

Architettura degli Elaboratori e Laboratorio

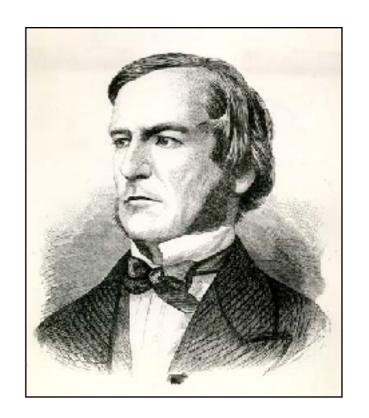
Matteo Manzali

Università degli Studi di Ferrara

Anno Accademico 2016 - 2017

Algebra booleana

- L'algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1.
- Deriva il suo nome dal matematico inglese George Boole che la ideò.
- Le funzioni dell'algebra booleana sono isomorfe ai circuiti digitali:



- un circuito digitale può essere espresso tramite un'espressione booleana e viceversa.
- Una funzione booleana ha una o più variabili in input e fornisce risultati che dipendono solo da queste variabili.

Algebra booleana

- Le variabili possono assumere solo i valori 0 o 1:
 - una funzione booleana con n variabili di input ha solo 2ⁿ combinazioni possibili
 - può essere descritta attraverso una tabella, detta tabella di verità, con 2ⁿ righe

Α	В	С	V
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Esempio:

- V = f(A, B, C)
- 3 variabili (A, B, C)
- $2^3 \rightarrow 8$ righe
- A, B, C \rightarrow input
- V → output

Operatori di base

- L'algebra booleana si basa su tre operatori di base:
 - OR → "somma logica": A + B = 1 se almeno uno tra A e B è uguale a 1
 - AND → "prodotto logico": A B = 1 se entrambi A e B sono uguali a 1
 - NOT → operazione di "complemento": A = 1 se A = 0 e A = 0 se A = 1
- Con le porte logiche AND, OR e NOT è possibile realizzare qualsiasi funzione booleana.
- Ogni operatore ha associata una astrazione di un dispositivo elettronico che lo implementa.

Operatore OR

Tabella di verità:

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Astrazione elettronica:

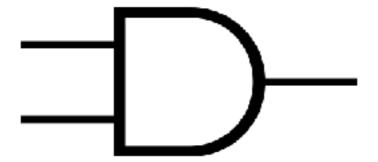


Operatore AND

Tabella di verità:

Α	В	А•В
0	0	0
0	1	0
1	0	0
1	1	1

Astrazione elettronica:

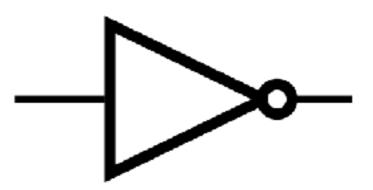


Operatore NOT

Tabella di verità:

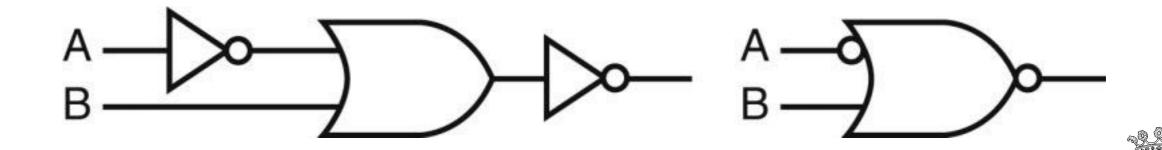
Α	A
0	1
1	0

Astrazione elettronica:



Versione semplificata dell'astrazione elettronica del NOT:

Es.:
$$\overline{A} + B$$



Matteo Manzali - Università degli Studi di Ferrara

Altri operatori

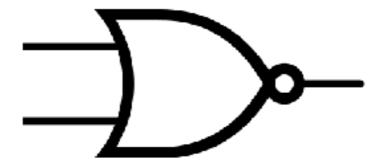
- Esistono altri operatori nell'algebra booleana:
 - NOR
 - NAND
 - XOR
 - XNOR
- Tutti questi operatori possono essere riprodotti attraverso l'uso degli operatori di base (OR, AND, NOT).

Operatore NOR

- Rappresenta la negazione del risultato dell'operatore OR.
- Tabella di verità:

Α	В	A + B
0	0	1
0	1	0
1	0	0
1	1	0

Astrazione elettronica:



Operatore NAND

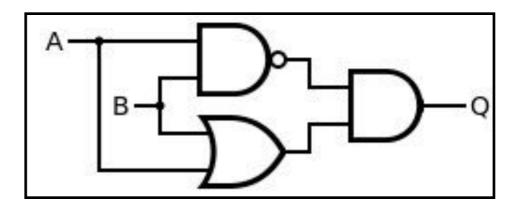
- Rappresenta la negazione del risultato dell'operatore AND.
- Tabella di verità:

Α	В	A·B
0	0	1
0	1	1
1	0	1
1	1	0

Astrazione elettronica:

Operatore XOR

- Restituisce 1 se e solo se il numero degli operandi uguali a 1 è dispari:
 - somma modulo 2 (senza riporto)
 - bit di parità



Astrazione elettrica:

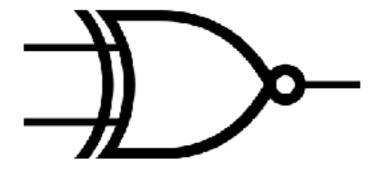
A	В	A B
0	0	0
0	1	1
1	0	1
1	1	0

Operatore XNOR

- Rappresenta la negazione del risultato dell'operatore XOR.
- Tabella di verità:

