

Chapter 15

Algorithms for Query Processing and
Optimization

Copyright © 2004 Pearson Education, Inc.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-3

Chapter Outline (1)

0. Introduction to Query Processing
1. Translating SQL Queries into Relational Algebra
2. Algorithms for External Sorting
3. Algorithms for SELECT and JOIN Operations
4. Algorithms for PROJECT and SET Operations
5. Implementing Aggregate Operations and Outer Joins
6. Combining Operations using Pipelining
7. Using Heuristics in Query Optimization

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-4

Chapter Outline (2)

8. Using Selectivity and Cost Estimates in Query
Optimization

9. Overview of Query Optimization in Oracle
10. Semantic Query Optimization

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-5

 Query optimization: the process of choosing a
suitable execution strategy for processing a query.

 Two internal representations of a query
–  Query Tree
–  Query Graph

0. Introduction to Query Processing (1)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-6

Introduction to Query Processing (2)

Note: The above figure is now called Figure 15.1 in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-7

1. Translating SQL Queries into Relational
Algebra (1)

 Query block: the basic unit that can be translated
into the algebraic operators and optimized.

 A query block contains a single SELECT-FROM-
WHERE expression, as well as GROUP BY and
HAVING clause if these are part of the block.

 Nested queries within a query are identified as
separate query blocks.

 Aggregate operators in SQL must be included in
the extended algebra.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-8

Translating SQL Queries into Relational
Algebra (2)

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > (SELECT MAX (SALARY)

 FROM EMPLOYEE
 WHERE DNO = 5);

SELECT MAX (SALARY)
FROM EMPLOYEE
WHERE DNO = 5

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > C

πLNAME, FNAME (σSALARY>C(EMPLOYEE)) ℱMAX SALARY (σDNO=5 (EMPLOYEE))

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-9

2. Algorithms for External Sorting (1)

  External sorting: refers to sorting algorithms that are
suitable for large files of records stored on disk that do not
fit entirely in main memory, such as most database files.

  Sort-Merge strategy: starts by sorting small subfiles
(runs) of the main file and then merges the sorted runs,
creating larger sorted subfiles that are merged in turn.
–  Sorting phase: nR = ⌐(b/nB)¬
–  Merging phase: dM = Min (nB-1, nR); nP = ⌐(logdM(nR))¬

nR: number of initial runs; b: number of file blocks;
nB: available buffer space; dM: degree of merging;
nP: number of passes.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-10

Algorithms for External Sorting (2)

Note: The above figure is now called Figure 15.2 in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-11

3. Algorithms for SELECT and JOIN
Operations (1)

Implementing the SELECT Operation:
 Examples:
(OP1): σ SSN='123456789' (EMPLOYEE)
(OP2): σ DNUMBER>5(DEPARTMENT)
(OP3): σ DNO=5(EMPLOYEE)
(OP4): σ DNO=5 AND SALARY>30000 AND SEX=F(EMPLOYEE)
(OP5): σ ESSN=123456789 AND PNO=10(WORKS_ON)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-12

Algorithms for SELECT and JOIN Operations (2)

Implementing the SELECT Operation (cont.):
Search Methods for Simple Selection:
  S1. Linear search (brute force): Retrieve every record in

the file, and test whether its attribute values satisfy the
selection condition.

  S2. Binary search: If the selection condition involves an
equality comparison on a key attribute on which the file is
ordered, binary search (which is more efficient than linear
search) can be used. (See OP1).

  S3. Using a primary index or hash key to retrieve a
single record: If the selection condition involves an
equality comparison on a key attribute with a primary
index (or a hash key), use the primary index (or the
hash key) to retrieve the record.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-13

Algorithms for SELECT and JOIN Operations (3)

Implementing the SELECT Operation (cont.):
Search Methods for Simple Selection:
  S4. Using a primary index to retrieve multiple

records: If the comparison condition is >, ≥, <, or ≤ on
a key field with a primary index, use the index to find
the record satisfying the corresponding equality
condition, then retrieve all subsequent records in the
(ordered) file.

