
Thanks to Sandeep Pasuparthy 
 



 In this tutorial we will be walking through a small demo 
application using the Eclipse Development Environment. 
Previous knowledge of any kind of tool is not necessary, but 
can be helpful when understanding why we are following 
certain steps or how we are making this application work. 
 

 www.eclipse.org 
 



What’s Eclipse? 
 It is a free software / open source platform-independent 

software framework for delivering what the project calls 
"rich-client applications" 

 It is an Integrated Development Environment (IDE), 
that allows to manage the whole development  process of 
Java applications, by providing many features for 
programming (editor, debugger, etc.) 

 It supports other languages by means of plug-ins (C/C++) 
 Multi-platform (Linux, Windows, Mac OS) 
 
 



What’s Eclipse? 
 Eclipse is also a community of users, constantly extending 

the covered application areas. 
 Eclipse was originally developed by IBM as the successor of 

its VisualAge family of tools.  
 Eclipse is now managed by the Eclipse Foundation, an 

independent not-for-profit consortium of software industry 
vendors.  

 
 



Getting Eclipse 
 In the Lab: already installed. 

 
 On your laptop 

 You will need to install a Java Virtual Machine (JVM) 
 http://www.oracle.com/technetwork/java/javase/downloads/in

dex.html (JDK) 
 Download the latest version at: 
 https://eclipse.org/downloads/ (Eclipse IDE for Java 

Developers) 
 Decompress the downloaded package and click eclipse.exe 

(under Windows) or run eclipse (under Linux) 
 Installation steps at http://wiki.eclipse.org/Eclipse/Installation 

 
 

 



Essentials of Eclipse 
Before going into Eclipse, some of the basic stuff you need to know 

are: 
 In Eclipse you need to start of with creating a project. 
 Then choosing a particular project, we create our java file in it. 

No need to worry, it is simple and you will learn it by the end of 
this presentation. 

 In Eclipse you need not remember the exact command syntax, it 
helps you writing the commands. 

 Just by saving a file, Eclipse compiles the program by default. It 
makes work easy for programmers. 

 Just go step by step. 
 



Let’s start with basic stuff 
Step1: Open Eclipse from start on your system, choose your 

workspace: workspace is the directory where the projects will be 
stored. 

 

 



Step2: In Eclipse when ever you want to create a class, you need 
to select the new project by default (File  New  Project). 

 
 



Step3: Select Java project and click next. 

You can also 
choose File  
New  Java 
project directly. 



Step4: Name the project and click finish. 
 

 
Creates the directory with the 
specified «project name» in the 
workspace path. 

Specifies an execution environment 
to be used for the new project (Java 
Runtime Environment).  

Creates a source folder (src) for Java 
source files and an output folder 
which holds the class files of the 
project. When selecting the other option, the 
project folder is used both as source folder and 
as output folder for class files. 



Step5: IDE views 

Package Explorer 
List of projects/files 
(source and class files, 
libraries, packages). The 
src folder is automatically 
created if the 
corresponding option was 
set in the previous step. 

Miscellaneous Views 
Compiler problems 
Javadoc of the element selected in the Java editor 
Declaration: source of the element selected in the Java 
editor 
Console 

Outline 
displays an outline of 
the structure of the 

currently-active 
Java file in the editor 

area. 

Perspective 
To switch among different perspectives  
(Java: the perspective shown; Java 
Browsing: to browse the project 
structure; Type Hierarchy: packages, 
types, members; Debug: for debugging a 
program (breakpoints, console, tasks, 
etc.) 

Editor 
Where the source code 

is edited. 

Views selector 
Window  Show view 



 Now, make a choice… 
 Create a file directly 
 Import a file  
 Creating/Exporting a .jar file 
 F A Q 



Step6:  Now we create the java file by selecting the “File” 
menu, then “New” and “File”. 



Step7: Now select the project in which you want to write, and the src 
folder if present. Then name the java class with extension (“.java”) and 
click “Finish”. 



Step8: Now you have the editor space, start coding. 



Writing the code 
Step9: In Eclipse when ever you save the file, it will compile 

the code by default. 
 Basic tip: Class name and the file name should be same. 
 



Step10: Running the java class. Right click on the class file 
and choose “Run as Java Application”. 

 
 



Step11: Here you can find the output (Console). 



 Type the Java program using an editor (vi/emacs on Linux, 
Notepad on Windows, etc.) and save it with the .java 
extension 

 Compile the program with the Java compiler: 
 javac HelloWorld.java 

 The compiler produces a .class file called 
HelloWorld.class. It translates the Java source code into 
bytecodes for the Java Virtual Machine (JVM)—a part of the 
JDK. 
 

 

Using the command line 



 The JVM is invoked by the java command. For example, to 
execute the example Java application type: 

 java HelloWorld 
 The output will be shown in the command window. 
 In general (more than one source file), specify the name 

of the class which is the application’s entry point 
(contains the main() method) 

Using the command line 



No need to code everytime. 



Step1: Go to the “File” option , choose “New” and then 
“File” as shown in the figure below. 
 
 

 



Step2: Select the project in which you want to import the 
file and then the advanced option, click the check box and 
browse. 



Step3: Select your file from the location and click the “Open” 
option.  



You can see that the imported file is shown in the workspace and 
is loaded in the default package space of the selected project. 



Step4: Now all you need to do is to select the file and run it. 
You can see the output. 



