Ω = fdx1 ∧ . . . ∧ dxn,
where (x1, . . . , xn) are local coordinates and f ∈ K(X). The main reason that lead
us to consider this it is that if we change coordinates (w1, . . . , wn) then

dx1 ∧ . . . ∧ dxn = det(
∂wi
∂xj

)dw1 ∧ . . . ∧ dwn.

This shows that Ω is canonically defined, up to a multiplicative nonvanishing func-
tion. Moreover if we consider two n-forms Ω and Ω1 then

Ω

Ω 1
∈ K(X).

This justifies the following

Definition 1.2.1. The canonical divisor is the divisor associated to Ω

KX = (Ω).

In particular KX is a well defined element in Cl(X).

Let us compute the canonical divisor in some examples

Remark 1.2.2. Let X = Pn be the projective space. Consider X = Cn ∪ H0

with coordinates (z1, . . . , zn) where zi = xi/x0 and H0 = (x0 = 0). Then we may
consider the n-form

Ω = dz1 ∧ . . . ∧ dzn.
The form Ω has neither zero nor poles along Cn therefore we have only to worry
about H0. Consider the change of coordinates wj = xj/x1 that induces the change
z1 = 1/w0 and zi = wi/w0, for i 6= 1. With this change we have

dz1 =
1

w2
0

dw0, dzi =
1

w0
dwi −

wi
w2

0

dw0.

This yields

Ω =
1

w
2+(n−1)
0

dw0 ∧ dw2 ∧ . . . ∧ dwn.
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That is (Ω) has a pole of order n+ 1 along H0.
This proves that KPn ∼ −(n+ 1)H has degree −(n+ 1).

Another nice fact about the canonical class is the possibility to compute it in
a wide range of cases.

Theorem 1.2.3. Let D ⊂ X be an irreducible smooth divisor on smooth variety.
Then KD = (KX +D)|D.

Idea of proof. Let Ω be a n-form on X. Let f ∈ K(X) be such that (f) =
D+R for some divisor R with Supp(R) 6⊃ D. Then compute the residue of Ω/f . �

Remark 1.2.4. In particular for any smooth hypersurface Y ⊂ Pn of degree d
we have KY ∼ LY (d− (n+ 1)).

Remark 1.2.5. The canonical class is a fundamental birational invariant and
can be interpreted as the determinant of the cotangent bundle.

1.3. Linear systems

Let X be a smooth projective variety and D =
∑
niZi a Weil divisor on X.

Definition 1.3.1. Let

LX(D) := {f ∈ K(X)|(f) +D ≥ 0} ∪ {0}

be the linear system associated to D.

Remark 1.3.2. Note that LX(D) is naturally a vector space and it is the set of
rational functions having order ≥ −ni along Zi (keep in mind that the summation
is over any codimension 1). It is easy to note that P(LX(D)) is the, eventually
empty, set of effective divisors linearly equivalent to D. We will always tacitly
use this identification between rational functions in LX(D) and divisors linearly
equivalent to D.

Definition 1.3.3. The complete linear system associated to D is |D| :=
P(LX(D)).

Remark 1.3.4. If D ∼ D1 then |D| = |D1|.

Definition 1.3.5. A linear system Σ onX is a sublinear space Σ ⊂ |D| for some
effective divisor D on X. In other words Σ is the projectivization of a subvector
space of W ⊆ LX(D). The projective dimension of Σ = dimW − 1.

A crucial point in the theory of projective varieties is the finite dimensionality
of |D| for any D ∈ Cl(X). This can be proved in greater generality via the identi-
fication with regular section of line bundles, [Ha, Theorem II.5.19]. Our next aim
is to give a self contained proof for smooth projective varieties based on simpler
arguments.

Definition 1.3.6. Let L(d) := LPn(dH), for some hyperplane H, the linear
system of degree d.

Remark 1.3.7. Let H = (x0 = 0) be an hyperplane, then dH ∈ L(d) and for
any polynomial P ∈ k[x0, . . . , xn]d we have

f = P/xd0 ∈ K(Pn)
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in particular SP := (P = 0) ∼ dH and SP ∈ LPn(dH) and allows to call it the
linear system of degree d of Pn. This also shows that L(d) ∼= k[x0, . . . , xn]d as

vector spaces and dim |L(d)| =
(
d+n
n

)
− 1.

The elements of the linear system |L(d)| are hypersurfaces of degree d. Let
S ∈ |L(d)| be a hypersuface not containing X ⊂ Pn. Then X ∩ S = ∪Zi, with Zi
divisors on X. Moreover for any i there is an hyperplane (xji = 0) that does not
contain Zi. Let S = (F = 0) then we may define zi := ordZi(F/x

d
ji

) and define the
restricted divisor.

SX =
∑

ziZi.

Note that SX ∼ S1X if S, S1 ∈ |L(d)|. We may then define the restricted linear
system.

Definition 1.3.8. The restricted linear system is LX(d) := {DX}D∈|L(d)|.

Remark 1.3.9. Note that in general LX(d) is not complete. X is said to be
k-projectively normal if LX(k) is complete. A simple example of this phenomenon
is given by smooth rational curves in P3. Let Γ ⊂ P3 be a smooth rational curve
of degree γ > 3. Then degLΓ(1) = deg Γ and dimLΓ(1) ≤ 3 (one could prove
it is always 3 via the genus formula for plane curves). On the other hand by
Remark 1.3.7, we have |LΓ(1)| = |LP1(γ)| = γ + 1.

Proposition 1.3.10. Let X ⊂ Pn be a smooth variety. Then for d � 0 the
linear system LX(d) is complete.

Proof. We may assume that X is non degenerate and let D ∈ |LX(d)| be an
element. By hypothesis D ∼ dHi, for Hi the divisor associated to the equation
xi = 0. Then there is fi ∈ K(X) such that (fi) = D − dHi and this yields

(
fi
fj

) = d(Hj −Hi) = (
xdj
xdi

).

Up to constants this gives

fi
fj

=
xdj
xdi
,

and allows to define F = xdi fi ∈ K(A(X)), the quotient field of A(X) (remember
that K(X) is the degree 0 piece of K(A(X)), i.e. quotients where the numerator
and denominator have the same degree).

The divisor D is effective, hence (fi) ≥ 0 on the open Xi := X \ (X ∩Hi) and

fi is regular on Xi. Then fi = Fi/x
Ni
i , with degFi = Ni, and xMi F ∈ A(X) for

any M ≥ Ni. Let N = max{Ni} then

x2N−d
i F = x2N

i fi = x2N−Ni
i Fi ∈ A(X)

Note that A(X) = k[x0, . . . , xn]/I with I homogeneus prime ideal, therefore
there is a d0 such that for any d ≥ d0 if F ∈ K(A(X)) and xMi F ∈ AM+d, for all
i, then F ∈ Ad.

This shows that (F ) ≥ 0 on X ∩ (∩iHi)
c = X, F ∈ A(X)d and

D = (fi) + dHi = (F )

that is D ∈ LX(d). �

Theorem 1.3.11. Let X ⊂ Pn be a smooth variety. Then any linear system is
finite dimensional.
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Proof. Let D be a divisor then we may find a m � 0 and an hypersurface
G ∈ |L(m)| such that G ∩ X = D + D1. Then |D| + D1 ⊆ LX(m) ⊆ |L(m)| and
the latter is finite dimensional by Remark 1.3.7. �

A fundamental result in the theory of linear system is the following theorem of
Bertini, to state it we need a definition.

Definition 1.3.12. Let X be a projective variety and Σ a linear system on X.
The Base locus of Σ is

Bs(Σ) := {x ∈ X|x ∈ Supp(D),∀D ∈ Σ}

Theorem 1.3.13 (Bertini’s Theorem). Let Σ be a linear system on a smooth
variety, and D ∈ Σ a general element. Then D is smooth outside Bs Σ.

Proof. It is enough to prove the statement for a pencil Λ. Let D ∈ Λ a general
element. We may assume that locally D = (f(x1, . . . , xn) + λg(x1, . . . , xn) = 0)
and 0 ∈ Supp(D) is a singular point. Suppose that 0 is not in the base locus, that
is f(0) 6= 0, then also g(0) 6= 0 and determine

λ = −f(0)

g(0)
.

The divisor D is singular at 0 if and only if

∂if(x1, . . . , xn)− f(0)

g(0)
∂ig(x1, . . . , xn) = 0

This shows that

∂i(
f

g
)(0) =

∂if(0)− f(0)
g(0)∂ig(0)

g(0)
= 0.

This shows that f
g is constant on every connected component of the singular locus,

say V , outside the base locus. But V is an algebraic variety and therefore has
a finite number of connected components. Therefore there are only finitely many
divisors that meet V outside the base locus. �

1.4. Morphisms and rational maps

Let X be a projective variety and Σ a linear system on X of dimension r. Note
that for any x ∈ X \ Bs Σ the sublinear system Σx := {D ∈ Σ|x ∈ SuppD} is an
hyperplane in Σ (the condition to pass through a point is a linear equation in Σ).
Fix an isomorphism between Pr and Σ∗ and define the application

ϕΣ : X 99K Pr

given by

ϕΣ(x) = [Σx].

There are important remarks before proceeding further.

Remark 1.4.1. Let H ⊂ Pr be an hyperplane. Then H = (D)∗, for some
D ∈ Σ, and by definition ϕ−1

Σ (H) = {x ∈ X|[Σx] ∈ D∗}. Hence duality yields

ϕ−1
Σ (H) = {x ∈ X|x ∈ D}.
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Remark 1.4.2. The map ϕΣ is well defined outside Bs(Σ). In particular it is
not difficult to prove that if Σ is base point free then ϕΣ is a morphism and not
only an application. Moreover the choice of a base in Σ determines homogeneous
coordinates on Pr, therefore a linear transformation on Pr is induced by a change
of base in Σ.