  S5. !Using a clustering index to retrieve multiple
records: If the selection condition involves an
equality comparison on a non-key attribute with a
clustering index, use the clustering index to retrieve
all the records satisfying the selection condition.!

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-14

Algorithms for SELECT and JOIN Operations (4)

Implementing the SELECT Operation (cont.):
Search Methods for Simple Selection:
  S6. Using a secondary (B+-tree) index: On an equality

comparison, this search method can be used to retrieve a
single record if the indexing field has unique values (is a key)
or to retrieve multiple records if the indexing field is not a
key. In addition, it can be used to retrieve records on
conditions involving >,>=, <, or <=. (FOR RANGE
QUERIES)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-15

Algorithms for SELECT and JOIN Operations (5)

Implementing the SELECT Operation (cont.):
Search Methods for Complex Selection:
  S7. Conjunctive selection: If an attribute involved in any

single simple condition in the conjunctive condition has an
access path that permits the use of one of the methods S2 to
S6, use that condition to retrieve the records and then check
whether each retrieved record satisfies the remaining simple
conditions in the conjunctive condition.

  S8. Conjunctive selection using a composite index: If two
or more attributes are involved in equality conditions in the
conjunctive condition and a composite index (or hash
structure) exists on the combined field, we can use the index
directly.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-16

Algorithms for SELECT and JOIN Operations (6)

Implementing the SELECT Operation (cont.):
Search Methods for Complex Selection:
  S9. Conjunctive selection by intersection of record

pointers: This method is possible if secondary indexes are
available on all (or some of) the fields involved in equality
comparison conditions in the conjunctive condition and if the
indexes include record pointers (rather than block pointers).
Each index can be used to retrieve the record pointers that
satisfy the individual condition. The intersection of these sets
of record pointers gives the record pointers that satisfy the
conjunctive condition, which are then used to retrieve those
records directly. If only some of the conditions have
secondary indexes, each retrieved record is further tested to
determine whether it satisfies the remaining conditions.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-17

Algorithms for SELECT and JOIN Operations (7)

Implementing the SELECT Operation (cont.):
  Whenever a single condition specifies the selection, we can

only check whether an access path exists on the attribute
involved in that condition. If an access path exists, the
method corresponding to that access path is used; otherwise,
the “brute force” linear search approach of method S1 is
used. (See OP1, OP2 and OP3)

  For conjunctive selection conditions, whenever more
than one of the attributes involved in the conditions
have an access path, query optimization should be
done to choose the access path that retrieves the
fewest records in the most efficient way .

  Disjunctive selection conditions

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-18

Algorithms for SELECT and JOIN Operations (8)

Implementing the JOIN Operation:
 Join (EQUIJOIN, NATURAL JOIN)

–  two–way join: a join on two files
e.g. R A=B S
–  multi-way joins: joins involving more than two files.
e.g. R A=B S C=D T

  Examples
(OP6): EMPLOYEE DNO=DNUMBER DEPARTMENT
(OP7): DEPARTMENT MGRSSN=SSN EMPLOYEE

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-19

Algorithms for SELECT and JOIN Operations (9)

Implementing the JOIN Operation (cont.):
Methods for implementing joins:
  J1. Nested-loop join (brute force): For each record t in R

(outer loop), retrieve every record s from S (inner loop) and
test whether the two records satisfy the join condition t[A] = s
[B].

  J2. Single-loop join (Using an access structure to retrieve
the matching records): If an index (or hash key) exists for one
of the two join attributes — say, B of S — retrieve each
record t in R, one at a time, and then use the access structure
to retrieve directly all matching records s from S that satisfy s
[B] = t[A].

