Lezione 6

Margherita Lembo

15 Maggio 2019

1. PROBLEMA

Calcolare il calore ceduto da 2 moli di gas monoatomico durante il ciclo $A \to B \to C \to D \to A$, $A \to B = isocora$, $B \to C = isoterma$, $C \to D = isocora$, $D \to A = isoterma$, dove:

$$P_A = 2 \times 10^5 \, Pa$$
 $T_A = 122 \, K$, $P_B = 4 \, P_A$ $T_B = 4 \, T_A$, $P_C = 2.285 \times 10^5 \, Pa$ $T_C = 4 \, T_A$, $P_D = \frac{P_C}{4}$ $T_D = T_A$.

2. PROBLEMA

$$V_A = \frac{V_B}{3} = \frac{V_D}{2} = 3 \, m^3$$
, $P_A = \frac{P_C}{3} = \frac{P_E}{4} = 2 \times 10^5 Pa$.

3. PROBLEMA

Calcolare il calore Q assorbito da 180 moli di gas nel ciclo A \rightarrow B \rightarrow C \rightarrow A, A \rightarrow B = isobara, B \rightarrow C = isoterma, C \rightarrow A = isocora, dove:

$$V_A = 2 m^3$$
 $P_A = 4 \times 10^5 Pa$, $V_B = 4 m^3$ $T_B = 1069 K$,

4. PROBLEMA

Calcolare il calore Q assorbito da 2 moli di gas monoatomico nel ciclo $A \to B \to C \to A$, $A \to B = isobara$, $B \to C = isocora$, $C \to A = adiabatica$, dove:

$$P_A = 2 \times 10^5 \, Pa$$
, $P_B = P_A$, $P_C = 6.35 \times 10^5 \, Pa$, $V_A = 0.01 \, m^3$, $V_B = \frac{V_A}{2}$, $V_C = V_B$.

5. Problema

Due moli di gas perfetto monoatomico passano dallo stato iniziale A allo stato finale C attraverso una espansione isobara AB, seguita da una espansione adiabatica BC.

La temperatura in A e C è la medesima e vale $TA = TC = 18^{\circ}$ C, inoltre $P_A = 2 \times 10^5 Pa$ e $V_B = 2V_A$. Calcolare:

- (a) Il valore assunto dalle variabili termodinamiche (p, V, T) nei tre punti e disegnare il grafico della trasformazione nel piano p V;
- (b) La quantità di calore scambiata nelle trasformazioni da A a C.

6. PROBLEMA

Un gas perfetto monoatomico occupa nello stato A un volume $V_A = 5.00L$ a pressione atmosferica, alla temperatura $T_A = 300$ K. Esso è riscaldato a volume costante fino allo stato B a pressione $P_B = 3.00$ atm. Poi si espande isotermicamente fino allo stato C a pressione $P_C = 1$ atm, ed infine è compresso isobaricamente fino allo stato iniziale A.

- (a) Si disegni nel piano p-V il grafico della trasformazione subita dal gas e si calcolino il numero di moli n di cui è costituito il gas e le coordinate termodinamiche (p, V, T) degli stati A. B e C:
- (b) Si calcolino il calore Q, il lavoro W e la variazione di energia interna Δ_{int} per le trasformazioni AB, BC e CD e per l?intero ciclo.

(Nota: R = 8.31 J/Kmole = 0.082×1 atomo/Kmole)

7. Problema

n = 2 moli di gas monoatomico compiono un ciclo reversibile così fatto:

A - B: espansione isoterma da $p_A = 2$ atm, $V_A = 1l$ a $V_B = 2l$;

B-C: espansione adiabatica fino a $p_C = \frac{p_A}{4}$;

C-D: compressione isobara fino al volume $V_D=V_A$;

D - A: trasformazione isocora fino allo stato A.

Disegnare il ciclo sul piano p-V e calcolare le coordinate termodinamiche (p, V, T) nei punti A, B, C e D.

(Nota: R = 8.31 J/mole K)

8. PROBLEMA

Una mole di gas perfetto monoatomico compie la seguente trasformazione ciclica:

- *i*) A \rightarrow B trasformazione isobara con $p_A = 1$ atm, $V_A = 1l$ e $V_B = 2l$;
- *ii*) B→C trasformazione isocora;
- *iii*) C→A trasformazione isoterma.

Dopo avere disegnato la trasformazione nel piano p-V, (a) determinare le coordinate termodinamiche (p,V,T) per i tre stati A, B, C, e la variazione di energia interna ΔE lungo ciascuna trasformazione;

(b) Calcolare il calore Q ed il lavoro W relativi alla intero ciclo.

9. PROBLEMA

Una macchina di Carnot è costituita da 2 moli di un gas perfetto che compiono un ciclo tra le temperature $T_a = 227^{\circ}$ C e $T_b = 127^{\circ}$ C. Alla temperatura più alta il gas assorbe una quantità di calore Q = 13000J. Calcolare:

- (a) Il rendimento e il lavoro compiuto dal gas in un ciclo;
- (b) Il rapporto tra il volume finale e quello iniziale nell?isoterma alla temperatura maggiore.