
SAXON home page

This page lists the standard XSL elements, all of which are supported in SAXON Stylesheets.

For extension elements provided with the SAXON product, see extensions.html.

SAXON implements the XSLT version 1.0 specification from the World Wide Web Consortium:

see Conformance. This page is designed to give a summary of the features: for the full

specification, consult the official standard.

Contents

Standard XSL Elements

xsl:apply-imports

xsl:apply-templates

xsl:attribute

xsl:attribute-set

xsl:call-template

xsl:choose

xsl:comment

xsl:copy

xsl:copy-of

xsl:decimal-format

xsl:document

xsl:element

xsl:fallback

xsl:for-each

xsl:if

xsl:include

xsl:import

xsl:key

xsl:message

xsl:namespace-alias

xsl:number

xsl:otherwise

xsl:output

xsl:param

xsl:processing-instruction

xsl:preserve-space

xsl:script

xsl:sort

xsl:strip-space

xsl:stylesheet

xsl:template

xsl:text

xsl:value-of

xsl:variable

xsl:when

xsl:with-param

Literal Result Elements

Standard XSLT Elements

xsl:apply-imports

The xsl:apply-imports element is used in conjunction with imported stylesheets. There are no

attributes. The element may contain zero of more xsl:with-param elements (as permitted in

XSLT 1.1).

At run-time, there must be a current template. A current template is established when a

template is activated as a result of a call on xsl:apply-templates. Calling xsl:call-template does

not change the current template. Calling xsl:for-each does not (as the XSLT standard says it

should) cause the current template to become null.

The effect is to search for a template that matches the current node and that is defined in a

stylesheet that was imported (directly or indirectly, possibly via xsl:include) from the stylesheet

containing the current template, and whose mode matches the current mode. If there is such a

template, it is activated using the current node. If not, the call on xsl:apply-imports has no

effect.

It is not possible to supply parameters to a template invoked using xsl:apply-imports.

xsl:apply-templates

The xsl:apply-templates element causes navigation from the current element, usually but not

necessarily to process its children. Each selected node is processed using the best-match

xsl:template defined for that node.

The xsl:apply-templates element takes an optional attribute, mode, which identifies the

processing mode. If this attribute is present, only templates with a matching mode parameter

will be considered when searching for the rule to apply to the selected elements.

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

1 di 18 03/05/2011 11:26

It also takes an optional attribute, select.

If the select attribute is omitted, apply-templates causes all the immediate children of the

current node to be processed: that is, child elements and character content, in the order in

which it appears. Character content must be processed by a template whose match pattern

will be something like "*/text()". Child elements similarly are processed using the appropriate

template, selected according to the rules given below under xsl:template.

If the select attribute is included, it must be a node set expression which identifies the nodes

to be processed. All nodes selected by the expression are processed.

The xsl:apply-templates element is usually empty, in which case the selected nodes are

processed in the order they appear in the source document. However it may include xsl:sort

and/or xsl:param elements:

For sorted processing, one or more child xsl:sort elements may be included. These

define the sort order to be applied to the selection. The sort keys are listed in major-

to-minor order.

To supply parameters to the called template, one or more xsl:with-param elements may

be included. The values of these parameters are available to the called template.

The selected nodes are processed in a particular context. This context includes:

A current node: the node being processed

A current node list: the list of nodes being processed, in the order they are processed

(this affects the value of the position() and last() functions)

A set of variables, which initially is those variable defined as parameters

Some examples of the most useful forms of select expression are listed below:

Expression Meaning

XXX Process all immediate child elements with tag XXX

* Process all immediate child elements (but not character data within the

element)

../TITLE Process the TITLE children of the parent element

XXX[@AAA] Process all XXX child elements having an attribute named AAA

@* Process all attributes of the current element

*/ZZZ Process all grandchild ZZZ elements

XXX[ZZZ] Process all child XXX elements that have a child ZZZ

XXX[@WIDTH and

not(@WIDTH="20")]

Process all child XXX elements that have a WIDTH attribute whose

value is not "20"

AUTHOR[1] Process the first child AUTHOR element

APPENDIX[@NUMBER]

[last()]

Process the last child APPENDIX element having a NUMBER attribute

APPENDIX[last()]

[@NUMBER]

Process the last child APPENDIX element provided it has a NUMBER

attribute

The full syntax of select expressions is given in XPath Expression Syntax

xsl:attribute

The xsl:attribute element is used to add an attribute value to an xsl:element element or

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

2 di 18 03/05/2011 11:26

general formatting element, or to an element created using xsl:copy. The attribute must be

output immediately after the element, with no intervening character data. The name of the

attribute is indicated by the name attribute and the value by the content of the xsl:attribute

element.

The attribute name is interpreted as an attribute value template, so it may contain string

expressions within curly braces. The full syntax of string expressions is given in XPath

Expression Syntax

For example, the following code creates a element with several attributes:

<xsl:element name="FONT">

 <xsl:attribute name="SIZE">4</xsl:attribute>

 <xsl:attribute name="FACE">Courier New</xsl:attribute>

Some output text

</xsl:element>

There are two main uses for the xsl:attribute element:

It is the only way to set attributes on an element generated dynamically using

xsl:element

It allows attributes of a literal result element to be calculated using xsl:value-of.