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-20

Algorithms for SELECT and JOIN Operations
(10)

Implementing the JOIN Operation (cont.):
Methods for implementing joins:
  J3. Sort-merge join: If the records of R and S are physically

sorted (ordered) by value of the join attributes A and B,
respectively, we can implement the join in the most efficient
way possible. Both files are scanned in order of the join
attributes, matching the records that have the same values for
A and B. In this method, the records of each file are scanned
only once each for matching with the other file—unless both
A and B are non-key attributes, in which case the method
needs to be modified slightly.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-21

Algorithms for SELECT and JOIN Operations
(11)

Implementing the JOIN Operation (cont.):
Methods for implementing joins:
  J4. Hash-join: The records of files R and S are both hashed

to the same hash file, using the same hashing function on the
join attributes A of R and B of S as hash keys. A single pass
through the file with fewer records (say, R) hashes its records
to the hash file buckets. A single pass through the other file
(S) then hashes each of its records to the appropriate bucket,
where the record is combined with all matching records from
R.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-22

Algorithms for SELECT and JOIN Operations
(12)

Note: The above figure is now called Figure 15.3 in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-23

Algorithms for SELECT and JOIN Operations
(13)

Note: The above figure is now called Figure 15.3 (continued) in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-24

Algorithms for SELECT and JOIN Operations
(14)

Implementing the JOIN Operation (cont.):
 Factors affecting JOIN performance

– Available buffer space

–  Join selection factor

– Choice of inner VS outer relation

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-25

Algorithms for SELECT and JOIN Operations
(15)

Implementing the JOIN Operation (cont.):
Other types of JOIN algorithms
  Partition hash join

–  Partitioning phase: Each file (R and S) is first partitioned
into M partitions using a partitioning hash function on the
join attributes:

 R1 , R2 , R3 , Rm and S1 , S2 , S3 , Sm
 Minimum number of in-memory buffers needed for the

 partitioning phase: M+1.
 A disk sub-file is created per partition to store the tuples

 for that partition.
–  Joining or probing phase: Involves M iterations, one per

partitioned file. Iteration i involves joining partitions
Ri and Si.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-26

Algorithms for SELECT and JOIN Operations
(16)

Implementing the JOIN Operation (cont.):
Partitioned Hash Join Procedure:
Assume Ri is smaller than Si.
1.  Copy records from Ri into memory buffers.
2.  Read all blocks from Si, one at a time and each record from Si

is used to probe for a matching record(s) from partition Si.
3.  Write matching record from Ri after joining to the record from

Si into the result file.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-27

Algorithms for SELECT and JOIN Operations
(17)

Implementing the JOIN Operation (cont.):
Cost analysis of partition hash join:
1.  Reading and writing each record from R and S during the

partitioning phase: (bR + bS), (bR + bS)
2.  Reading each record during the joining phase: (bR + bS)
3.  Writing the result of join: bRES

Total Cost: 3* (bR + bS) + bRES

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-28

Algorithms for SELECT and JOIN Operations
(18)

Implementing the JOIN Operation (cont.):
  Hybrid hash join: Same as partitioned hash join except:

!Joining phase of one of the partitions is included during
the partitioning phase.

–  Partitioning phase: Allocate buffers for smaller relation-
one block for each of the M-1 partitions, remaining blocks
to partition 1. Repeat for the larger relation in the pass
through S.)

–  Joining phase: M-1 iterations are needed for the partitions
R2 , R3 , R4 , Rm and S2 , S3 , S4 , Sm. R1 and
S1 are joined during the partitioning of S1 , and results of
joining R1 and S1 are already written to the disk by the
end of partitioning phase .

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-29

4. Algorithms for PROJECT and SET
Operations (1)

Algorithm for PROJECT operations (Figure 15.3b)
π<attribute list>(R)
1.  If <attribute list> has a key of relation R, extract all tuples

from R with only the values for the attributes in <attribute
list>.

2.  If <attribute list> does NOT include a key of relation R,
duplicated tuples must be removed from the results.

  Methods to remove duplicate tuples
1.  Sorting
2.  Hashing

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-30

Algorithms for PROJECT and SET Operations
(2)

Algorithm for SET operations
  Set operations: UNION, INTERSECTION, SET

DIFFERENCE and CARTESIAN PRODUCT.