Remark 1.4.3. Consider a linear system Σ is P(W ) for some W ⊆ LX(D). Let
(f0, . . . , fr) be a base of W then, up to a linear transformation, φ(x) = [f0(x), . . . , fr(x)].

Remark 1.4.4. Let ΦD be the morphism associated to |D| then we may com-
plete (f0, . . . , fr) to a base of LX(D) adding (gr+1, . . . , gN ). In this notation φΣ =
Π ◦ ΦD where Π is the projection of P(LX(D)) onto the linear space of equation
{yr+1 = . . . = yN = 0} from the linear space {y0 = . . . = yr = 0}.

Let φ : X → Y ⊂ PN be a surjective morphism. Then a divisor D ∈ LY (1)
is the restriction of an hyperplane HD defined as the zero locus of the regular
function fi = h/yi on the open Ui := {yi 6= 0}. Then we may define the pull-
back φ∗D as divisor locally defined by the regular function fi ◦ φ. In particular
Supp(φ∗D) = φ−1(D) and clearly φ∗D ∼ φ∗D1 if D1 ∈ LY (1). This produces a
linear system of dimension N Σφ ⊂ |φ∗D| as the linear span of the φ∗D such that
φ = ϕΣφ .

One can define the pull back of an arbitrary prime divisor B on Y considering
an hypersurface S = (P = 0) ⊂ PN such that SY = B + D ∈ LY (m) with
Supp(D) 6⊃ Supp(B). Then as above define φ∗SY as the divisor locally associated to
the function P/ymi ◦φ. Then φ∗B = biφ

−1(B) with bi = ordφ−1Bφ
∗SY . Everything

extends by linearity.
Assume that φ is generically finite of degree d, then for any effective prime

divisor A we may also define the push-forward φ∗A as follows
φ∗A = 0 if φ(A) is not a divisor
φ∗A = rφ(A) if φ(A) is a divisor and φ|A is generically of degree r, and then

extend it by linearity. In particular for any divisor B on Y we have φ∗φ
∗B = dB,

and if A ∼ A1 then

(1) φ∗A ∼ φ∗A1

(The latter reduces to prove that φ∗(f) is principal. It is a bit technical but not
difficult to see that φ∗(f) = (N(f)), where N(r) is the norm of r, the determinant
of the linear endomorphism given by multiplication by f).

All the above can be extended, with some caution, to rational maps. It is
enough to consider everything on the open set where the map is defined. The
following proposition is the clue.

Proposition 1.4.5. Let ϕ : X 99K Pn be a rational map with X smooth. Then
the indeterminacy locus of ϕ is of codimension at least 2. In particular

• any rational map from a non singular curve is a morphism;
• any birational map between smooth curves is an isomorphism;
• any smooth rational curve is isomorphic to P1.

Proof. The question is local let x ∈ X be a point in the indeterminacy locus
of ϕ. We may consider the local ring OX,x for a point x ∈ X. Since X is smooth
OX,x is regular, hence factorial, and finally UFD. In particular any codimension
1 subvariety is defined by a single equation. Let ϕ be given by (g0, . . . , gn), with
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gi ∈ K(X). We may multiply by a common factor g ∈ K(X) in such a way that
gi ∈ OX,x and have no common factor there. Note that this multiplication does not
change the map ϕ. The indeterminacy locus of ϕ in a nbhd of x is the common zero
locus of the gi. Assume that there is a codimension 1 component Z of indeterminacy
passing through x, and let g ∈ OX,x be its equation. This forces gi to have the
common factor g and yields the required contradiction. �

Remark 1.4.6. From the point of view of linear systems the above proposition
states that any rational map can be defined by linear systems without fixed com-
ponents. That is when considering the map associated to a linear system we may
always, freely, either add, or remove a fixed divisor.

Definition 1.4.7. A rational map ϕ : X 99K Y is called birational if it is
generically injective and the inverse is an algebraic map. This is equivalent to prove
that there are open non empty sets UX ⊂ X and UY ⊂ Y such that ϕ|UX : UX → UY
is an isomorphism.

It is time to introduce one of the main actors of the lecture.

Definition 1.4.8. A projective variety X is called rational if there is a bira-
tional map ϕ : X 99K Pn.

There is an interesting fact about rational varieties.

Proposition 1.4.9. Let X ⊂ PN be a rational variety of dimension n. Then

there is an integer d and a linear projection π : P(n+d
n )−1 99K PN . Such that

X = π(Vd,n), where Vd,n is the Veronese embedding of degree d of Pn. In other
words any rational variety is some projection of a Veronese variety.

Proof. Let φ : Pn 99K X be a birational map. Then φ∗LX(1) ⊂ |L(d)| for
some d and we conclude by Remark 1.4.4. �

Example 1.4.10. We already described all linear systems on Pn. The morphism

associated to |L(d)| are the Veronese embedding of Pn into P(n+d
n )−1.

Let C ⊂ Pn be a smooth curve and p, q be two distinct points. Then we may
consider p and q as divisors on C. In this terms if p ∼ q then we may consider
a (sub)linear system of dimension 1 in LC(p) and define an injective morphism
ϕ : C → P1. It is easy to see that ϕ is a bijection, and not too difficult to prove
that it is an isomorphism, you may confront the section 1.6 on very ample linear
systems. This shows that two points on a curve are linearly equivalent if and only
if the curve is P1. In particular the degree of a linear system is not enough, in
general, to characterize the linear system.

Let Q ⊂ P3 be a smooth quadric of equation (x0x3 − x1x2 = 0). Then Q ∼=
P1 × P1, via the Segre embedding

φ : P1 × P1 → P3

given by φ([t0, t1][s0, s1]) = [t0s0, t0s1, t1, s0, t1, s1]. Let F1 = P1 × [1, 0] and F2 =
[1, 0] × P1 be two divisors and U = P1 × P1 \ (F1 ∪ F2). Then U ∼= A2 and if we
consider a divisor D ⊂ Q we have D|U = (f) for some rational function on U , cfr
Example 1.1.7. Therefore D ∼ (f)+d1F1 +d2F2, for some integer d1 and d2. This
shows that any divisor on Q is uniquely determined by its bidegree (d1, d2). Let
C ⊂ Q be a curve of bidegree (1, 2) then C ∼= P1 and degF1|C 6= degF2|C therefore
F1 6∼ F2 (the restriction of two linearly equivalent divisors is linearly equivalent).
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Note that if we consider Λ, the Linear system generated by F1 and P1 × [1, 1], then
φΛ is the canonical projection onto the second factor, and similarly for F2.

1.5. The happy life of surfaces: intersection and resolution

In this section we fix a smooth projective surface S. This allows us to give self
contained and rather elementary proofs of general results: intersection theory and
resolution of the indeterminacy of rational maps. Let us start with intersection and
consider C,C1 ⊂ S two distinct prime divisors (i.e. two irreducible curves). Our
aim is to define the intersection number between C and C1 and to prove that it is
costant in the linear equivalence class.

The definition is easy to get

Definition 1.5.1. Let C,C1 ⊂ S be irreducible reduced distinct curves and
assume that x ∈ C ∩C1 and f , respectively f1 is an equation of C, respectively C1,
in OS,x. The intersection multiplicity at x is

mx(C ∩ C1) := dimkOS,x/(f, f1).

The intersection multiplicity of C and C1 is just the sum

C · C1 =:
∑

x∈C∩C1

mx(C ∩ C1)

Remark 1.5.2. By Nulltellensatz OS,x/(f, f1) is a finite dimensional k-vector
space. Intuitively seems the right definition if both C and C1 are smooth at x and
intersect transversely then f and f1 generate the maximal ideal and therefore the
intersection multiplicity is 1. For those familiar with sheaves one can define a
skyscraper sheaf supported on C ∩C1 and such that the global section correspond to
the number C · C1.

Exercise 1.5.3. Let l ⊂ P2 be a line and C a plane curve. Check that∑
x∈l∩C mx(l ∩ C) = degC.

Note that the intersection defined extends by linearity to any pair of divisors
without common components in the support.

Proposition 1.5.4. The intersection number is invariant in a linear equiva-
lence class(i.e. if C ∼ C1 then C · D = C1 · D for any irreducible divisor D with
D 6= C and D 6= C1).

We prove the result via a reduction technique. First we prove it for the linear
system LX(1). Let Γ ⊂ S ⊂ PN be a prime divisor. It is clear that if D ∈ LS(1) is
a general element than D ·Γ = deg Γ, the degree of the curve Γ, that is the number
of points in common with a general hyperplane. To extend it to any hyperplane we
use the following.

Lemma 1.5.5. Let Γ ⊂ PN be a curve. Let πp : PN 99K PN−1 be the projection
from a point p ∈ PN and fp its restriction to Γ. If there exists a line l ⊂ PN such
that fp is not birational for a general point p ∈ l, then Γ is a plane curve (i.e.
< Γ >∼= P2).

Proof. Let l ⊂ PN be such a line and fix a general point x ∈ Γ. Then
for a general point p ∈ l the line < p, x > intersect. Γ \ {x}. This shows that
Γ ⊂< l, x >. �
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Remark 1.5.6. The Lemma is a special case of a more general result of Segre
about the locus of points where the projection of a variety is not birational [CC].

