COLORAZIONI METODO BCA

Molto simile alla colorazione di Lowry, ma basato sull'acido bicinconinico e utilizzabile su micropiastra.

In ambiente alcalino Cu⁺² è ridotto a Cu⁺¹ dalle molecole proteiche.

Due molecole di BCA chelano step 2.
uno ione Cu⁺¹ e a tale interazione
è associato lo sviluppo del cu^{++2BCA}
colore viola, con un massimo
di assorbimento a **562 nm**.

Protein + Cu2+ OH- Cu1+

Fortemente dipendente dalle temperature di lavoro.

INTERFERENTI NEL METODO BCA

Substance	Compatible Conc.	Substance	Compatible Conc.
NP-40	5.0%	Glucose**	10 mM
Emulgen	1.0%	EDTA	10 mM
Hepes	100 mM	Sodium Chloride	1.0 M
DTT	1 mM	NaOH	0.1 M
Guanidine•HCl	4.0 M	Ammonium Sulfate	1.5 M
Triton X-100	5.0%	Sodium Acetate, pH 5.5	200 mM
Octyl-ß-Glucoside	5.0%	SDS	5.0%
Urea	3.0 M	Brij-35	5.0%
Sucrose**	40%	Lubrol	1.0%
Glycine, pH 2.8	100 mM	CHAPS	5.0%

Sensibile a moltissimi interferenti.

COLORAZIONI

METODO BRADFORD (1976)

Si basa sul legame del coomassie G-250 alle proteine.

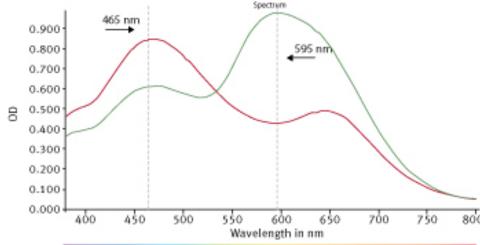
Utilizzabile <u>su micropiastra</u> e solo su peptidi superiori a 3 kDa.

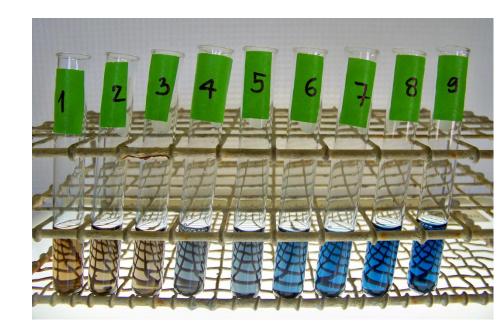
Veloce, facile e sensibile.

Compatibile con moltissimi sali, buffers, chelanti...tranne alcuni detergenti.

Protein-Dye Complex

A_{max}: 465 nm → 595 nm


METODO BRADFORD


Lega Arginina (8 volte più degli altri)

Triptofano Tirosina Istidina

I gruppi acidi sulfonici del colorante si legano alla proteina per attrazione elettrostatica.

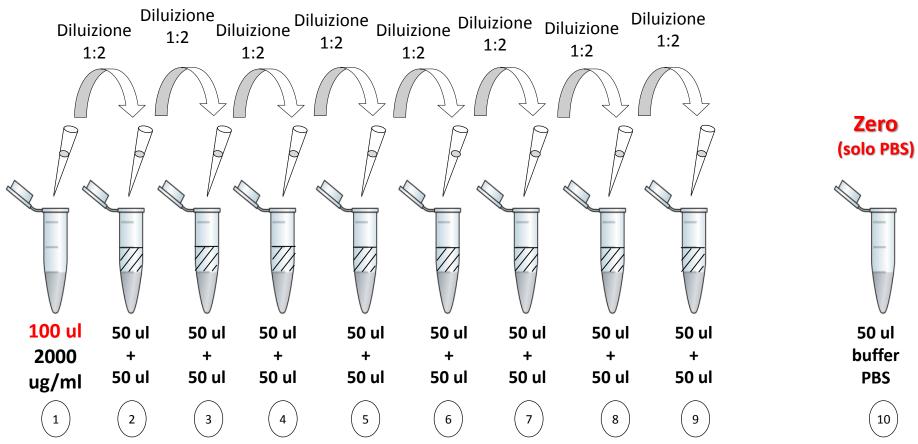
Forma anionica (blu) assorbimento a 595 nm

PROTOCOLLO

BSA = Albumina da siero bovino

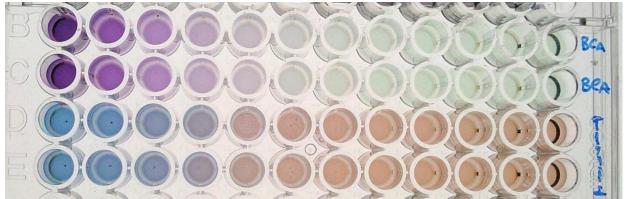
Campione	Albumina (BSA)	Volume
n°	mg/L	(µL)
1°	2000	100
2°	1000	50
3°	500	50
4°	250	50
5°	125	50
6°	62.5	50
7°	31.2	50
8°	15.6	50
9°	7.8	100
10°	0	50
11°	Campione	50
12°	Campione	Replica

Diluizioni in tampone fosfato (PBS)

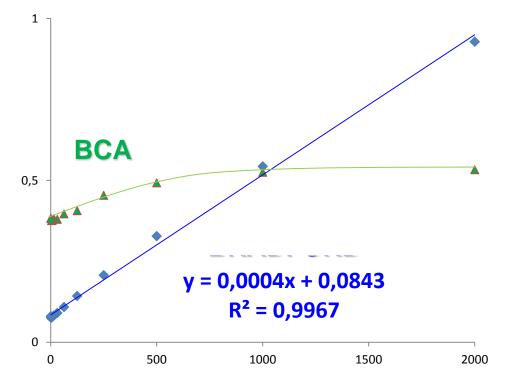

BCA

100 μL Mix (1:50) + 10 μL dil. BSA INCUBAZIONE di 30' a 25° o 37°C (per la massima efficienza).

BRADFORD


100 μL colorante + 10 μL dil. BSA NESSUNA INCUBAZIONE

DILUIZIONI SCALARI



COMPARAZIONE FRA LE COLORAZIONI

μg/mL di **BSA** 2000 1000 500 250 125 62,5 0

Max assorbimento a **562 nm**. Max assorbimento a **595 nm**.

Lettura a 620 nm

Uno dei coloranti ha sensibilità e linearità di risposta nettamente superiori.

E' lo stesso standard,

ma crea 2 curve di taratura così diverse!

Dipendenza della colorazione dalla composizione amminoacidica.