  CARTESIAN PRODUCT of relations R and S include all
possible combinations of records from R and S. The
attribute of the result include all attributes of R and S.

  Cost analysis of CARTESIAN PRODUCT
 If R has n records and j attributes and S has m records and k
attributes, the result relation will have n*m records and j+k
attributes.

  CARTESIAN PRODUCT operation is very expensive and
should be avoided if possible.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-31

Algorithms for PROJECT and SET Operations
(3)

Algorithm for SET operations (Cont.)
  UNION (See Figure 15.3c)
1.  Sort the two relations on the same attributes.
2.  Scan and merge both sorted files concurrently, whenever the

same tuple exists in both relations, only one is kept in the
merged results.

  INTERSECTION (See Figure 15.3d)
1.  Sort the two relations on the same attributes.
2.  Scan and merge both sorted files concurrently, keep in the

merged results only those tuples that appear in both relations.
  SET DIFFERENCE R-S (See Figure 15.3e)

 (keep in the merged results only those tuples that appear in
relation R but not in relation S.)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-32

5. Implementing Aggregate Operations
and Outer Joins (1)

Implementing Aggregate Operations:
  Aggregate operators: MIN, MAX, SUM, COUNT and AVG
  Options to implement aggregate operators:

–  Table Scan
–  Index

  Example
 SELECT MAX (SALARY)
 FROM EMPLOYEE;

 If an (ascending) index on SALARY exists for the employee relation,
then the optimizer could decide on traversing the index for the
largest value, which would entail following the right most pointer in
each index node from the root to a leaf.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-33

Implementing Aggregate Operations and
Outer Joins (2)

Implementing Aggregate Operations (cont.):
  SUM, COUNT and AVG
1.  For a dense index (each record has one index entry):

apply the associated computation to the values in the
index.

2.  For a non-dense index: actual number of records
associated with each index entry must be accounted for

  With GROUP BY: the aggregate operator must be applied
separately to each group of tuples.

1.  Use sorting or hashing on the group attributes to partition the
file into the appropriate groups;

2.  Computes the aggregate function for the tuples in each group.
  What if we have Clustering index on the grouping attributes?

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-34

Implementing Aggregate Operations and
Outer Joins (3)

Implementing Outer Join:
  Outer Join Operators: LEFT OUTER JOIN, RIGHT OUTER

JOIN and FULL OUTER JOIN.
  The full outer join produces a result which is equivalent to

the union of the results of the left and right outer joins.
  Example

 Note: The result of this query is a table of employee names and their
associated departments. It is similar to a regular join result, with the
exception that if an employee does not have an associated
department, the employee's name will still appear in the resulting
table, although the department name would be indicated as null.

 SELECT FNAME, DNAME
 FROM (EMPLOYEE LEFT OUTER JOIN

DEPARTMENT
 ON DNO = DNUMBER);

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-35

Implementing Aggregate Operations and
Outer Joins (4)

Implementing Outer Join (cont.):
  Modifying Join Algorithms: Nested Loop or Sort-

Merge joins can be modified to implement outer join.
 e.g., for left outer join, use the left relation as outer
relation and construct result from every tuple in the left
relation. If there is a match, the concatenated tuple is
saved in the result. However, if an outer tuple does not
match, then the tuple is still included in the result but is
padded with a null value(s).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-36

Implementing Aggregate Operations and
Outer Joins (5)

Implementing Outer Join (cont.):
  Executing a combination of relational algebra

operators.
 Implement the previous left outer join example

1.  {Compute the JOIN of the EMPLOYEE and DEPARTMENT tables}
TEMP1πFNAME,DNAME(EMPLOYEE DNO=DNUMBER DEPARTMENT)

2.  {Find the EMPLOYEEs that do not appear in the JOIN} TEMP2 π

FNAME (EMPLOYEE) - πFNAME (Temp1)
3.  {Pad each tuple in TEMP2 with a null DNAME field}

TEMP2  TEMP2 x 'null'
4.  {UNION the temporary tables to produce the LEFT OUTER JOIN result}

 RESULT  TEMP1 υ TEMP2
  The cost of the outer join, as computed above, would include the cost of

the associated steps (i.e., join, projections and union).