The xsl:attribute must be output immediately after the relevant element is generated: there

must be no intervening character data (other than white space which is ignored). SAXON

outputs the closing ">" of the element start tag as soon as something other than an attribute is

written to the output stream, and rejects an attempt to output an attribute if there is no

currently-open start tag. Any special characters within the attribute value will automatically be

escaped (for example, "<" will be output as "<")

If two attributes are output with the same name, the second one takes precedence.

Saxon permits the additional attribute saxon:disable-output-escaping. If this is set to the

value "yes", then the attribute value will be output as-is, without escaping of special characters.

This affects both the normal XML escaping (e.g. of ampersand) and the special URL escaping

that occurs with non-ASCII characters in HTML URL attributes (e.g. href) which normally

causes a space to be output as %20.

xsl:attribute-set

The xsl:attribute-set element is used to declare a named collection of attributes, which will

often be used together to define an output style. It is declared at the top level (subordinate to

xsl:stylesheet).

An attribute-set contains a collection of xsl:attribute elements.

The attributes in an attribute-set can be used in several ways:

They can be added to a literal result element by specifying xsl:use-attribute-sets in the

list of attributes for the element. The value is a space-separated list of attribute-set

names. Attributes specified explicitly on the literal result element, or added using

xsl:attribute, override any that are specified in the attribute-set definition.

They can be added to an element created using xsl:element, by specifying

use-attribute-sets in the list of attributes for the xsl:element element. The value is a

space-separated list of attribute-set names. Attributes specified explicitly on the literal

result element, or added using xsl:attribute, override any that are specified in the

attribute-set definition.

One attribute set can be based on another by specifying use-attribute-sets in the list of

attributes for the xsl:attribute-set element. Again, attributes defined explicitly in the

attribute set override any that are included implicitly from another attribute set.

Attribute sets named in the xsl:use-attribute-sets or use-attribute-sets attribute are applied in

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

3 di 18 03/05/2011 11:26

the order given: if the same attribute is generated more than once, the later value always takes

precedence.

xsl:call-template

The xsl:call-template element is used to invoke a named template.

The name attribute is mandatory and must match the name defined on an xsl:template

element.

Saxon supports an additional attribute saxon:allow-avt. If this is present and is set to the value

"yes", then the name attribute may be written as an attribute value template, allowing the

called template to be decided at run-time. The string result of evaluating the attribute value

template must be a valid QName that identifies a named template somewhere in the

stylesheet.

Parameters to the called template may be defined using xsl:with-param elements nested within

the xsl:call-template element.

The context of the called template (for example the current node and current node list) is the

same as that for the calling template; however the variables defined in the calling template are

not accessible in the called template.

xsl:choose

The xsl:choose element is used to choose one of a number of alternative outputs. The

element typically contains a number of xsl:when elements, each with a separate test condition.

The first xsl:when element whose condition matches the current element in the source

document is expanded, the others are ignored. If none of the conditions is satisfied, the

xsl:otherwise child element, if any, is expanded.

The test condition in the xsl:when element is a boolean expression. The full syntax of

expressions is given in XPath Expression Syntax

Example:

<xsl:choose>

 <xsl:when test="@cat='F'">Fiction</xsl:when>

 <xsl:when test="@cat='C'">Crime</xsl:when>

 <xsl:when test="@cat='R'">Reference</xsl:when>

 <xsl:otherwise>General</xsl:otherwise>

</xsl:choose>

xsl:comment

The xsl:comment element can appear anywhere within an xsl:template. It indicates text that is

to be output to the current output stream in the form of an XML or HTML comment.

For example, the text below inserts some JavaScript into a generated HTML document:

<script language="JavaScript">

 <xsl:comment>

 function bk(n) {

 parent.frames['content'].location="chap" + n + ".1.html";

 }

 //</xsl:comment>

</script>

Note that special characters occurring within the comment text will not be escaped.

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

4 di 18 03/05/2011 11:26

The xsl:comment element will normally contain text only but it may contain other elements such

as xsl:if or xsl:value-of. However, it should not contain literal result elements.

Tip: the xsl:comment element can be very useful for debugging your stylesheet. Use

comments in the generated output as a way of tracking which rules in the stylesheet were

invoked to produce the output.

xsl:copy

The xsl:copy element causes the current XML node in the source document to be copied to

the output. The actual effect depends on whether the node is an element, an attribute, or a text

node.

For an element, the start and end element tags are copied; the attributes, character content

and child elements are copied only if xsl:apply-templates is used within xsl:copy.

Attributes of the generated element can be defined by reference to a named attribute set. The

optional use-attribute-sets attribute contains a white-space-separated list of attribute set

names. They are applied in the order given: if the same attribute is generated more than once,

the later value always takes precedence.