Creating a .jar file is very useful especially when we are 
working on different systems every time. 
Before going further one should know that to create a .jar 
file, we need to have that particular project present in the 
Eclipse. 



Step1: Select “File” and choose “export” option as shown below. 



Step2: Choose “jar file” and  “next”. 



Step3: Select the project and the files you want to add. Browse 
through and select your destination file.  



Step4: In the Packaging options, the first 2 options are usually 
enough. You can choose the other advanced options depending 
on your requirements. 



Step5: Jar export. The options chosen here are the standard 
ones. We then browse through and select the class file which is 
the entry point. (Read carefully before selecting options). 



Step6: Eclipse by default shows the class files and the projects 
available. We just need to choose the right one and the jar file is 
created. 



 The basic command is: java -jar jar-file 
 If the runtime environment has no information about 

which class within the jar file is the application's entry 
point (class containing the main method of your 
application), you must add a Main-Class header to the JAR 
file's manifest. See: 
http://docs.oracle.com/javase/tutorial/deployment/jar/app
man.html 
 

Step7: Executing a jar file 



Will help starters a lot 



Features of Eclipse 
 Eclipse has the basic features required for editing, running, and 

debugging Java code, although they do some things slightly 
differently. In addition to basic programming features, Eclipse 
support for more advanced Java development tools such as 
Ant, CVS, JUnit, and refactoring.  

 Often, the hardest thing about migrating to Eclipse is learning 
how to do old things in the new environment. But Eclipse has a 
complete and easy-to-use help system with online 
documentation (http://help.eclipse.org/mars/index.jsp). 

 Eclipse's GUI builder is a separate component. 
 



Adding Eclipse plugin 
   The simplest way is to copy the plugin's folder to the plugins 

subfolder of the appropriate Eclipse binary folder. This 
method however, requires that separate copies of plugin 
binaries be created for different platforms.  

 



Running code 
 Eclipse uses an incremental compiler, so it isn't 

necessary to explicitly compile your Java files; the 
compiled class files are saved automatically when 
you save your Java files.  

 To run a program, the easiest way is to select the file 
containing a main() method in the Package Explorer 
and then select Run > Run As > Java Application 
from the main Eclipse menu. 



Debugging 
 First, set a breakpoint in the main() method by double-clicking in the 

left margin next to the call. If this code were a little less trivial, it would 
also be possible to set a conditional breakpoint -- one that stops when 
a particular expression is true, or one that stops after a specific number 
of hits -- by right-clicking the breakpoint and selecting Breakpoint 
properties from the context menu. 
 
 



Debugging 
 To start debugging, select Run > Debug As > Java 

Application from the main menu. Because Eclipse has 
a Debug perspective that is better suited for debugging 
than the Java perspective, it will ask if you want to 
change to this perspective - click Yes.  
 



Debug Perspective New Debug perspective –  
click Java to exit 

Buttons to step thorugh the 
code. Shortcuts available 

from Run menu 

List of breakpoints 
Variables in the scope with 

their current values. 

Line of code where we 
stopped 

Output Console 



The famous Dos and Don’ts: 
 Set the workspace of Eclipse where you can easily access it. 
 Never start writing the code without making a project. 

You need to create a project folder every time you start a 
new assignment 

 Main classname and the file name should always match. 
 
 



Strange Error: 

 The Eclipse IDE reports a strange error similar 
to: "Cannot create workbench". 

  In many situations this problem can be 
resolved by deleting the workspace / .metadata 
/.registry file in user's home directory and 
restarting the IDE.  

 


	Eclipse Tutorial
	Diapositiva numero 2
	What’s Eclipse?
	What’s Eclipse?
	Getting Eclipse
	Essentials of Eclipse
	Let’s start with basic stuff
	Diapositiva numero 8
	Step3: Select Java project and click next.
	Step4: Name the project and click finish.
	Step5: IDE views
	Diapositiva numero 12
	Step6:  Now we create the java file by selecting the “File” menu, then “New” and “File”.
	Step7: Now select the project in which you want to write, and the src folder if present. Then name the java class with extension (“.java”) and click “Finish”.
	Step8: Now you have the editor space, start coding.
	Writing the code
	Step10: Running the java class. Right click on the class file and choose “Run as Java Application”.
	Step11: Here you can find the output (Console).
	Using the command line
	Using the command line
	Importing a File into Eclipse
	Diapositiva numero 22
	Step2: Select the project in which you want to import the file and then the advanced option, click the check box and browse.
	Step3: Select your file from the location and click the “Open” option. 
	You can see that the imported file is shown in the workspace and is loaded in the default package space of the selected project.
	Step4: Now all you need to do is to select the file and run it. You can see the output.
	Creating a .jar file
	Step1: Select “File” and choose “export” option as shown below.
	Step2: Choose “jar file” and  “next”.
	Step3: Select the project and the files you want to add. Browse through and select your destination file. 
	Step4: In the Packaging options, the first 2 options are usually enough. You can choose the other advanced options depending on your requirements.
	Step5: Jar export. The options chosen here are the standard ones. We then browse through and select the class file which is the entry point. (Read carefully before selecting options).
	Step6: Eclipse by default shows the class files and the projects available. We just need to choose the right one and the jar file is created.
	Step7: Executing a jar file
	Some Information and FAQ �on Eclipse
	Features of Eclipse
	Adding Eclipse plugin
	Running code
	Debugging
	Debugging
	Debug Perspective
	The famous Dos and Don’ts:
	Diapositiva numero 43