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-37

6. Combining Operations using Pipelining (1)
 Motivation

–  A query is mapped into a sequence of operations.
–  Each execution of an operation produces a temporary

result.
–  Generating and saving temporary files on disk is time

consuming and expensive.
 Alternative:

–  Avoid constructing temporary results as much as
possible.

–  Pipeline the data through multiple operations - pass the
result of a previous operator to the next without waiting
to complete the previous operation.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-38

Combining Operations using Pipelining (2)
 Example: For a 2-way join, combine the 2

selections on the input and one projection on the
output with the Join.

 Dynamic generation of code to allow for multiple
operations to be pipelined.

 Results of a select operation are fed in a
"Pipeline" to the join algorithm.

 Also known as stream-based processing.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-39

7. Using Heuristics in Query Optimization(1)

  Process for heuristics optimization
1.  The parser of a high-level query generates an initial internal

representation;
2.  Apply heuristics rules to optimize the internal representation.
3.  A query execution plan is generated to execute groups of

operations based on the access paths available on the files
involved in the query.

  The main heuristic is to apply first the operations that
reduce the size of intermediate results.
 E.g., Apply SELECT and PROJECT operations before
applying the JOIN or other binary operations.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-40

Using Heuristics in Query Optimization (2)

  Query tree: a tree data structure that corresponds to a
relational algebra expression. It represents the input relations
of the query as leaf nodes of the tree, and represents the
relational algebra operations as internal nodes.

  An execution of the query tree consists of executing an
internal node operation whenever its operands are available
and then replacing that internal node by the relation that
results from executing the operation.

  Query graph: a graph data structure that corresponds to a
relational calculus expression. It does not indicate an order
on which operations to perform first. There is only a single
graph corresponding to each query.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-41

Using Heuristics in Query Optimization (3)

  Example:
 For every project located in ‘Stafford’, retrieve the project
number, the controlling department number and the department
manager’s last name, address and birthdate.

 Relation algebra:
 πPNUMBER, DNUM, LNAME, ADDRESS, BDATE (((σPLOCATION=‘STAFFORD’(PROJECT))
 DNUM=DNUMBER (DEPARTMENT)) MGRSSN=SSN (EMPLOYEE))

 SQL query:
 Q2: SELECT P.NUMBER,P.DNUM,E.LNAME, E.ADDRESS, E.BDATE
 FROM PROJECT AS P,DEPARTMENT AS D, EMPLOYEE AS E
 WHERE P.DNUM=D.DNUMBER AND D.MGRSSN=E.SSN AND
 P.PLOCATION=‘STAFFORD’;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-42

Using Heuristics in Query Optimization (4)

Note: The above figure is now called Figure 15.4 in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-43

Using Heuristics in Query Optimization (5)

Note: The above figure is now called Figure 15.4 (continued) in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-44

Using Heuristics in Query Optimization (6)

Heuristic Optimization of Query Trees:
  The same query could correspond to many different relational

algebra expressions — and hence many different query trees.

  The task of heuristic optimization of query trees is to find a
final query tree that is efficient to execute.

  Example:
 Q: SELECT LNAME
 FROM EMPLOYEE, WORKS_ON, PROJECT
 WHERE PNAME = ‘AQUARIUS’ AND PNMUBER=PNO
 AND ESSN=SSN AND BDATE > ‘1957-12-31’;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-45

Using Heuristics in Query Optimization (7)

Note: The above figure is now called Figure 15.5 in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-46

Using Heuristics in Query Optimization (8)

Note: The above figure is now called Figure 15.5(continued c, d) in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-47

Using Heuristics in Query Optimization (9)

Note: The above figure is now called Figure 15.5(continued e) in Edition 4

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-48

Using Heuristics in Query Optimization (10)
General Transformation Rules for Relational Algebra

Operations:
1.  Cascade of σ: A conjunctive selection condition can be

broken up into a cascade (sequence) of individual s
operations: σ c1 AND c2 AND ... AND cn(R) = σc1 (σc2 (...(σcn
(R))...))