The following example is a template that copies the input element to the output, together with

all its child elements, character content, and attributes:

<xsl:template match="*|text()|@*">

 <xsl:copy>

 <xsl:apply-templates select="@*"/>

 <xsl:apply-templates/>

 </xsl:copy>

</xsl:template>

xsl:copy-of

The xsl:copy-of element copies of the value of the expression in the mandatory select attribute

to the result tree

If this expression is a string, a number, or a boolean, the effect is the same as using

xsl:value-of. It is usually used where the value is a nodeset or a result tree fragment.

xsl:decimal-format

The xsl:decimal-format element is used at the top level of a stylesheet to indicate a set of

localisation parameters. If the xsl:decimal-format element has a name attribute, it identifies a

named format; if not, it identifies the default format.

In practice decimal formats are used only for formatting numbers using the format-number()

function in XSL expressions. For details of the attributes available, see the XSLT specification.

xsl:document

The xsl:document element is new in XSLT 1.1, and replaces the previous extension element

saxon:output. It is used to direct output to a secondary output destination.

Most of the attributes are the same as for xsl:output, including the additional extension

attributes supported by Saxon. The one addition is the mandatory href attribute, which defines

the destination of the output after serialization.

Here is an example that uses xsl:document:

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

5 di 18 03/05/2011 11:26

<xsl:template match="preface">

 <xsl:document href="{$dir}\preface.html">

 <html><body bgcolor="#00eeee"><center>

 <xsl:apply-templates/>

 </center><hr/></body></html>

 </xsl:document>

 Preface

</xsl:template>

Here the body of the preface is directed to a file called preface.html (prefixed by a constant

that supplies the directory name). Output then reverts to the previous destination, where an

HTML hyperlink to the newly created file is inserted.

xsl:element

The xsl:element is used to create an output element whose name might be calculated at

run-time.

The element has a mandatory attribute, name, which is the name of the generated element.

The name attribute is an attribute value template, so it may contain string expressions inside

curly braces.

The attributes of the generated element are defined by subsequent xsl:attribute elements.

The content of the generated element is whatever is generated between the <xsl:element>

and </xsl:element> tags.

Additionally, attributes of the generated element can be defined by reference to a named

attribute set. The optional use-attribute-sets attribute contains a white-space-separated list of

attribute set names. They are applied in the order given: if the same attribute is generated

more than once, the later value always takes precedence.

For example, the following code creates a element with several attributes:

<xsl:element name="FONT">

 <xsl:attribute name="SIZE">4</xsl:attribute>

 <xsl:attribute name="FACE">Courier New</xsl:attribute>

Some output text

</xsl:element>

xsl:fallback

The xsl:fallback element is used to define recovery action to be taken when an instruction

element is used in the stylesheet and no implentation of that element is available. An element is

an instruction element if its namespace URI is the standard URI for XSL elements or if its

namespace is identified in the xsl:extension-element-prefixes attribute of a containing literal

result element, or in the extension-element-prefixes attribute of the xsl:stylesheet element.

If the xsl:fallback element appears in any other context, it is ignored, together with all its child

and descendant elements.

There are no attributes.

If the parent element can be instantiated and processed, the xsl:fallback element and its

descendants are ignored. If the parent element is not recognised of if any failure occurs

instantiating it, all its xsl:fallback children are processed in turn. If there are no xsl:fallback

children, an error is reported.

xsl:for-each

The xsl:for-each element causes iteration over the nodes selected by a node-set expression.

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

6 di 18 03/05/2011 11:26

It can be used as an alternative to xsl:apply-templates where the child nodes of the current

node are known in advance. There is a mandatory attribute, select, which defines the nodes

over which the statement will iterate. The XSL statements subordinate to the xsl:for-each

element are applied to each source node seleced by the node-set expression in turn.

The full syntax of node-set expressions is given in XPath Expression Syntax

The xsl:for-each element may have one or more xsl:sort child elements to define the order of

sorting. The sort keys are specified in major-to-minor order.

The expression used for sorting can be any string expressions. The following are particularly

useful:

element-name, e.g. TITLE: sorts on the value of a child element

attribute-name, e.g. @CODE: sorts on the value of an attribute

".": sorts on the character content of the element

"qname(.)": sorts on the name of the element

Example 1:

<xsl:template match="BOOKLIST">

 <TABLE>

 <xsl:for-each select="BOOK">

 <TR>

 <TD><xsl:value-of select="TITLE"/></TD>

 <TD><xsl:value-of select="AUTHOR"/></TD>

 <TD><xsl:value-of select="ISBN"/></TD>

 </TR>

 </xsl:for-each>

 </TABLE>

</xsl:template>

Example 2: sorting with xsl:for-each. This example also shows a template for a BOOKLIST

element which processes all the child BOOK elements in order of their child AUTHOR

elements.

<xsl:template match="BOOKLIST">

 <h2>

 <xsl:for-each select="BOOK">

 <xsl:sort select="AUTHOR"/>

 <p>AUTHOR: <xsl:value-of select="AUTHOR"/></p>

 <p>TITLE: <xsl:value-of select="TITLE"/></p>

 <hr/>

 </xsl:for-each>

 </h2>

</xsl:template>

xsl:if

The xsl:if element is used for conditional processing. It takes a mandatory test attribute,

whose value is a boolean expression. The contents of the xsl:if element are expanded only of

the expression is true.