Lemma 1.5.7. Let D ∈ LS(1) be any divisor and Γ an irreducible reduced curve.
Assume that Γ 6⊂ SuppD then D · Γ = deg Γ.

Proof. Let H ⊂ PN be any hyperplane. Since Γ ⊂ S then by definition

H · Γ =
∑

x∈H∩Γ

mx(HS ∩ Γ)

By Lemma 1.5.5 we may birationally project Γ to P3 from a general codimension
4 linear space contained in H. Let π be the map, Γ1, S1, and H1 the projections
of Γ, S, and H respectively. Then H1 = (h1 = 0) is a plane, S1 = (f1 = 0) and,
by Lemma 1.5.5, Γ1 is a curve of degree deg Γ. Moreover we may assume that π|S
is an isomorphism in a nbhd of H ∩ Γ (check this as an exercise). Now let p ∈ H1

be a general point and πp : P3 99K P2 the projection from p. Let Γ2 and H2 be the
projection of Γ1 and H1. Then again by Lemma 1.5.5 deg Γ2 = deg Γ1 = deg Γ and
H2 is a line. Let S2 = (f2 = 0) be the cone over Γ2 with vertex p. Let x ∈ Γ1 ∩H1

be a point. By definition we have

mx(H1 ∩ Γ1)S1 = dimOS1,x/(h1, f2) = dimOS2,x/(h1, f1) = mx(H1 ∩ Γ1)S2 .

On the other hand S2 is a cone with vertex p and H1 3 p, therefore

mx(H1 ∩ Γ1)S2 = dimOS2,x/(h1, f1) = mπp(x)(H2 ∩ Γ2).

This yields ∑
x∈H∩Γ

mx(H ∩ Γ) = H · Γ = H2 · Γ2 =
∑

x∈H2∩Γ2

mx(H2 ∩ Γ2),

The intersection H2 · Γ2 is given by a line and a plane curve therefore, by Exer-
cise 1.5.3 ∑

x∈H2∩Γ2

mx(H2 ∩ Γ2) = deg Γ2 = deg Γ.

�

We are now ready to prove Proposition 1.5.4.

Proof of Proposition 1.5.4. Let C ∼ C1 be prime divisors on S and D a
fixed divisor. For m� 0 there exists an effective divisor ∆ such that C+∆ ∈ LS(m)
and Supp ∆ is disjoint from (C ∩ D) ∪ (C1 ∩ D). Let ν : PN → PM be the mth

Veronese embedding. Then by Lemma 1.5.7 ν∗(C+∆) ·ν∗(D) = ν(C1 +∆)∗ ·ν∗(D).
This is enough to conclude that ν∗(C) · ν∗(D) = ν∗(C1) · ν∗(D), and since ν is an
isomorphism, cfr Exercise 1.7 a), yields

C ·D = C1 ·D.
�

Thanks to proposition 1.5.4 and the possibility to move the support of a divisor
away from any subvariety we may define the intersection in a more general way

Definition 1.5.8. Let D and D1 be divisors on a smooth surface S. Then the
intersection D ·D1 := C · C1, for any pair of divisors C ∼ D and C1 ∼ D1 with C
and C1 without common components.

There are special important cases to keep in mind.



1.5. THE HAPPY LIFE OF SURFACES: INTERSECTION AND RESOLUTION 15

Corollary 1.5.9. Let S be a surface and ϕ : S → PN a morphism. Let
D ∈ ϕΣ be a divisor then

• if dimϕ(S) < 2 then D2 := D ·D = 0
• if ϕ is generically finite of degree d then D2 = ddegϕ(S).
• if D1 and D2 are effective divisors without a common component then
D1 ·D2 ≥ 0.

• for any divisor D and f ∈ K(X), D · (f) = 0.

Corollary 1.5.10 (Bezout theorem for plane curves). Let C and D be two
plane curve without a common component of degree γ and δ respectively. Then
C ·D = γδ.

It is important to stress a further application of Proposition 1.5.4

Corollary 1.5.11. Let f : S → Y be a birational morphism between smooth
surfaces. Let C ⊂ S be a curve that is contracted by f , D ∈ Cl(S), and A ∈ Cl(Y ).
Then C2 < 0 and D · f∗A = f∗D ·A.

Proof. As we already observed f∗A · C = 0 for any divisor. On the other
hand if SuppA 3 f(C) then f∗A = AS + aC + ∆ for effective divisors AS , and ∆
not containing C in the support. Therefore

0 = f∗A · C = aC2 + (AS + ∆) · C
The second addend is positive therefore the first one is negative.

By Proposition 1.5.4 we may choose a divisor A1 ∼ A away from the exceptional
locus of f−1 and such that Supp(f∗A1) does not contain any irreducible component
of D. That is we may assume that f is an isomorphism in a neighborhood of A1.
Hence we have

D · f∗(A) = D · f∗(A1) = f∗D ·A1 = f∗D ·A.
�

Remark 1.5.12. For arbitrary varieties X intersection theory is much more
complicate but one can define an intersection theory for any pair of subvarieties Z
and W such that dimZ+ dimW = dimX,[Fu]. The simplified version for surfaces
is due to the fact that the only case is that of curves and the intersection number
for curves is just the degree of the restricted linear system. All the above could
be generalized to the intersection of divisors and curves on an arbitrary smooth
varieties with some effort, while the general case is of a totally different magnitude
of difficulty.

The other result that for surfaces is significantly simplified is resolution of the
indeterminacy of maps. The main reason is that for surfaces the indeterminacy is
given by a bunch of points and therefore it is enough to blow them up sufficiently
many times.

Let me briefly recall the blowing up construction. The blow up is a local
construction in a nbhd of a subvariety. To simplify everything we assume that
Z ⊂ An is a complete intersection given by the equations (f0 = . . . = fr = 0).
Then consider the subvariety

BlZ(An) := {([t0, . . . , tr], (x1, . . . , xn))|fitj = fjti} ⊂ Pr × An.

Consider the natural projections p1 : BlZ(An)→ An and p2 : BlZ(An)→ Pr.
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Definition 1.5.13. The variety BlZ(An) is called the blow up of An along Z,
and p−1

1 (Z) is the exceptional divisor of the blow up.

It is easy to see that p−1
1 is an isomorphism outside Z (if at least one of the fi

is non zero then the solution is unique), while p−1
1 (z) ∼= Pr for any point z ∈ Z.

To get a geometric flavor of the fiber over a point in Z assume O := (0, . . . , 0) ∈
Z and assume that TOZ = (x0 = . . . = xr = 0) and fi = xi + qi, for i = 0, . . . r.
Consider a point p := (a1, . . . , an) 6∈ TOZ and the line lp :=< p, a > with parametric

equation xi = λai. We may assume that a0 6= 0 then the preimage p−1
1 (lp∩(An\Z))

has parametric equation xi = λai and

ti =
ai

a0 + λui
t0 + λsi.

Therefore in the limit point for λ = 0 we have the point (O, [a0, a1, . . . , ar]). This
shows that the point in p−1

1 (O) may be considered as elements in (TzZ)⊥, that is
the complement to the tangent space at z of Z.

Further note that the coordinate hyperplane Hi ⊂ Pr given by (ti = 0), are
pulled back to

Fi := p∗2(Hi) = p−1
1|An\Z((fi = 0)).

In particular ∩ri=0Fi = ∅.

Remark 1.5.14. The blow up is a much more general construction, one can
blow up any ideal in any algebraic variety and this blow up is uniquely determined,[Ha].

Definition 1.5.15. Let D ⊂ X be a prime divisor and f : Y → X a birational
map. Let V ⊂ Y and U ⊂ X be dense open subset where f−1 restricts to an
isomorphism. The strict transform of D is

DY := f−1(U ∩D).

Remark 1.5.16. Since a birational map is a morphism outside a codimension
2 the strict transform is a well defined Weil divisor. Note that in general the linear
equivalence is not preserved by the strict transform.

For the moment we are interested in blowing up points on a smooth surface.
Let µ : Y → S be the blow up of a smooth point x with exceptional divisor E ∼= P1.

Observe that Y \E ∼= S \{x}. Therefore any prime divisor D ∈ Cl(Y ) we have

µ∗D = DY + aE,

for some integer a. Note further that if D is effective and Supp(D) 3 x then a > 0.

Lemma 1.5.17. a = multxD.

Proof. it is enough to consider the blow up of A2 in the origin (0, 0). Let

D = (p = 0) with p =
∑d
i=m pi, for pi ∈ k[x1, x2]i and m = mult(0,0)D. Let

Y → A2 be the blow up with Y ⊂ A2 × P1 with equations x1t1 = x2t0. In
particular on the open affine where t0 6= 0 the local equation of Y is x2 = t1x1,
and the local equation of E is x1 = 0. Then a local equation of µ∗(D) is obtained
substituting x2 with t1x1. This gives the required

µ∗(D) = (xm1

d∑
i=m

p̃i(x1, t1) = 0)

�
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Exercise 1.5.18. Compute the strict transform of the following curve along
the blow up of (0, 0) ∈ A2:

C1 = (x+ y2 = 0)
C2 = (xy + x3 + y3 = 0)
C3 = (x2 − y3 = 0)

Arguing as usual we have

Cl(Y ) = Cl(S)⊕ Z < E > .

For any divisor D ∈ Div(S) we may associate D1 ∼ D with Supp(D1) 63 x,
therefore µ∗D is a divisor not intersecting E. In particular µ∗D · E = 0 and
(µ∗D)2 = D2. On the other hand if we fix a smooth divisor D passing through
x, by Lemma 1.5.17 we have µ∗D = DY + E, with DY smooth and DY · E = 1.
This yields E2 = −1. This completely determines the divisors on Y and their
intersection behaviour.