2.  Commutativity of σ: The σ operation is commutative:
 σc1 (σc2(R)) = σc2 (σc1(R))

3.  Cascade of π: In a cascade (sequence) of π operations,
all but the last one can be ignored:
 πList1 (πList2 (...(πListn(R))...)) = πList1(R)

4.  Commuting σ with π: If the selection condition c involves
only the attributes A1, ..., An in the projection list, the two
operations can be commuted:
 πA1, A2, ..., An (σc (R)) = σc (πA1, A2, ..., An (R))

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-49

Using Heuristics in Query Optimization (11)
General Transformation Rules for Relational Algebra

Operations (cont.):
5.  Commutativity of (and x): The operation is

commutative as is the x operation: R C S = S C R; R x
S = S x R

6.  Commuting σ with (or x): If all the attributes in the
selection condition c involve only the attributes of one of
the relations being joined—say, R—the two operations
can be commuted as follows :
	

 	

σc (R S) = (σc (R)) S
 Alternatively, if the selection condition c can be written as
(c1 and c2), where condition c1 involves only the
attributes of R and condition c2 involves only the
attributes of S, the operations commute as follows:
 σc (R S) = (σc1 (R)) (σc2 (S))

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-50

Using Heuristics in Query Optimization (12)
General Transformation Rules for Relational Algebra

Operations (cont.):
7.  Commuting π with (or x): Suppose that the projection

list is L = {A1, ..., An, B1, ..., Bm}, where A1, ..., An are
attributes of R and B1, ..., Bm are attributes of S. If the
join condition c involves only attributes in L, the two
operations can be commuted as follows:
 πL (R C S) = (πA1, ..., An (R)) C (πB1, ..., Bm (S))
 If the join condition c contains additional attributes not in
L, these must be added to the projection list, and a final π
operation is needed.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-51

Using Heuristics in Query Optimization (13)
General Transformation Rules for Relational Algebra

Operations (cont.):
8.  Commutativity of set operations: The set operations υ

and ? are commutative but – is not.
9.  Associativity of , x, υ, and ∩ : These four operations are

individually associative; that is, if θ stands for any one of
these four operations (throughout the expression), we
have (R θ S) θ T = R θ (S θ T)

10.  Commuting σ with set operations: The σ operation
commutes with υ , ∩ , and –. If θ stands for any one of
these three operations, we have
 σc (R θ S) = (σc (R)) θ (σc (S))

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-52

Using Heuristics in Query Optimization (14)
General Transformation Rules for Relational Algebra

Operations (cont.):
11.  The π operation commutes with υ.

 πL (R υ S) = (πL (R)) υ (πL (S))

13.  Converting a (σ, x) sequence into : If the condition c of a σ
that follows a x Corresponds to a join condition, convert the
(σ, x) sequence into a as follows:

 (σC (R x S)) = (R C S)

15.  Other transformations

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-53

Using Heuristics in Query Optimization (15)
Outline of a Heuristic Algebraic Optimization Algorithm:
1.  Using rule 1, break up any select operations with

conjunctive conditions into a cascade of select
operations.

2.  Using rules 2, 4, 6, and 10 concerning the commutativity
of select with other operations, move each select
operation as far down the query tree as is permitted by
the attributes involved in the select condition.

3.  Using rule 9 concerning associativity of binary
operations, rearrange the leaf nodes of the tree so that
the leaf node relations with the most restrictive select
operations are executed first in the query tree
representation.

4.  Using Rule 12, combine a cartesian product operation
with a subsequent select operation in the tree into a join
operation.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-54

Using Heuristics in Query Optimization (16)
Outline of a Heuristic Algebraic Optimization Algorithm

(cont.)
5.  Using rules 3, 4, 7, and 11 concerning the cascading of

project and the commuting of project with other
operations, break down and move lists of projection
attributes down the tree as far as possible by creating
new project operations as needed.