The full syntax of boolean expressions is given in XPath Expression Syntax

Example:

<xsl:if test="@preface">

 Preface

</xsl:if>

This includes a hyperlink in the output only if the current element has a preface attribute.

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

7 di 18 03/05/2011 11:26

xsl:include

The xsl:include element is always used at the top level of the stylesheet. It has a mandatory

href attribute, which is a URL (absolute or relative) of another stylesheet to be textually

included within this one. The top-level elements of the included stylesheet effectively replace

the xsl:include element.

xsl:include may also be used at the top level of the included stylesheet, and so on recursively.

xsl:import

The xsl:import element is always used at the top level of the stylesheet, and it must appear

before all other elements at the top level. It has a mandatory href attribute, which is a URL

(absolute or relative) of another stylesheet to be textually included within this one. The top-level

elements of the included stylesheet effectively replace the xsl:import element.

xsl:import may also be used at the top level of the included stylesheet, and so on recursively.

The elements in the imported stylesheet have lower precedence than the elements in the

importing stylesheet. The main effect of this is on selection of a template when xsl:apply-

templates is used: if there is a matching template with precedence X, all templates with

precedence less than X are ignored, regardless of their priority.

xsl:key

The xsl:key element is used at the top level of the stylesheet to declare an attribute, or other

value, that may be used as a key to identify nodes using the key() function within an

expression. Each xsl:key definition declares a named key, which must match the name of the

key used in the key() function.

The set of nodes to which the key applies is defined by a pattern in the match attribute: for

example, if match="ACT|SCENE" then every ACT element and every SCENE element is

indexed by this key.

The value of the key, for each of these matched elements, is determined by the use attribute.

This is an expression, which is evaluated for each matched element. If the expression returns a

node-set, the string value of each node in this node-set acts as a key value. For example, if

use="AUTHOR", then each AUTHOR child of the matched element supplies one key value. If

the expression returns any other value, the value is converted to a string and that string acts as

the key.

Note that

Keys are not unique: the same value may identify many different nodes1.

Keys are multi-valued: each matched node may have several (zero or more) values of

the key, any one of which may be used to locate that node

2.

Keys can only be used to identify nodes within a single XML document: the key()

function will return nodes that are in the same document as the current node.

3.

All three attributes, name, match, and use, are mandatory.

xsl:message

The xsl:message element causes a message to be displayed. The message is the contents of

the xsl:message element.

There is an optional attribute terminate with permitted values yes and no; the default is no. If

the value is set to yes, processing of the stylesheet is terminated after issuing the message.

By default the message is displayed on the standard error output stream. You can supply your

own message Emitter if you want it handled differently. This must be a class that implements

the com.icl.saxon.output.Emitter interface. The content of the message is in general an XML

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

8 di 18 03/05/2011 11:26

fragment. You can supply the emitter using the -m option on the command line, or the

setMessageEmitter() method of the Controller class.

No newline is added to the message; if you want one, include it in the text using
, as in

the example below.

Example: This example displays an error message.

 <xsl:template match="BOOK">

 <xsl:if test="not(@AUTHOR)">

 <xsl:message>Error: BOOK found with no AUTHOR!
</xsl:message>

 </xsl:if>

 ...

 </xsl:template>

xsl:namespace-alias

The xsl:namespace-alias element is a top-level element that is used to control the mapping

between a namespace URI used in the stylesheet and the corresponding namespace URI used

in the result document.

Normally when a literal result element is encountered in a template, the namespace used for

the element name and attribute names in the result document is the same as the namespace

used in the stylesheet. If a different namespace is wanted (e.g. because the result document is

a stylesheet using the XSLT namespace), then xsl:namespace-alias can be used to define the

mapping.

Example: This example allows the prefix outxsl to be used for output elements that are to be

associated with the XSLT namespace. It assumes that both namespaces xsl and outxsl have

been declared and are in scope.

 <xsl:namespace stylesheet-prefix="outxsl" result-prefix="xsl"/>

xsl:number

The xsl:number element outputs the sequential number of a node in the source document. It

takes an attribute count whose value is a pattern indicating which nodes to count; the default is

to match all nodes of the same type and name as the current node.

The level attribute may take three values: "single", "any", or "multiple". The default is "single".

There is also an optional from attribute, which is also a pattern. The exact meaning of this

depends on the level.

The calculation is as follows:

level=single
If the current node matches the pattern, the counted node is the

current node. Otherwise the counted node is the innermost ancestor

of the current node that matches the pattern. If no ancestor

matches the pattern, the result is zero. If the from attribute is

present, the counted node must be a descendant of a node that

matches the "from" pattern.

1.

The result is one plus the number of elder siblings of the counted

node that match the count pattern.