For the canonical class we have

KY = µ∗KX + eE

for some integer e. To determine e note that E ∼= P1 and E2 = −1 therefore
adjuntion formula 1.2.3 and the computation 1.2.2 yield

−2 = KY · E + E · E = KY · E − 1,

that is KY · E = −1.
Let us summarize this computations

Proposition 1.5.19. Let µ : X → S be the blow up of a point x in a smooth
surface S, with exceptional divisor E. Then

• E ∼= P1 and E2 = KX · E = −1,
• KX = µ∗KS + E,
• µ∗D · E = 0,
• µ∗D = DX +mE where m = multxD and Supp(DX) 6⊃ E.

Definition 1.5.20. Let Σ be a linear system on S and ε : Y → S be the
blow up of a point x with exceptional divisor E. Then the multiplicity of Σ at x,
multx Σ, is the multiplicity of a general element of Σ in x. The strict transform
linear system is

ΣY = ε∗Σ− (multx Σ)E.

It is important to stress the notion of equivalent birational maps with a defini-
tion.

Definition 1.5.21. Let f : X 99K Y and g : X ′ 99K Y ′ be two birational maps.
We say that f is equivalent to g (as birational maps) if there are open dense subsets
U ⊂ X and V ⊂ Y , U ′ ⊂ X ′ and V ′ ⊂ Y ′ and isomorphisms ψ : U → U ′ and
φ : V → V ′ such that φ(f(x)) = g(ψ(x)) for any x ∈ U and f|U : U → V is an
isomorphism.

Remark 1.5.22. Let Σ be a linear system on S and µ : X → S be the blow up
of a point x ∈ S with exceptional divisor E. Let ΣX be the strict transform linear
system. Let ϕΣ and ϕΣX be the map induced by Σ and ΣX . Then by definition

ϕΣX |X\E = ϕΣ|S\{x}.

Therefore ϕΣ and ϕΣX are equivalent birational maps.
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We are ready to prove the resolution result we are looking for.

Theorem 1.5.23. Let ϕ : S 99K PN be a rational map then there exists a
smooth surface Y and morphisms p : Y → S and q : Y → PN such that q = ϕ ◦ p
where ϕ is defined. Furthermore we may choose p as a sequence of blow ups of
smooth points.

Proof. Let Z be the base locus of Σϕ. Then by Proposition 1.4.5 Z is just a
bunch of points. Let D ∈ Σϕ be a general element and fix a point x ∈ Bs Σϕ, then
m = multxD > 0. We prove the claim by induction on Σ2

ϕ. Let µ : Y → S be the
blow up with exceptional divisor E. Then DY = µ∗D −mE. This yields

D2
Y = D2 −m2 < D2.

Since the self intersection of a linear system without fixed components is non neg-
ative this concludes the proof. �

Remark 1.5.24. A similar result is true for any algebraic variety, but the proof
requires more sofisticated techniques.

A special result for surfaces, a bit beyond our possibilities, is Castelnuovo
contraction Theorem

Theorem 1.5.25. Let S be a smooth surface and E ⊂ S a curve with E2 = −1
and E ∼= P1. Then there is a morphism ϕ : S → S1 that contracts E and ϕ is the
blow up of a smooth point.

For surfaces, and conjecturally for any variety, it is true a much stronger result
than the resolution we proved, called factorization Theorem.

Theorem 1.5.26. Let ϕ : S 99K S1 be a birational map between smooth surfaces.
Then there is a smooth surface Z and two morphisms p : Z → S and q : Z → S1

such that q = ϕ ◦ p (as birational maps) and both p and q are a succession of blow
ups of smooth points.

Proof. Thanks to Theorem 1.5.23 it is enough to prove that any birational
morphism q : S → S1 factors via blowing ups. If q−1 is a morphism we are done.
Assume that this is not the case and let

S1
f← Z

g→ S

be the resolution of q−1. Let F ⊂ Z be a curve contracted by f then F is contracted
by either g or q. By Theorem 1.5.23 the morphism f is a sequence of smooth
blow ups. Therefore all curves contracted by f are P1 and there exists a curve
F , contracted by f with F 2 = −1. If F is contracted by g then by Castelnuovo
Theorem 1.5.25 we may blow it down and substitute Z with the blow down.

Claim 1.5.27. Assume that F is not contracted by g, then g is an isomorphism
in a neighborhood of F .

Proof of the claim. By hypothesis F 2 = −1 and g∗(F ) is a curve con-
tracted by q. Therefore g(F ) · g(F ) < 0. Then F = g∗(g∗(F ))−

∑
eiEi for ei ≥ 0

and Ei exceptional divisors of g. Then

−1 = F 2 = F · g∗(g∗(F ))−
∑

eiEi · F.

By Corollary 1.5.11 F · g∗(g∗(F )) = g∗F · g∗F < 0 and this yields Ei · F = 0 for
any i. �
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The claim, together with Castelnuovo Theorem yields that q factors with the
blow down of g(F ), say S′. Therefore we may substitute S with S′ and repeat the
argument. Since there are only finitely many curves contracted by q this is enough
to conclude. �

1.6. Ample and very ample linear systems

We already saw that base point free linear system defines morphisms and vicev-
ersa, given a morphism there is a base point free linear system associated to it. The
aim question now is to understand if it is possible to characterize linear systems
that produce isomorphisms.

Definition 1.6.1. A linear system Σ on X is very ample if it is base point free
and the associated morphism ϕΣ : X → PN is a closed immersion (i.e. induces an
isomorphism between X and ϕ(x)).

Remark 1.6.2. A very ample linear system is associated to a morphism that is
both bijective and such that the differential has maximal rank at any point. Equiv-
alently the inverse is well defined and algebraic

There is nice and handy geometric way to characterize very ample linear sys-
tems.

Proposition 1.6.3. A linear system Σ on X is very ample if and only if the
following conditions are satisfies:

a) for any pair of point p, q ∈ X there is a divisor D ∈ Σp such that D 63 q
(this is usually said as Σ separates points)

b) for any point p ∈ X and any tangent vector in v ∈ TpQ there is D ∈ Σp
with v 6∈ TpD (this is called separation of tangents).

Proof. Condition a) guaranties that ϕΣ is injective, while condition b) guar-
anties that the differential is of maximal rank, this can be easily seen taking local
equation of ϕΣ in a nbhd of a point. �

Definition 1.6.4. A linear system Σ is ample if for some, and hence any,
D ∈ Σ there is a positive m such that |mD| is very ample. A linear system Σ is
semi-ample if some multiple is base point free.

Remark 1.6.5. Despite the appearence ample linear system are much easily
treated than very ample ones. This is due to the fact that ampleness is “essentially”
a numerical property of divisors.

Semi-ample linear systems, and their opposite, are quite often very important
in higher dimensional algebraic geometry. We will not dwell on these here.

It is useful here to recall an ampleness criteria due to Nakai–Moeshizon

Theorem 1.6.6. Let S be a smooth surface then D is ample if and only if
D2 > 0 and D · C > 0 for any curve C ⊂ S.

Remark 1.6.7. Note that it is not enough the second condition alone. An
example is the projective plane blown up in 13 general points. Note that there are
no quartics singular at one point and passing through the remaining 12. On the



20 1. NEDDED STUFF

other hand if we let µ : S → P2 the blow up of the 13 points, l the pull back of a
line and Ei the exceptional divisor of the ith blow up then

4l − 2E0 −
12∑
i=1

Ei

has positive intersection with any effective curve and self intersection 0.

Later on, maybe, we will introduce the cone of effective curves and get an
ampleness criteria based only on intersection with curves.

1.7. Exercises

(1) Complete Remark 1.2.2.
(2) Prove Corollary 1.5.9.
(3) Use the fact that, for X smooth, Cl(X × A1) ∼= Cl(X) to prove that for

a smooth quadric Q the class group satisfies Cl(Q) = Z⊕ Z.
(4) Prove that the linear systems |L(d)| on Pn are very ample for any d.
(5) Let C ⊂ P2 be a smooth curve and p ∈ C a point. Prove that the

projection from p is an isomorphism on the image if and only if C is a
conic.

(6) Let Q ⊂ P3 be a smooth quadric and p ∈ Q a point. Let πp : Q 99K P2

be the projection from p. Show that πp is birational and determine the
indeterminacy locus of πp and π−1

p

(7) The previous exercise shows that Q is rational, determine a projection
from V2,2 as in Proposition 1.4.9.

(8) Show that any irreducible Quadric of any dimension is rational and de-
termine a projection from V2,n for the smooth ones.

(9) Let A := {p1, p2, p3} ⊂ P2 be three points in general position. Consider
the linear system ΣA of conics through A. Determine the map associated
to ΣA and give explicit equations for the map.

(10) Do the same with 2 points {p0, p1} and a tangent direction at p0.
(11) Let p1, . . . , p6 ⊂ P2 be points such that no 6 are on a conic and not 3 on

a line. Let Σ be the linear system of cubics through the points p1, . . . , p6.
Show that the map ϕΣ is birational and maps P2 onto a cubic surface in
P3. Try to determine the linear system giving the inverse map.

(12) Try to understand what happens is we choose either 6 points on a conic
or 3 points on a line in exercise 12.

(13) Produce an effective factorization in blows up and down of the rational
maps in Exercise 10,11, 12,13.