7.  Identify subtrees that represent groups of operations that
can be executed by a single algorithm.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-55

Using Heuristics in Query Optimization (17)
Summary of Heuristics for Algebraic Optimization:
1.  The main heuristic is to apply first the operations that

reduce the size of intermediate results.
2.  Perform select operations as early as possible to reduce

the number of tuples and perform project operations as
early as possible to reduce the number of attributes.
(This is done by moving select and project operations as
far down the tree as possible.)

3.  The select and join operations that are most restrictive
should be executed before other similar operations. (This
is done by reordering the leaf nodes of the tree among
themselves and adjusting the rest of the tree
appropriately.)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-56

Using Heuristics in Query Optimization (17)
Query Execution Plans
  An execution plan for a relational algebra query consists

of a combination of the relational algebra query tree and
information about the access methods to be used for
each relation as well as the methods to be used in
computing the relational operators stored in the tree.

  Materialized evaluation: the result of an operation is stored
as a temporary relation.

  Pipelined evaluation: as the result of an operator is
produced, it is forwarded to the next operator in
sequence.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-57

8. Using Selectivity and Cost Estimates in
Query Optimization (1)

  Cost-based query optimization: Estimate and compare the
costs of executing a query using different execution strategies
and choose the strategy with the lowest cost estimate.
 (Compare to heuristic query optimization)

  Issues
–  Cost function
–  Number of execution strategies to be considered

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-58

Using Selectivity and Cost Estimates in Query
Optimization (2)

  Cost Components for Query Execution
1.  Access cost to secondary storage
2.  Storage cost
3.  Computation cost
4.  Memory usage cost
5.  Communication cost

Note: Different database systems may focus on different cost
components.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-59

Using Selectivity and Cost Estimates in Query
Optimization (3)

  Catalog Information Used in Cost Functions
–  Information about the size of a file

  number of records (tuples) (r),
  record size (R),
  number of blocks (b)
  blocking factor (bfr)

–  Information about indexes and indexing attributes of a file
  Number of levels (x) of each multilevel index
  Number of first-level index blocks (bI1)
  Number of distinct values (d) of an attribute
  Selectivity (sl) of an attribute
  Selection cardinality (s) of an attribute. (s = sl * r)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-60

Using Selectivity and Cost Estimates in Query
Optimization (4)

Examples of Cost Functions for SELECT
  S1. Linear search (brute force) approach

 CS1a = b;
 For an equality condition on a key, CS1a = (b/2) if the record is found;
otherwise CS1a = b.

  S2. Binary search:

 CS2 = log2b + ┌(s/bfr) ┐–1
 For an equality condition on a unique (key) attribute,
 CS2 =log2b

  S3. Using a primary index (S3a) or hash key (S3b) to retrieve a single
record
 CS3a = x + 1; CS3b = 1 for static or linear hashing;
 CS3b = 1 for extendible hashing;

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-61

Using Selectivity and Cost Estimates in Query
Optimization (5)

Examples of Cost Functions for SELECT (cont.)
  S4. Using an ordering index to retrieve multiple records:

 For the comparison condition on a key field with an ordering
index, CS4 = x + (b/2)

  S5. Using a clustering index to retrieve multiple records:
 CS5 = x + ┌ (s/bfr) ┐

  S6. Using a secondary (B+-tree) index:
 For an equality comparison, CS6a = x + s;
 For an comparison condition such as >, <, >=, or <=,
 CS6a = x + (bI1/2) + (r/2)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-62

Using Selectivity and Cost Estimates in Query
Optimization (6)

Examples of Cost Functions for SELECT (cont.)
  S7. Conjunctive selection:

 Use either S1 or one of the methods S2 to S6 to solve.
 For the latter case, use one condition to retrieve the records and
then check in the memory buffer whether each retrieved record
satisfies the remaining conditions in the conjunction.