2.

level=any The result is the number of nodes in the document that match the count

pattern, that are at or before the current node in document order, and that

follow in document order the most recent node that matches the "from"

pattern, if any. Typically this is used to number, say, the diagrams or

equations in a document, or in some section or chapter of a document,

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

9 di 18 03/05/2011 11:26

regardless of where the diagrams or equations appear in the hierarchic

structure.

level=multiple The result of this is not a single number, but a list of numbers. There is one

number in the list for each ancestor of the current element that matches

the count pattern and that is a descendant of the anchor element. Each

number is one plus the number of elder siblings of the relevant element that

match the count pattern. The order of the numbers is "outwards-in".

There is an optional format attribute which controls the output format. This contains an

alternating sequence of format-tokens and punctuation-tokens. A format-token is any sequence

of alphanumeric characters, a punctuation-token is any other sequence. The following values

(among others) are supported for the format-token:

1 Sequence 1, 2, 3, ... 10, 11, 12, ...

001 Sequence 001, 002, 003, ... 010, 011, 012, ... (any number of leading zeroes)

a Sequence a, b, c, ... aa, ab, ac, ...

A Sequence A, B, C, ... AA, AB, AC, ...

i Sequence i, ii, iii, iv, ... x, xi, xii, ...

I Sequence I, II, III, IV, ... X, XI, XII, ...

There is also support for various Japanese sequences (Hiragana, Katakana, and Kanji) using

the format tokens あ, ア, い, イ, 一, and for Greek and

Hebrew sequences.

The format token "one" gives the sequence "one", "two", "three", ... , while "ONE" gives the

same in upper-case.

The default format is "1".

Actually, any sequence of ASCII digits in the format is treated in the same way: writing 999 has

the same effect as writing 001. A sequence of Unicode digits other than ASCII digits (for

exaple, Tibetan digits) can also be used, and will result in decimal numbering using those digits.

Similarly, any other character classified as a letter can be used, and will result in "numbering"

using all consecutive Unicode letters following the one provided. For example, specifying "x" will

give the sequence x, y, z, xx, xy, xz, yx, yy, yz, etc. Specifying the Greek letter alpha (²)

will cause "numbering" using the Greek letters up to "Greek letter omega with tonos" (Î).

Only "i" and "I" (for roman numbering), and the Japanese characters listed above, are

exceptions to this rule.

Successive format-tokens in the format are used to process successive numbers in the list. If

there are more format-tokens in the format than numbers in the list, the excess format-tokens

and punctuation-tokens are ignored. If there are fewer format-tokens in the format than

numbers in the list, the last format-token and the punctuation-token that precedes it are used to

format all excess numbers, with the final punctuation-token being used only at the end.

Examples:

Number(s) Format Result

3 (1) (3)

12 I XII

2,3 1.1 2.3

2,3 1(i) 2(iii)

2,3 1. 2.3.

2,3 A.1.1 B.3.

2,3,4,5 1.1 2.3.4.5

This character may be preceded or followed by arbitrary punctuation (anything other than these

characters or XML special characters such as "<") which is copied to the output verbatim. For

example, the value 3 with format "(a)" produces output "(c)".

It is also possible to use xsl:number to format a number obtained from an expression. This is

achieved using the value attribute of the xsl:number element. If this attribute is present, the

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

10 di 18 03/05/2011 11:26

count, level, and from attributes are ignored.

With large numbers, the digits may be split into groups. For example, specify grouping-size="3"

and grouping-separator="/" to have the number 3000000 displayed as "3/000/000".

Negative numbers are always output in conventional decimal notation, regardless of the format

specified.

Example: This example outputs the title child of an H2 element preceded by a composite

number formed from the sequential number of the containing H1 element and the number of the

containing H2 element.

 <xsl:template match="H2/TITLE">

 <xsl:number count="H1">.<xsl:number count="H2">

 <xsl:text> </xsl:text>

 <xsl:apply-templates/>

 </xsl:template>

xsl:otherwise

The xsl:otherwise element is used within an xsl:choose element to indicate the default action

to be taken if none of the other choices matches.

See xsl:choose.

xsl:output

The xsl:output element is used to control the destination and format of the principal output. It

is always a top-level element immediately below the xsl:stylesheet element. There may be

multiple xsl:output elements; their values are accumulated as described in the XSLT

specification.

The following attributes may be specified:

method This indicates the format or destination of the output. The value "xml"

indicates XML output (though if disable-output-escaping is used there is

no guarantee that it is well-formed). A value of "html" is used for HTML

output. The value "text" indicates plain text output: in this case no markup

may be written to the file using constructs such as literal result elements,

xsl:element, xsl:attribute, or xsl:comment. The value "xx:fop" (xx is any

non-default namespace) indicates that output will be directed to the

Formatting Object Processor (FOP) produced by James Tauber: this

must be separately installed, it is not part of SAXON. Alternatively output

can be directed to a user-defined Java program by specifying the name

of the class as the value of the method attribute, prefixed by a

namespace prefix, for example "xx:com.me.myjava.MyEmitter". The class

must be on the classpath, and must implement either the

org.xml.sax.DocumentHandler interface, the org.xml.sax.ContentHandler

interface, or the com.icl.saxon.output.Emitter interface. The last of these,

though proprietary, is a richer interface that gives access to additional

information.

indent as in the XSLT spec: values "yes" or "no" are accepted. The indentation

algorithm is different for HTML and XML. For HTML it avoids outputting

extra space before or after an inline element, but will indent text as well

as tags, except in elements such as PRE and SCRIPT. For XML, it

avoids outputting extra whitespace except between two tags. The

emphasis is on conformance rather than aesthetics!

version Determines the version of XML or HTML to be output. Currently this is

documentary only.