(14) Prove that there is not a d0 such that all rational varieties of dimension
n are projection of Vd0,n.



CHAPTER 2

Rational surfaces

We aim to study and classify rational surfaces.

2.1. Examples of rational surfaces

Let us start with the following useful Lemma.

Lemma 2.1.1. Let X be a variety and D ⊂ X a divisor. Assume that D is
locally defined by a single equation and it is smooth. Then X is smooth along D.

Proof. Let x ∈ Supp(D) be a point and f ∈ OX,x a local equation of D. By
hypothesis the local ring OD,x is regular. On the other hand OD,x = OX,x/(f).
Therefore dimOX,x = dimOD,x + 1 and OX,x is regular as well. �

Example 2.1.2. Let x ∈ P2 be a point and µ : X → P2 the blow up with
exceptional divisor E. Then Cl(X) is generated by Cl(P2) and E, that is

Cl(X) = Z < µ∗L(1) > ⊕Z < E > .

We may also give a slightly different description of divisors on X. Let l ⊂ P2 be a
line through x and F ⊂ X its strict transform on X, then F = µ∗(l)− E, F 2 = 0,
F · E = 1. We already know that E2 = −1 therefore this is enough to prove that
Cl(X) is generated by F and E with intersection matrix

F 2 = 0, F · E = 1, E2 = −1.

In particular |F | defines a morphism onto P1, this is the resolution of the projection
of P2 from the point x. Moreover E is the unique irreducible effective divisor with
negative self intersection.

The surface X can be realized as a cubic surface in P4, internal projection of
V2,2. It is also possible to see X in the following way. Fix a line r ⊂ P4 and a
conic Γ ⊂ P4 in general position. Let ω : r → Γ be a linear automorphism and S
the union of lines spanned by the corresponding points y and ω(y).

Let us prove that S ∼= X. First we prove that degS = 3. Let H ⊂ P4 be a
general hyperplane passing through r. Then H ∩ Γ is a pair of points, q1 and q2.
Therefore

H ∩ S = r ∪ l1 ∪ l2,
where li is the line passing through the point qi. This shows, by Lemma 2.1.1, that
S is smooth away from r. Arguing similarly with hyperplane contaning the span of
the conic Γ we conclude that S is smooth. Moreover this also shows that l1 ∼ l2,
l2i = 0, and r2 = −1.

Fix a line L ⊂ S, spanned by points on r and Γ. Consider the linear system
Σ ⊂ LS(1) of hyperplane sections containing L. Then Σ has L as a fixed component
and the general element D ∈ Σ is

D = L+ C,

21
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for C a smooth conic with C · r = 0 and C · C = 1. The base locus of Σ is L and
the linear system Λ := Σ− L is base point free. Let ϕΛ : S → P2 be the associated
morphism. Then Λ2 = 1 and ϕΛ is a birational map that contracts the line r to a
smooth point of p0 ∈ P2, and maps the lines of S to lines through p0. This shows
that r is the only curve contracted by ϕΛ, and it is enough to conclude

Definition 2.1.3. The surface X has many names. It is the blow up of P2 in
one point, it is called the Segre scroll S(1, 2) or the Segre–Hirzebruch surface F1.
The group Cl(X) is generated by F and C0 with F 2 = 0, C2

0 = −1 and F ·C0 = 1.
The morphism π : X → P1 is associated to |F |, for any p ∈ X let Fp = π−1(π(p)).

Remark 2.1.4. If you are familiar with vector bundles there is also a descrip-
tion of X as follows F1 = PP1(O ⊕O(−1)), this also justifies the name F1, we will
see that Fe is defined for any non negative integer e. All fibers of π are isomorphic
to P1, they are the strict transform of a line in P2.

Let ν : Y → F1 be the blow up of a point p outside C0 with exceptional
divisor E. Then Y has still a morphism onto P1 but there is a reducible fiber
composed by two (−1)- curves, E and Fp. Therefore Y contains 3 (−1)-curves and
by Castelnuovo we may contract any of them. If we blow down E we go back to
F1. If we blow down C0 we go onto a surface isomorphic to F1. If we blow down
Fp instead the resulting surface admits two morphisms onto P1 and it is P1 × P1.

The latter may be seen as follows. Let Q = P1 × P1 be a smooth Quadric and
blow up one point p. Then the two fibers of the ruling passing through p becomes
(−1) curves and it is easy to see that the resulting surface is Y .

This produces a rational map φ : F1 99K Q called elementary transformation.
This kind of map can be extended to a wider class of surfaces.

Definition 2.1.5. A surface S is ruled if it admits a morphism π : S → C
onto a curve C with all fibers isomorphic to P1. For any p ∈ S Fp = π−1(π(p)).

An elementary transformation of a ruled surface S is a birational map φ :
S 99K S1 obtained via the blow up of a point p ∈ S and the blow down of the strict
transform of Fp.

Remark 2.1.6. Let S be a ruled surface and φp an elementary transformation.
Then φp(S) is again a ruled surface. Moreover Cl(φp(S)) is generated by the strict
transform of generators of Cl(S).

Definition 2.1.7. Let {p1, . . . , pm} ⊂ C0 ⊂ F1 be a collection of m distinct
point and Φm the composition of the m-th elementary transformation centered in
the points pi. Then

Φm(F1) =: Fm+1

is the Segre–Hirzebruch surface.

Definition 2.1.8. Let r be a line and Γ a rational normal curve of degree a. Fix
an linear automorphism ω between r and Γ. Then the Segre scroll S(1, a) ⊂ Pa+2

is the union of lines spanned by corresponding points of r and Γ.

Exercise 2.1.9. Show that S(1, a) is a smooth surface and prove that S(1, a) ∼=
Fa−1. Observe that the internal projection of a rational normal curve Γa ⊂ Pa is
the rational normal curve of degree a− 1 and S(1, a) is covered by rational normal
curves of degree a. Then an internal projection, outside the line r, of S(1, a) is
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S(1, a− 1) and this operation is equivalent to an elementary transformation. Then
use Example 2.1.2.

Remark 2.1.10. For those familiar with vector bundles Fe ∼= PP1(O⊕O(−e)).

Lemma 2.1.11. The surface Fe is ruled, Cl(Fe) has rank 2 and it is generated
by F and C0 with F 2 = 0, F · C0 = 1 and C2

0 = −e.

Proof. It is a simple computation that an elementary transformation cen-
tered on C0 decreases the self intersection by 1 and leaves unchanged the other
intersection products. �

2.2. Classification of rational surfaces

Lemma 2.2.1. Let C be a rational curve and f : C → Z a non constant
morphism onto a smooth curve. Then Z is a rational curve.

Proof. Let P1 and P2 be points in Z. Fix Qi ∈ f−1(Pi) a point. Then
f∗Qi = Pi and by Equation (1) we have P1 ∼ P2. This is enough to conclude by
Example 1.4.10. �

Remark 2.2.2. If you are familiar with the notion of genus of a curve then
Lemma 2.2.1 has a much more general setting. It is true that any, non constant,
morphism between curves cannot increase the genus of the curve. This may be seen
for instance via Hurwitz formula.

We are almost ready to study rational surfaces. The final ingredient we need
is the so called Tsen’s Theorem

Theorem 2.2.3 (Tsen’s theorem). Let F ∈ k[x][x1, . . . , xn]m be a polynomial.
Assume that m < n. Then F (x1, . . . , xn) = 0 has a solution in polynomials xi =
pi(x).

Proof. We are looking for a polynomial solution xi =
∑h
j=0 uijx

j with un-
known coefficients. If we plug these into F we obtain a polynomial in x and we
have to vanish all coefficients. For h� 0 the set of equations is asymptotically mh
and the number of variables is asymptotically nh. By hypothesis n > m therefore
the solution exists by dimensional reason for sufficiently big h. �

Proposition 2.2.4. Let S be a rational ruled surface with a structure morphism
π : S → C. Then C ∼= P1. There is section σ : C → S, that is a curve D ⊂ S
with D · F = 1 and Cl(S) is two dimensional. Moreover there is at most a unique
irreducible curve with negative self intersection and S ∼= Fe for some e.

Proof. The surface S is rational, therefore there is a rational curve Γ ⊂ S
such that π|Γ : Γ→ C is dominant. Then by Lemma 2.2.1 C ∼= P1.

Claim 2.2.5. There is a birational map ϕ : S 99K P1 × P1 that preserves the
fibration π.

Proof. By adjunction formula −KS|F = L(2), then we may consider S as a
conic over the non algebraically closed field K = k(x). That is S is birational to a
conic

(q(x0, x1, x2) =
∑

aij(x)xixj = 0) ⊂ P2 × A1,
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with aij(x) ∈ k[x]. Then by Tsen’s theorem the conic has a point. And projection
from the point shows that S is birational to

Y = (x1 = 0) = P1 × A1 ⊂ P2 × A1.

This induces the required birational map. �

To conclude it is enough to prove that the map ϕ can be factored by a chain
of elemenatry transformations. Let Σ = ϕ−1

∗ (A) be the pencil in S induced by
the canonical projection onto the second factor. Then Σ · F = 1 and the general
element of Σ is a smooth irreducible rational curve, with Σ · F = 1. Let y ∈ Bs Σ
be a base point and µ : Z → S the blow up of y. Let FyZ , the strict transform
on Z of the fiber through y. Then Fy is a (−1)-curve and we may contract it to
a smooth point via ν : Z → S1. Note that ΣZ · FyZ = 0 therefore ν∗(ΣZ) =: Σ1

is a linear system without fixed components and Σ2
1 = Σ2 − 1. Then after finitely

many steps we may assume that Σh is a base point free pencil on Sh. This takes
us to a smooth surface Sh admitting two distinct morphisms onto P1 all of whose
fibers are smooth rational curves. To conclude do the following exercise.