  S8. Conjunctive selection using a composite index:
 Same as S3a, S5 or S6a, depending on the type of index.

  Examples of using the cost functions.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-63

Using Selectivity and Cost Estimates in Query
Optimization (7)

Examples of Cost Functions for JOIN
  Join selectivity (js)

 js = | (R C S) | / | R x S | = | (R C S) | / (|R| * |S |)
 If condition C does not exist, js = 1;

 If no tuples from the relations satisfy condition C, js = 0;
 Usually, 0 <= js <= 1;

  Size of the result file after join operation
 | (R C S) | = js * |R| * |S |

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-64

Using Selectivity and Cost Estimates in Query
Optimization (8)

Examples of Cost Functions for JOIN (cont.)
  J1. Nested-loop join:

 CJ1 = bR + (bR*bS) + ((js* |R|* |S|)/bfrRS)
 (Use R for outer loop)

  J2. Single-loop join (using an access structure to retrieve the
matching record(s))
 If an index exists for the join attribute B of S with index levels
xB, we can retrieve each record s in R and then use the index to
retrieve all the matching records t from S that satisfy t[B] = s
[A].
 The cost depends on the type of index.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-65

Using Selectivity and Cost Estimates in Query
Optimization (9)

Examples of Cost Functions for JOIN (cont.)
  J2. Single-loop join (cont.)

 For a secondary index,
 CJ2a = bR + (|R| * (xB + sB)) + ((js* |R|* |S|)/bfrRS);
 For a clustering index,
 CJ2b = bR + (|R| * (xB + (sB/bfrB))) + ((js* |R|* |S|)/bfrRS);
 For a primary index,
 CJ2c = bR + (|R| * (xB + 1)) + ((js* |R|* |S|)/bfrRS);
 If a hash key exists for one of the two join attributes — B of S
 CJ2d = bR + (|R| * h) + ((js* |R|* |S|)/bfrRS);

  J3. Sort-merge join:
 CJ3a = CS + bR + bS + ((js* |R|* |S|)/bfrRS); (CS: Cost for sorting files)

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-66

Using Selectivity and Cost Estimates in Query
Optimization (10)

Multiple Relation Queries and Join Ordering
  A query joining n relations will have n-1 join operations, and

hence can have a large number of different join orders when
we apply the algebraic transformation rules.

  Current query optimizers typically limit the structure of a (join)
query tree to that of left-deep (or right-deep) trees.

  Left-deep tree: a binary tree where the right child of each non-
leaf node is always a base relation.

–  Amenable to pipelining
–  Could utilize any access paths on the base relation (the right child)

when executing the join.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-67

9. Overview of Query Optimization in Oracle

Oracle DBMS V8
  Rule-based query optimization: the optimizer chooses

execution plans based on heuristically ranked operations.
 (Currently it is being phased out)

  Cost-based query optimization: the optimizer examines
alternative access paths and operator algorithms and chooses
the execution plan with lowest estimate cost. The query cost is
calculated based on the estimated usage of resources such as I/
O, CPU and memory needed.

  Application developers could specify hints to the ORACLE
query optimizer. The idea is that an application developer
might know more information about the data.

Copyright © 2004 Ramez Elmasri and Shamkant Navathe
Elmasri/Navathe, Fundamentals of Database Systems, Fourth Edition Chapter 15-68

10. Semantic Query Optimization

  Semantic Query Optimization: Uses constraints
specified on the database schema in order to modify one
query into another query that is more efficient to execute.

  Consider the following SQL query,
 SELECT E.LNAME, M.LNAME
 FROM EMPLOYEE E M

 WHERE E.SUPERSSN=M.SSN AND E.SALARY>M.SALARY

 Explanation: Suppose that we had a constraint on the database
schema that stated that no employee can earn more than his or her
direct supervisor. If the semantic query optimizer checks for the
existence of this constraint, it need not execute the query at all
because it knows that the result of the query will be empty.
Techniques known as theorem proving can be used for this
purpose.