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

11 di 18 03/05/2011 11:26

encoding A character encoding, e.g. iso-8859-1 or utf-8. The value must be one

recognised both by the Java run-time system and by Saxon itself: the

encoding names that Saxon recognises are ASCII, US-ASCII, iso-8859-1,

utf-8, utf8, KOI8R, cp1251. It is used for three distinct purposes: to

control character conversion by the Java I/O routines; to determine which

characters will be represented as character entities; and to document the

encoding in the output file itself. The default (and fallback) is utf-8.

media-type For example, "text/xml" or "text/html". This is largely documentary.

However, the value assigned is passed back to the calling application in

the OutputDetails object, where is can be accessed using the

getMediaType() method. The supplied servlet application SaxonServlet

uses this to set the media type in the HTTP header.

doctype-system This is used only for XML output: it is copied into the DOCTYPE

declaration as the system identifier

doctype-public This is used only for XML output: it is copied into the DOCTYPE

declaration as the public identifier. It is ignored if there is no system

identifier.

omit-xml-

declaration

The values are "yes" or "no". For XML output this controls whether an xml

declaration should be output; the default is "no".

standalone This is used only for XML output: if it is present, a standalone attribute is

included in the XML declaration, with the value "yes" or "no".

cdata-section-

elements

This is used only for XML output. It is a whitespace-separated list of

element names. Character data belonging to these output elements will

be written within CDATA sections.

xsl:param

The xsl:param element is used to define a formal parameter to a template, or to the

stylesheet.

As a template parameter, it must be used as an immediate child of the xsl:template element.

As a stylesheet parameter, it must be used as an immediate child of the xsl:stylesheet element.

There is a mandatory attribute, name, to define the name of the parameter. The default value

of the parameter may be defined either by a select attribute, or by the contents of the

xsl:param element, in the same way as for xsl:variable. The default value is ignored if an actual

parameter is supplied with the same name.

xsl:preserve-space

The element is used at the top level of the stylesheet to define elements in the source

document for which white-space nodes are significant and should be retained.

The elements attribute is mandatory, and defines a space-separated list of element names.

The value "*" may be used to mean "all elements"; in this case any elements where whitespace

is not to be preserved may be indicated by an xsl:strip-space element.

xsl:processing-instruction

The xsl:processing-instruction element can appear anywhere within an xsl:template. It

causes an XML processing instruction to be output.

There is a mandatory name attribute which gives the name of the PI. This attribute is

interpreted as an attribute value template, so it may contain string expressions within curly

braces.

The content of the xsl:processing-instruction element is expanded to form the data part of the

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

12 di 18 03/05/2011 11:26

PI.

For example:

<xsl:processing-instruction name="submit-invoice">version="1.0"</xsl:processing-inst

Note that special characters occurring within the PI text will not be escaped.

xsl:sort

The xsl:sort element is used within an xsl:for-each or xsl:apply-templates or saxon:group

element to indicate the order in which the selected elements are processed.

The select attribute (default value ".") is a string expression that calculates the sort key.

The order attribute (values "ascending" or "descending", default "ascending") determines the

sort order. There is no control over language, collating sequence, or data type.

The data-type attribute (values "text" or "number") determines whether collating is based on

alphabetic sequence or numeric sequence.

The case-order attribute (values "upper-first" and "lower-first") is relevant only for

data-type="text"; it determines whether uppercase letters are sorted before their lowercase

equivalents, or vice-versa.

The value of the lang attribute can be an ISO language code such as "en" (English) or "de"

(German). It determines the algorithm used for alphabetic collating. The default is based on the

Java system locale. The only collating sequence supplied with the SAXON product is "en"

(English), but other values may be supported by writing a user-defined comparison class. If no

comparison class is found for the specified language, a default algorithm is used which simply

sorts according to Unicode binary character codes. The value of lang does not have to be a

recognized language code, it is also possible to use values such as "month" to select a

data-type-specific collating algorithm.

Several sort keys are allowed: they are written in major-to-minor order.

Example 1: sorting with xsl:apply-templates. This example shows a template for a BOOKLIST

element which processes all the child BOOK elements in order of their child AUTHOR

elements; books with the same author are in descending order of the DATE attribute.

<xsl:template match="BOOKLIST">

 <h2>

 <xsl:apply-templates select="BOOK">

 <xsl:sort select="AUTHOR"/>

 <xsl:sort select="@DATE" order="descending" lang="GregorianDate"/>

 </xsl:apply-templates>

 </h2>

</xsl:template>

Example 2: sorting with xsl:for-each. This example also shows a template for a BOOKLIST

element which processes all the child BOOK elements in order of their child AUTHOR

elements.