Exercise 2.2.6. Prove that:

• S̃ ∼= P1 × P1 (at least 2 different proofs)
• this chain transformations factors ϕ and realizes S as Fe for some e.

�

Remark 2.2.7. The above Proposition is true in a much wider contest, see
Noether-Enriques Theorem, [Be]. It is enough to have one fiber isomorphic to P1

to get the same statement up to a birational modification.

To conclude the classification we are aiming at we introduce notations that may
seem artificial at a first glance.

Definition 2.2.8. A Q-divisor is an element of Cl(S)⊗Q. Let D be a Q-divisor
we say that D is nef if D ·C ≥ 0 for any curve C ⊂ S. Let π : S → X be a morphism
and D1 and D2 divisors. Then D1 ≡π D2 (D1 is π-numerically equivalent to D2)
if if for any curve C ⊂ S, such that π(C) is a point, D1 · C = D2 · C. If π is the
constant map we simply say that D1 ≡ D2 (D1 and D2 are numerically equivalent).

Remark 2.2.9. The above notions are at the core of Minimal model program
and give us the opportunity to say a few words about it, as usual restricting to the
surface case.

Let S be a smooth surface. Let

N1(S) := Cl(S)/ ≡ ⊗R,
this is a finite dimensional vector space. Inside this space we have the convex cone
of effective divisors (note that when talking about cones we always consider only
non negative linear combination), and also the convex cone of ample divisors (check
it is a convex cone) clearly the latter is in general not a closed cone and its closure
is given by curves that have non negative intersection with any curve (for surfaces
this is a consequence of Nakai-Moishezon ampleness criteion in higher dimension
see the following Kleiman criterion).

Definition 2.2.10. A divisor D is pseudoeffective if it is in the closure of the
cone of effective divisors.
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Remark 2.2.11. A nef divisor is always pseudo-effective. It is difficult in
general understand pseudo effective non nef divisors.

We may define N1(S) as the real vector space given by real linear combination of
curves (1-cycles) modulo numerical equivalence. The intersection product induces
the pairing

N1(S)×N1(S)→ R,
or if you prefer N1(S) is the dual vector space of N1(S), they have the same
dimension and any divisor defines a linear form on N1(S) (in general this may be
seen as a consequence of Poincare duality). In particular to any divisor D ∈ Cl(S)
we may associate the hyperplane of curves where the intersection product vanishes.
There is a natural convex cone also in N1(S) the cone of effective curves NE(S).
This time it less immediate but also this cone is in general not closed and its closure
(with respect to the topology induced by a norm) encodes an unbelievable amount
of information.

Theorem 2.2.12 (Kleiman’s ampleness criterion). A divisor D is ample if and
only if it is positive on NE(S).

In N1(S) there is an hyperplane more important than the others. The one
associated to the canonical class KS . Minimal model program is based on the
study of curves that are negative with respect to the canonical class. That is they
sit in the negative half-space with respect to the hyperplane defined by the canonical
class, KS<0.

Note that if C is an irreducible curve and C2 ≤ 0 then C is on the boundary
of NE(S). Indeed if C is not on the boundary it means that given any ample
divisor A there is a small enough ε > 0 such that C− εA is still in NE(S) therefore
(C − εA) · C ≥ 0 and this forces C2 > 0.

In particular all (−1) curves and all ruled structure are on the boundary of
NE(S) and contained in the negative half space with respect to the canonical
class. All curves on the boundary are called rays and the one in the KS<0 are
called extremal rays. It can be proved that these are the only negative rays for
surfaces different from P2.

The following is again a definition inherited by Minimal Model Program.

Definition 2.2.13. Let D =
∑
diDi be a Q-divisor on X with di ≤ 1. Then

the pair (X,D) has canonical singularities if there exists a log resolution ν : Y → X
such that

KY +DY = ν∗(Ks +D) +
∑

aiEi

with ai ≥ 0 for any i. We say that (X,D) is not canonical at x if, after reordering
the indexes of the log resolution, KY + DY = ν∗(Ks + D) +

∑
aiEi, with a0 < 0

and ν(E0) = x.

Exercise 2.2.14. Let S be a smooth surface, x ∈ S a point and D a Q-
divisor. Then (S,D) is not canonical at x if and only if multxD > 1 (note that if
D =

∑
diDi then multxD :=

∑
di multxDi).

Remark 2.2.15. The idea is that canonical singularities preserves elements of
canonical divisors indeed ν∗(KY + DY ) = KS + D. The presence of a negative
term in the rhs forces the lost of canonical sections. We call them singularities
because if D is trivial they are related to the singularities of embedding defined by
the canonical class.
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Theorem 2.2.16. Let S be a rational surface then S is either P2 or there is a
morphism f : S → Fe for some e.

Proof. Let S be a rational surface. If there exists a morphism π : S → P2

then either S ∼= P2 or there is a point x ∈ P2 such that π factors with the blow up
of x. Therefore S admits a morphism onto F1.

Let χ : S 99K X be a birational map, with X either P2 or Fe. Fix a very ample
linear system HS on S and let H = χ∗HS its strict transform.

We want to use the ruled structure on Fe and the special Picard of P2 to produce
relatively trivial Q-divisors on X.

If X ∼= Fe there is an integer a such that the Q-divisor

KX + 2/aH ≡π 0

with π a ruled structure (a is uniquely determined unless X = F0). If X ∼= P2 there
is a unique iteger a such that KX + 3/aH ≡ 0.

From now on we fix this notation. The surface X is either Fe or P2 and b ∈ Q+

is such that KX + 1/bH ≡π 0, where π is either a ruled structure or the constant
map. Note that for HS ample enough we may always assume that b > 1. Our first
task is to determine a “numerical” criterion that forces χ to be a morphism.

Claim 2.2.17. If KX + 1/bH is nef and has canonical singularities then χ is a
morphism.

Proof of the Claim. Let

Z
p

��

q

  
S //χ

X

be a resolution of the map χ, and E0 ⊂ Z be a p-exceptional (−1)-curve. We may
assume that E0 is not q-exceptional. Then by construction

(KZ + 1/bHZ) · E0 = (q∗(KX + 1/bH) +
∑
i

aiEi) · E0,

on the other hand by hypotheis q∗(KX +1/bH) is nef and ai ≥ 0, therefore we have

(KZ + 1/bHZ) · E0 = (q∗(KX + 1/bH) +
∑
i

aiEi) · E0 ≥ 0.

The other side of the triangle gives

(KZ + 1/bHZ) · E0 = (p∗(KS + 1/bHS) +
∑
i

biEi) · E0,

for some non negative bi. Therefore

(p∗(KS + 1/bHS) +
∑
i

biEi) · E0 ≥ 0.

Since E0 is p-exceptional this forces∑
i

biEi · E0 ≥ 0.

To conclude the claim let us derive a contradiction proving that
∑
i biEi·E0 < 0.
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The linear system HS is base point free, therefore

KZ = p∗(KS) +
∑

biEi,

with bi > 0. Up to reordering the indexes we may assume that Ei ∩ E0 6= ∅ if and
only if i ∈ {0, . . . , h}, for some h. Let ν : Z → Z1 be the blow down of E0 to a
point z and g : Z1 → S the factorization of p. This yields

KZ = ν∗KZ1
+ E0

and
KZ1

= g∗(KS) +
∑
i>0

biEi,

with Ei 3 z if and only if i ≤ h. This gives

KZ = p∗KX + (1 +

h∑
i=1

bi)E0 +
∑
i>0

biEi,

and yields

b0 = (1 +

h∑
i=1

bi),

and ∑
i

biEi · E0 =

h∑
i=1

bi − (1 +

h∑
i=1

bi) < 0.

�

Assume that KX+1/bH has not canonical singularities. Since the linear system
H has not a fixed component and b > 1 there are only finitely many non canonical
points. We are assuming that there is a point x ∈ X with multxH > b. If X = P2

we blow up the point and land on F1. If X = Fe after the elementary transformation
centered in x we come up with a linear system H′ over Fe±1 with one point less of
canonical singularities (check it for exercise). After a finite number of these steps
we end up with a linear system with canonical singularities over Fe. Then by the
claim either we conclude or we may assume it is not nef. This forces a = 0, 1 (check
it for exercise). If a = 0 we swap the ruling and proceed again with b1 < b. Since
b ∈ Z/2 after finitely many substitutions either we conclude or we land on F1

Claim 2.2.18. If KF1
+ 2/aH is not nef then we may substitute F1 with P2

Proof. If KF1 + 2/aH is not nef then (KF1 + 2/aH) ·C0 < 0 therefore we may
contract C0 without producing canonical singularities. �

Then the resulting linear system is nef and canonical and by Claim 2.2.17 there
is a morphism onto P2. �

Thanks to Theorem 2.2.16 we are also able to go a bit beyond in MMP. Castel-
nuovo’s Theorem tells us that any (−1) curve is contractible. Let us observe the
following.

Proposition 2.2.19. Let S be a rational surface and x ∈ S a point. Then
there is a rational map ϕ : S 99K Fe, such that ϕ is an isomorphism in a nbhd of x.

Proof. Ifr S ∼= P2 simply blow up a point different from x. Assume that
S 6= P 2. By Theorem 2.2.16 there is a morphism ψ : S → Fe.
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Claim 2.2.20. There is a birational map χ : S1 99K S that is an isomorphism in
a neighborhood of x such that on the surface S1 is defined a morphism f : S1 → F0.

