Matematica discreta - facsimile II parziale

Ogni risposta deve essere giustificata.

- 1. Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ l'applicazione lineare tale che $f(e_1) = e_1$, $f(e_2) = 0$, $f(e_3) = e_2$, $f(e_4) = e_3$, ove e_i sono i vettori della base canonica di \mathbb{R}^4 . Trovare la matrice A che rappresenta f rispetto alla base canonica di \mathbb{R}^4 , la dimensione e una base di Imm(f), la dimensione e una base di ker(f). Verificare se f è iniettiva o suriettiva. Scrivere la matrice che rappresenta f^2 rispetto alla base canonica, determinare la dimensione dell'immagine di f^2 e una base del $\text{ker}(f^2)$.
- 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ una applicazione lineare associata alla matrice:

$$A = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{array}\right)$$

rispetto alla base

$$\mathcal{B} = \{(1,0,0,-1), (1,0,0,0), (0,1,1,0), (0,0,1,0)\}$$

sia nel dominio che nel codominio. Determinare la matrice associata rispetto alle basi canoniche.

3. Determinare gli autovalori, una base per gli autospazi della seguente matrice:

$$A = \left(\begin{array}{ccc} 2 & -2 & 0 \\ -3 & 3 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

Dire se la matrice è diagonalizzabile, motivando e fornendo l'eventuale matrice che rende diagonale A.

4. Determinare la forma quadratica associata alla seguente matrice:

$$A = \left(\begin{array}{ccc} 10 & 0 & -6 \\ 0 & 4 & 0 \\ -6 & 0 & 10 \end{array}\right)$$

Fornire il segno della forma quadratica. Individuare una base ortonormale rispetto a cui la forma quadratica è diagonalizzabile.

1

- 5. Dato il sottospazio di \mathbb{R}^3 generato dai vettori (2,6,0),(4,2,0), costruire una base ortonormale del sottospazio. Completare la base ottenuta in modo da generare una base ortonormale di \mathbb{R}^3 .
- 6. Si determini il piano π passante per (1,2,-3) e
 - perpendicolare alla retta $r \equiv y = 3x 5; z = 2x + 3$
 - \bullet perpendicolare al piano $\pi_1\equiv x+y+z-7=0$ e parallelo alla retta $r\equiv x=-2z+5; y=-5z+7$