<xsl:template match="BOOKLIST">

 <h2>

 <xsl:for-each select="BOOK">

 <xsl:sort select="AUTHOR"/>

 <p>AUTHOR: <xsl:value-of select="AUTHOR"></p>

 <p>TITLE: <xsl:value-of select="TITLE"></p>

 <hr/>

 </xsl:for-each>

 </h2>

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

13 di 18 03/05/2011 11:26

</xsl:template>

xsl:script

The element is used at the top level of the stylesheet to define the implementation of extension

functions. The element is defined in the draft XSLT 1.1 specification of 8 December 2000.

The language attribute is mandatory, and must take the value "java". The values "javascript",

"ecmascript", or a QName are also permitted, but in this case Saxon ignores the xsl:script

element.

The implements-prefix attribute is mandatory, its value must be a namespace prefix that maps

to the same namespace URI as the prefix used in the extension function call.

The src attribute is mandatory for language="java", its value must take the form

"java:fully.qualified.class.Name", for example "java:java.util.Date". It defines the class containing

the implementation of extension functions that use this prefix.

The archive attribute is optional, its value is a space-separated list of URLs of folders or JAR

files that will be searched to find the named class. If the attribute is omitted, the class is sought

on the classpath.

The element name saxon:script may be used as a synonym for xsl:script ("saxon" being the

conventional prefix for the namespace "http://icl.com/saxon"). Using the synonym enables you

to define an implementation which Saxon will use, but other processors will ignore.

xsl:strip-space

The element is used at the top level of the stylesheet to define elements in the source

document for which white-space nodes are insignificant and should be removed from the tree

before processing.

The elements attribute is mandatory, and defines a space-separated list of element names.

The value "*" may be used to mean "all elements"; in this case any elements where whitespace

is not to be stripped may be indicated by an xsl:preserve-space element.

xsl:stylesheet

The xsl:stylesheet element is always the top-level element of an XSL stylesheet. The name

xsl:transform may be used as a synonym.

The following attributes may be specified:

version Mandatory. A value other than "1.0" invokes forwards compatibility mode.

saxon:trace Value "yes" or "no": default no. If set to "yes", causes activation of templates to

be traced on System.err for diagnostic purposes. The value may be overridden

by specifying a saxon:trace attribute on the individual template.

xsl:template

The xsl:template element defines a processing rule for source elements or other nodes of a

particular type.

The type of node to be processed is identified by a pattern, written in the mandatory match

attribute. The most common form of pattern is simply an element name. However, more

complex patterns may also be used: The full syntax of patterns is given in XSLT Pattern Syntax

The following examples show some of the possibilities:

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

14 di 18 03/05/2011 11:26

Pattern Meaning

XXX Matches any element whose name (tag) is

XXX

* Matches any element

XXX/YYY Matches any YYY element whose parent is an

XXX

XXX//YYY Matches any YYY element that has an

ancestor named XXX

/*/XXX Matches any XXX element that is immediately

below the root (document) element

*[@ID] Matches any element with an ID attribute

XXX[1] Matches any XXX element that is the first XXX

child of its parent element. (Note that this kind

of pattern can be very inefficient: it is better to

match all XXX elements with a single template,

and then use xsl:if to distinguish them)

SECTION[TITLE="Contents"] Matches any SECTION element whose first

TITLE child element has the value "Contents"

A/TITLE | B/TITLE | C/TITLE Matches any TITLE element whose parent is of

type A or B or C

text() Matches any character data node

@* Matches any attribute

/ Matches the document node

The xsl:template element has an optional mode attribute. If this is present, the template will

only be matched when the same mode is used in the invoking xsl:apply-templates element.

There is also an optional name attribute. If this is present, the template may be invoked directly

using xsl:call-template. The match attribute then becomes optional.

If there are several xsl:template elements that all match the same node, the one that is

chosen is determined by the optional priority attribute: the template with highest priority wins.

The priority is written as a floating-point number; the default priority is 1. If two matching

templates have the same priority, the one that appears last in the stylesheet is used.

The attribute saxon:trace="yes" or "no" may be applied either at the xsl:template level or at the

xsl:stylesheet level (it is treated as an inherited attribute). If the value for a template is "yes",

every activation of that template results in a line of output to System.err, identifying the

stylesheet template and the current node in the source document, by element type and line

number. Tracing only occurs if the template is activated by matching the pattern, not if the

template is called by name.

Examples:

The following examples illustrate different kinds of template and match pattern.

Example 1: a simple XSL template for a particular element. This example causes all <ptitle>

elements in the source document to be output as HTML <h2> elements.

<xsl:template match="ptitle">

 <h2>

 <xsl:apply-templates/>

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

15 di 18 03/05/2011 11:26

 </h2>

</xsl:template>

xsl:text

The xsl:text element causes its content to be output.

The main reasons for enclosing text within an xsl:text element is to allow white space to be

output. White space nodes in the stylesheet are ignored unless they appear immediately within

an xsl:text element.

The optional disable-output-escaping attribute may be set to "yes" or "no"; the default is "no".