Proof of the claim. exercise �

By the claim we may assume that S admits a morphism ψ onto F0. Let p = ψ(x)
we may also assume that all the ψ-exceptional divisors are mapped to p. We prove
the claim by induction on the dimension of N1(S/
F0). If dimN1(S/F0) = 0 we have finished. Assume that dimN1(S/F0) = m. Let
ν : Z → F0 be the blow up of p. Then ψ = ν ◦ χ factors via ν. Let q = χ(x) be the
image of the point we are interested in. Then dimN1(S/Z) = m − 1 and there is
at least a (−1)-curve E ⊂ Z such that q 6∈ E. Let µ : Z → F1 be the blow down of

E. Then with an elementary transformation we may substitute S with a surface S̃
that dominates F0 and such that dimN1(S̃/F0) = dimN1(S/Z) = m− 1. �

Remark 2.2.21. A variety X is called uniformly rational if for any point x ∈ X
thre is a neighborhood isomorphic to a dense open subset of Pn. The above propo-
sition shows that any rational surface is uniformly rational. In higher dimension it
is still not known weather rationality and uniformly rationality are equivalent.

Proposition 2.2.22. Let C ⊂ S be a smooth rational curve with C2 = 0.
Assume that S is rational then dim |C| > 0, KS · C = −2 and |C| induces a
morphism onto P1.

Proof. Let us first observe that it is enough to prove that dim |C| > 0. If this
is the case then |C| is base point free (otherwise the self intersection cannot be 0).
Therefore KS · C = −2 and the morphism is onto P1 because S is rational. Let
ν : Z → S be the blow up of a point on C. Then C2

z = −1 and we may contract
it with a morphism µ : Z → S1. Then (µ ◦ ν)(C) is a smooth point, x ∈ S1, and
by Proposition 2.2.19 there is a morphism ψ : S1 → Fe that is an isomorphism in
a neighborhood of x. Then via the elementary transformation φψ(X) we conclude
(check the details as an exercise). �

Remark 2.2.23. The proposition is true in the following much wider contest.
S smooth, C rational curve with C2 = 0 then |mC| defines a morphism onto a
curve.

This shows that to all extremal rays we know is associated a “contraction”
morphism. This is true for any extremal ray and is the starting point of the Minimal
Model Program.

2.3. del Pezzo surfaces

We aim to classify rational surfaces with ample anticanonical class. By Theo-
rem 2.2.16 we know that they are blow-ups of either P2 or of a surface Fe.

Definition 2.3.1. A del Pezzo surface S of degree d is a smooth surface with
ample anticanonical class and K2

S = d.

Remark 2.3.2. By either MMP or Castelnuovo criterion such an S is auto-
matically rational.

Let us start noting the following.
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Exercise 2.3.3. Let µ : X → S be the blow in a point then K2
X = K2

S − 1.
Moreover for any e K2

Fe
= 8, and K2

P2 = 9.

By the classification Theorem 2.2.16 we know that either S ∼= P2 or there
is a dominant morphism f : S → Fe, for some e. Hence the exercise, together
with the ampleness criteria of Theorem 1.6.6, shows that any surface with ample
anticanonical class is either P2 or the the blow up of Fe in at most 7 points. Let us
further note the following.

Lemma 2.3.4. Let µ : X → Fe be a morphism. Then −KX is ample only if
e = 0, 1.

Proof. First note that by adjunction formula

KFe · C0 = −2 + e

Then the blow up formula gives

KX · C0X = KFe · C0 + (
∑

eiEi) · C0X .

Therefore KX · C0X < 0 only if KFe · C0 < 0, that is for e = 0, 1. �

Therefore the surfaces we are looking for are blow ups of F1 or F0 in at most 7
points. Something more can be said

Exercise 2.3.5. The blow up of F1 in s is the blow up of P2 in s + 1 points.
The blow up of a quadric in s point is the blow up of P2 in s+ 1 points.

Let us summarize all this construction

Proposition 2.3.6. A del Pezzo surface is either F0 or the blow up of P2 in
at most 8 points.

To conclude the study we need to understand when this condition is also suffi-
cient.

Theorem 2.3.7. A smooth surface is del Pezzo if and only if it is the blow up
of P2 in at most 8 points such that no three are collinear and no 6 lie on a smooth
conic and there is not a cubic curve singular in one point and passing through other
7.

Proof. Let {p1, . . . , p8} be points satysfying the assumptions. Consider the
linear system Λ of cubics passing through the points. Let µ : S → P2 be the blow
up of the 8 points. Then

ΛS = µ∗Λ−
8∑
1

Ei,

KS = µ∗KP2 +
∑

Ei

this yields
ΛS ∼ −KS .

The anticanonical class on S is the strict transform of the linear system of cubics
passing through the 8 points. By Theorem 1.6.6 we have to check the self intersec-
tion and the intersection with other curves. We already know that K2

S = 9−8 > 0.
To conclude let us start observing that any element of Λ is irreducible. Indeed

if this is not the case the cubic has to split in a conic (maybe reducible) and a line.
But then this violates the general assumption on the points. Next observe that
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any element of ΛS is irreducible. Again the possible reducible elements of ΛS are
given by singular cubics passing thorugh 7 points and singular in one point, and
this violates the generality assumption.

Let C ⊂ S be a curve. Note that dim |ΛS | ≥ 1, (actually equality is forces
by the general assumption but we do not need it). Since any element of ΛS is
irreducible and Λ2

S > 0 then −KS · C > 0 for any curve C ⊂ S.
To conclude observe the following claim.

Claim 2.3.8. Let µ : X → Y be the blow up of a point. Let A ∈ Cl(Y ) be a
divisor and assume that AX is ample then A is ample.

Proof of the Claim. Let E ⊂ X be the exceptional divisor. Since AX is
ample then

AX = µ∗A−mE

for some positive integer m. This yields

0 < A2
X < A2.

Let C ⊂ Y be a curve and CX its strict transform then

0 < AX · CX = (µ∗A−mE) · CX = A · C −mE · CX .

Then we may conclude by Theorem 1.6.6. �

�

We may say a bit more with 6 or less points.

Lemma 2.3.9. Let Z := {p1, . . . , p6} ⊂ P2 be points in general position (i.e.
they do not lie on a conic and no 3 on a line). Let Σ ⊂ L(3) be the linear system
of cubics passing through Z, and µ : Y → P2 be the blow up of Z with exceptional
divisors {E1, . . . , E6}. Then ΣY is a very ample linear system.

Proof. We have to prove that there are sufficently many cubics to separate
points and tangents directions. Fix pj and consider the conic through Z \ {pj} and
a general line through pj varying j gives the required separation. �

This shows that any del Pezzo surface of degree d ≥ 3 is embedded in Pd by
the anticanonical system.

Exercise 2.3.10. Prove that a del Pezzo surface of degree 3 contains 27 lines.

Exercise 2.3.11. Try to understand the map associated to |−KS | and |−2KS |
for del Pezzo of degree 1 and 2.

The opposite is also true but it is slightly out of our range. Let S ⊂ Pd be a
smooth surface of degree d. Then S is a del Pezzo surface. In particular d ≤ 9.

Exercise 2.3.12. Let S ⊂ Pd be a smooth surface of degree d. Prove that S
is rational.
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2.4. Noether–Castelnuovo Theorem

The aim of this section is to give an explicit set of generators of the Cremona
group of the plane, that is the group of birational self maps of P2.

Theorem 2.4.1 (Noether-Castelnuovo).
The group of birational transformations of the projective plane is generated by

linear transformations and the standard Cremona transformation, that is

(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1),

where (x0 : x1 : x2) are the coordinates of P2.

Let χ : P2 99K P2 be a birational map which is not an isomorphism. Our first
aim is to factorise it in simpler maps, “elementary links”, and then use them to
prove the Theorem.

The first step is done with a strategy similar to the one used in Theorem 2.2.16.
Let H = χ−1

∗ O(1), the strict transform of lines in P2. Somehow the irregularity,
“twisting”, of the map χ is encoded in the base locus of H. Observe that H is
without fixed components and H ⊂ |O(n)| for some n > 1. Therefore the idea is to
study the singularities of the log pair (P2,H).

Theorem 2.4.2. Let H as above then (P2, (3/n)H) has not canonical singular-
ities.

Proof. Take a resolution of χ

W
p

~~

q

  
P2 //χ

P2

By construction

KW + (3/n)HW = q∗OP2(3(1/n− 1)) +
∑
i

aiEi +
∑
j

bjFj

= p∗OP2 +
∑
i

a′iEi +
∑
h

chGh

where Ei are p and q exceptional divisors, while Fj are q but not p exceptional
divisors and Gh are p but not q exceptional divisors. Observe that the ai’s and
bj ’s are positive integers. Let l ⊂ P2 a general line in the right hand side plane, in
particular q is an isomorphism on l. That is Ei · q∗l = Fj · q∗l = 0 for all i and j.
Since n > 1 we have

(KW + (3/n)HW ) · q∗l = (q∗OP2(3(1/n− 1)) +
∑
i

aiEi +
∑
j

bjFj) · q∗l < 0,

we express this intersection number in a different way

0 > (KW + (3/n)HW ) · q∗l = (p∗OP2 +
∑
i

a′iEi +
∑
h

chGh) · q∗l.