If set to "yes", special characters such as "<" and "&" will be output as themselves, not as

entities. Be aware that in general this can produce non-well-formed XML or HTML. It is useful,

however, when generating things such as ASP or JSP pages. Escaping may not be disabled

when writing to a result tree fragment.

xsl:value-of

The xsl:value-of element evaluates an expression as a string, and outputs its value to the

current output stream.

The full syntax of expressions is given in XPath Expression Syntax.

The select attribute identifes the expression, and is mandatory.

The optional disable-output-escaping attribute may be set to "yes" or "no"; the default is "no".

If set to "yes", special characters such as "<" and "&" will be output as themselves, not as

entities. Be aware that in general this can produce non-well-formed XML or HTML. It is useful,

however, when generating things such as ASP or JSP pages. Escaping may not be disabled

when writing to a result tree fragment.

If the select expression is a node-set expression that selects more than one node, only the first

is considered. If it selects no node, the result is an empty string.

Here are some examples of expressions that can be used in the select attribute:

Expression value

TITLE The character content of the first child TITLE

element if there is one

@NAME The value of the NAME attribute of the current

element if there is one

. The expanded character content of the current

element

../TITLE The expanded character content of the first

TITLE child of the parent element, if there is

one

ancestor::SECTION/TITLE The expanded character content of the first

TITLE child of the enclosing SECTION element,

if there is one

ancestor::*/TITLE The expanded character content of the first

TITLE child of the nearest enclosing element

that has a child element named TITLE

PERSON[@ID] The content of the first child PERSON element

having an ID attribute, if there is one

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

16 di 18 03/05/2011 11:26

*[last()]/@ID The value of the ID attribute of the last child

element of any type, if there are any

.//TITLE The content of the first descendant TITLE

element if there is one

sum(*/@SALES) The numeric total of the values of the SALES

attributes of all child elements that have a

SALES attribute

xsl:variable

The xsl:variable element is used to declare a variable and give it a value. If it appears at the

top level (immediately within xsl:stylesheet) it declares a global variable, otherwise it declares a

local variable that is visible only within the stylesheet element containing the xsl:variable

declaration.

The mandatory name attribute defines the name of the variable.

The value of the variable may be defined either by an expression within the optional select

attribute, or by the contents of the xsl:variable element. In the latter case the result is

technically a value of type Result Tree Fragment, although it may be used for most practical

purposes as if it were a String. (The difference is that a Result Tree Fragment may contain

element start and end tags).

In standard XSL, variables once declared cannot be updated. SAXON however provides a

saxon:assign extension element to circumvent this restriction. SAXON also provides an

extension function to convert a result tree fragment to a node-set, allowing further processing

of its contents to take place.

The value of a variable can be referenced within an expression using the syntax $name.

Example:

<xsl:variable name="title">A really exciting document"</xsl:variable>

<xsl:variable name="backcolor" expr="'#FFFFCC'" />

<xsl:template match="/*">

 <HTML><TITLE<xsl:value-of select="$title"/></TITLE>

 <BODY BGCOLOR='{$backcolor}'>

 ...

 </BODY></HTML>

</xsl:template>

xsl:when

The xsl:when element is used within an xsl:choose element to indicate one of a number of

choices. It takes a mandatory parameter, test, whose value is a match pattern. If this is the

first xsl:when element within the enclosing xsl:choose whose test condition matches the current

element, the content of the xsl:when element is expanded, otherwise it is ignored.

xsl:with-param

The xsl:with-param element is used to define an actual parameter to a template. It may be

used within an xsl:call-template or an xsl:apply-templates or an xsl:apply-imports element. For

an example, see the xsl:template section.

There is a mandatory attribute, name, to define the name of the parameter. The value of the

parameter may be defined either by a select attribute, or by the contents of the xsl:param

element, in the same way as for xsl:variable.

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

17 di 18 03/05/2011 11:26

The parameter has no effect unless the called template includes a matching xsl:param

element.

Literal result elements

Any elements in the style sheet other than those listed above are assumed to be literal result

elements, and are copied to the current output stream at the position in which they occur.

Attribute values within literal result elements are treated as attribute value templates: they may

contain string expressions enclosed between curly braces. For the syntax of string expressions,

see xsl:value-of above.

Where the output is HTML, certain formatting elements are recognised as empty elements:

these are AREA, BASEFONT, BR, COL, FRAME, HR, IMG, INPUT, ISINDEX, LINK, META,

and SYSTEM (in either upper or lower case, and optionally with attributes, of course). These

should be written as empty XML elements in the stylesheet, and will be written to the HTML

output stream without a closing tag.

With HTML output, if the attribute name is the same as its value, the abbreviated form of output

is used: for example if <OPTION SELECTED="SELECTED"> appears in the stylesheet, it will

be output as <OPTION SELECTED>.

A simple stylesheet may be created by using a literal result element as the top-level element of

the stylesheet. This implicitly defines a single template with a match pattern of "/". In fact, an

XHTML document constitutes a valid stylesheet which will be output as a copy of itself,

regardless of the contents of the source XML document.

Michael H. Kay

4 February 2001

XSL Elements http://saxon.sourceforge.net/saxon6.4.3/xsl-elements.html

18 di 18 03/05/2011 11:26