So that ch < 0 for some h. That is (P2, (3/n)H) is not canonical. �

The point of the above result is that the existence of the map χ imposes con-
ditions on linear systems on X. Our first aim is to derive some consequence from
it.
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Let χ : P2 99K P2 be a birational not biregular map. Let χ−1
∗ (O(1)) =: H ⊂

|O(n)| then (P2, (3/n)H) is not canonical. Observe that the linear system H has
not base components. Then, by Theorem 2.4.2, there is a point x ∈ P2 such that

(2) multxH > n/3.

Our aim is to untwist the map χ. We found a badly singular point x let us
blow it up. There is much more than this in the following blow up. Sarkisov theory
tell us that whenever there is a non canonical singularity, coming from a birational
map χ, then there exists a terminal extraction centered on this singularity. In the
surface case this turns out to be always the blow up the maximal ideal of the point
x.

Let ν : F1 → P2 be the blow up of x, with exceptional divisor C0. Let χ′ =
χ ◦ ν : F1 99K P2 and H′ = (χ′)−1

∗ O(1). Let n′ = n−multxH, then

KF1
+ (2/n′)H′ ≡π1

0.

We are in the conditions to apply an Claim 2.2.17. Let us first notice that
KF1

+ (2/n′)H′ is nef. Let f ⊂ F1 a generic fiber of the ruled structure. Then

KF1
+ (2/n′)H′ · f = 0,

by definition. We have to check C0, here is were Sakisov construction plays the
main role,

(KF1 + (2/n′)H′) · C0 = −1 + (2/n′)multxH

=
−n+ 3multxH
n−multxH

> 0

where the last inequality comes directly from equation (2). That is the existence of
non canonical singularities for (P2, (3/n)H). This is again another important step
of Sarkisov theory.

Then by Claim 2.2.17 KF1 + 2/n′H′ is not canonical and the linear system H′
admits a point x′ ∈ F1 with “high multiplicity”.

Let us go on with the same game: blow up x′

ψ : Z ⊃ E → F1 3 x′.

This time Z is not a Mori space, but the fiber of F1 containing x′ is now a
(−1)-curve and we can contract it ϕ : Z → S.

Z
ψ

~~

ϕ

��
F1

// S

We already know that S is either a quadric, F0, or F2.
Let x2 ⊂ S be the exceptional locus of ϕ−1 and H2 the strict transform of H′.

Observe the following two facts:

i) (KF1
+ (2/n′)H2) · f = 0, where, by abuse of notation, f is the strict

transform of f ⊂ F1,

ii) since multx′H′ > H′·f
2 , then (S, (2/n′)H2) has canonical singularities at

x2.
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Then by i) (S, (2/n′)H2) is the next log pair we use. By ii) after finitely
many elementary transformations we reach a not nef pair (Fk,Hr) with canonical
singularities such that

KFk + (2/n′)Hr ≡πk 0.

Observe that NE(Fk) is a two dimensional cone. In particular it has only two
rays. One is spanned by f , a fiber of πk. Let Z an effective irreducible curve in the
other ray. Then

(3) (KFk + (2/n′)Hr) · Z < 0.

Since Hr has not fixed components then Fk is a del Pezzo surface and the only
possibilities are therefore k = 0, 1.

In case k = 1 then what is left is to simply blow down the exceptional curve
ν : F1 → P2, and reach P2 together with a linear system ν∗H2 =: H̃ ⊂ |O(j)|. Note
that in this case, by equation (3),

KF1
+ (2/n′)Hr = ν∗(KP2 + (2/n′)H̃) + δC0,

for some positive δ. Therefore KP2 + (2/n′)H̃ is not nef. In other terms

(2/n′)j < 3,

and

j <
3(n−multxH)

2
< n.

This strict inequality allow to iterate the above argument and after finitely many
steps we untwist the map χ.

In case k = 0 observe that F0
∼= Q2 is a Mori space for two different fibrations,

let f0 and f1 two general fibers. Moreover by equation (3)

(KF0
+ (2/n′)Hr) · f1 < 0.

That is there exists an

(4) n1 < n′

such that
(KF0

+ (2/n1)Hr) · f0 > 0,

and
(KF0

+ (2/n1)Hr) · f1 = 0.

Again by NF inequalities this implies that (F0, (2/n1)Hr) is not canonical and we
iterate the procedure. As in the previous case the strict inequality of equation (4)
allows to conclude after finitely many steps.

We have factorised any birational, not biregular, self-map of P2 with a sequence
of “elementary links”. We now use this information to prove the theorem we are
aiming at.

The first step is to interpret a standard Cremona transformation in this new
language

Exercise 2.4.3. Prove that a standard Cremona transformation is given by
the following links

F1

~~

// F0
// F1

  
P2 P2
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Vice-versa any link of type

F1

~~

// Fa // F1

  
P2 P2

can be factorised by Cremona transformations. hint: A standard Cremona trans-
formation is given by conics trough 3 non collinear points. The link above are
possible only for a = 0, 2. They represents birational maps given by conics with
either 3 base points or 2 base point plus a tangent direction. Try to factorise the
following map

(x0 : x1 : x2)→ (x1x2 : x0x2 : x1x2 + x0x2 + x2
0).

with Cremona transformations.

Let χ : P2 99K P2 a birational map and

(5)

F1

ν1

~~

l0 // Fk
l1 // . . . // F1

  
P2 P2

the factorisation in elementary links obtained in the first part of the proof. Let us
first make the following observation. If there is a link leading to an F1 we can break
the birational map simply blowing down the (−1)-curve. That is substitute χ with
the following two pieces

F1

ν1

~~

l0 // . . .
li // F1

ν2

  

∼ // F1

ν2

~~

li+1 // . . . // F1

  
P2 χ1 // P2 χ2 // P2

So that we can assume

(6) there are no links leading to F1 “inside” the factorisation.

Let
d(χ) = max{k : there is an Fk in the diagram}.

If d(χ) ≤ 2 we can factorise it by exercise 2.4.3.
We now prove the Theorem by induction on d(χ). Consider the left part of the

factorisation (5). Since d(χ) > 2, by assumption (6), then l0 is of type F1 99K F2

and l1 is of type F2 99K F3. Then we force Cremona like diagrams in it, at the cost
of introducing new singularities. Let

F1

ν1

~~

α // F0
l0 // F1

ν2

  

F1

ν2

~~

α−1
// F0

l1 // . . .F1

""
P2 P2 χ′ // P2

where α : F1 99K F0 is an elementary transformation centered at a general point
of F1, and exc(α−1) = {y0}. So that α∗(H′) has an ordinary singularity at y0.
Then l0 is exactly the same modification but leads to an F1 and ν2 is the blow
down of the exceptional curve of this F1. Observe that neither α0 nor ν2 are links
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in the Sarkisov category, in general. Nonetheless the first part can be factorised
by standard Cremona transformations. Furthermore d(χ′) < d(χ). Therefore by
induction hypothesis also χ′ can be factorised by Cremona transformations.





CHAPTER 3

Exam

The exam is a discussion of talks and exercises. Choose from the list either one
talk or one starred exercise or two non starred exercises.
Talks

• Prove [Be][Theorems IV.13, IV.16] and the necessary Lemmata.
• Prove [Be][Theorem III.4] (need to know cohomology).
• Section 2 of [Re2].
• Section 8.3.1 (without Theorem 8.3.6) of [Do1].

Exercises

. Show that any irreducible rational curve of degree d with a a point of
multiplicity d− 1 can be mapped to a line via a Cremona transformation
of P2

. Let X ⊂ Pn be a variety of degree d and dimension k. Show that d ≥
n− k + 1.

* Show that any surface of degree d in P d+1 is rational and it is either the
Veronese surface in P5 or S(1, a) for some a.

. Let S ⊂ P3 be a quartic surface with 3 double lines meeting in a triple
point. Prove that S is a projection of the Veronese surface V ⊂ P5.

* Let S ⊂ P3 be a cubic surface. Show that there is a set of 12 lines
{l1, . . . , l6, r1, . . . , r6} such that

li ∩ lj = ri ∩ rj = li ∩ rj = ∅ for i 6= j,

and li ∩ ri is a point. Determine how many set of such lines exists on S.
. Let S ⊂ P3 be a quartic with a double conic. Show that S is the projection

of a del Pezzo surface of degree 4 in P4.
* Show that any surface with infinitely many (−1)-curves is rational and

give an example of such a surface.

. Show that there are irreducible curves C ⊂ P2 of degree d with (d−1)(d−2)
2

double points.
. Let Sd ⊂ Pn be a smooth rational surface of degree d. Prove that d ≥ n−1.

Prove that any surface S3 ⊂ P4 is the blow up of P2 in a point.
* Prove Castelnuovo Theorem stating that any ω : P2 99K P2 can be fac-

tored by De Jonquieres transformations and linear automorphisms. A De
Jonquieres transformation is associated to the linear system of curves of
degree d with a point of multiplicity d− 1 and 2(d− 1) simple points.

. Let L be an homaloidal system. Prove the so called Noether equations.∑
mi = 3(d− 3)

∑
m2
i = d2 − 1,

37
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where mi are the multiplicities of points in BsL. Show that for any ratio-
nal curve Cd ⊂ P2 of degree d ≤ 5 there exists a birational modification
ω : P2 99K P2 such that ω(Cd) is a line.

* Prove that for any degree d ≥ 6 there are rational curves of degree d that
cannot be mapped onto a line by Cremona modifications.

. Let L be the linear system of quartics through 10 points in P2. Show that
ϕL(P2) is a sextic surface (Bordiga surface) that contains 10 lines and 10
disjoint plane cubics such that each line meets a single cubic (this is called
a double ten).
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