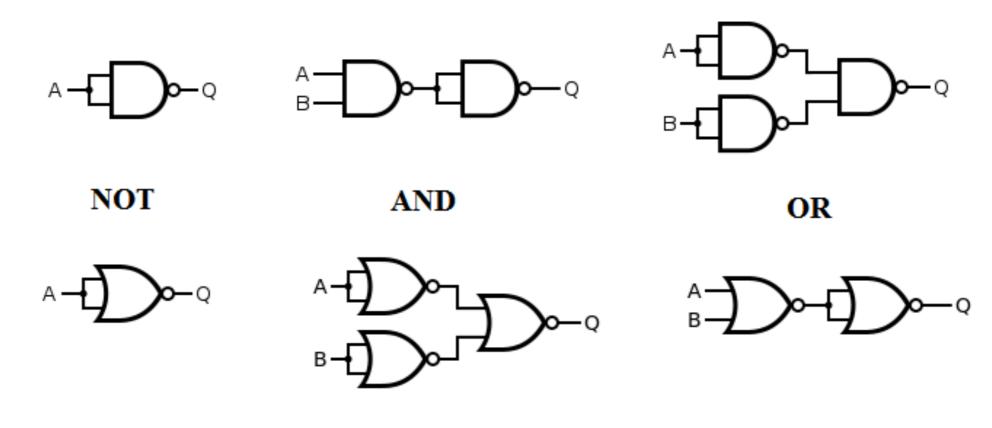
Α	В	A ⊕ B
0	0	1
0	1	0
1	0	0
1	1	1

Astrazione elettronica:



Operatori universali

- NAND e NOR sono definiti operatori universali:
 - è possibile implementare gli operatori di base (OR, AND, NOT) in funzione di soli NAND o soli NOR
 - utilizzati nell'implementazione di circuiti digitali per via della riduzione di costi e spazi



Proprietà algebra booleana

Identità:

$$A + 0 = A e A \cdot 1 = A$$

Assorbimento:

$$A + 1 = 1$$
 e $A \cdot 0 = 0$

Inverso:

$$A + \overline{A} = 1$$
 e $A \cdot \overline{A} = 0$

Idempotenza:

$$A + A = A$$
 e $A \cdot A = A$

Proprietà algebra booleana

Commutativa:

$$A + B = B + A$$
 e $A \cdot B = B \cdot A$

Associativa:

$$A + (B + C) = (A + B) + C$$
 e $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Distributiva:

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$
 e $A + (B \cdot C) = (A + B) \cdot (A + C)$

Assorbimento:

$$A + \overline{A} \cdot B = A + B$$

Teoremi di De Morgan

- I teoremi (o leggi) di De Morgan stabiliscono relazioni di equivalenza tra gli operatori di congiunzione logica AND e OR.
- Sono utilizzati per l'analisi e la semplificazione di circuiti digitali.
- I teoremi sono due:

1.
$$A \cdot B = A + B$$

2.
$$A + B = A \cdot B$$

 I teoremi di De Morgan si possono estendere a più di due variabili (A, B, C, D, ...):

Funzioni e tabelle di verità

Parametri in ingresso

		•			
Α	В	С	Т	U	V
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	0	1
1	1	1	1	1	0

•
$$T = A + B + C$$

Funzioni di uscita

•
$$V = ((A \cdot B) + (A \cdot C) + (B \cdot C)) \cdot (A \cdot B \cdot C)$$

Matteo Manzali - Università degli Studi di Ferrara

Forme canoniche

- La forma canonica (o forma normale) di una funzione booleana è una rappresentazione di un'espressione booleana ricavabile dalla tabella di verità.
- Esistono due forme canoniche:
 - "somma di prodotti" (forma disgiuntiva)
 - "prodotto di somme" (forma congiuntiva)

Somma di prodotti

- Per ogni valore della funzione pari a 1:
 - ne prendiamo i parametri in ingresso
 - se il valore di un parametro è 0 lo neghiamo
 - facciamo il prodotto dei parametri (mintermine)
- Sommiamo i prodotti ottenuti.

Somma di prodotti

Α	В	С	V
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$V = (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot B \cdot C)$$

$$V = ABC + ABC + ABC$$

Prodotto di somme

- Per ogni valore della funzione pari a 0:
 - ne prendiamo i parametri in ingresso
 - se il valore di un parametro è 1 lo neghiamo
 - facciamo la somma dei parametri (maxtermine)
- Facciamo il prodotto delle somme ottenute.

Prodotto di somme

Α	В	С	V
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$V = (A + B + C) \cdot (A + B + C)$$
maxtermine

Forme canoniche

- Quale forma canonica utilizzare?
 - non c'è una regola
 - di solito la somma di prodotti è la più intuitiva
 - dipende anche dalla quantità di 1 e di 0 nella funzione
- Una volta scritta la funzione in forma canonica, la si può ottimizzare utilizzando le proprietà dell'algebra booleana.
- Questo permette di ridurre la quantità di operazioni previste dalla funzione:
 - risparmio in termini di costi, spazio e consumo nell'implementazione di circuiti elettrici

Esempio

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

La funzione "Y" è espressa in prima forma canonica.

Esempio

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

Sfruttiamo la proprietà dell'idempotenza e aggiungiamo 3 mintermini ABC (mintermine già esistente):

$$Y = \overline{ABC} + \overline{ABC}$$

Utilizziamo la proprietà distributiva:

$$Y = BC(A + \overline{A}) + AC(B + \overline{B}) + AB(C + \overline{C})$$

Utilizziamo la proprietà dell'inverso (A + A = 1):

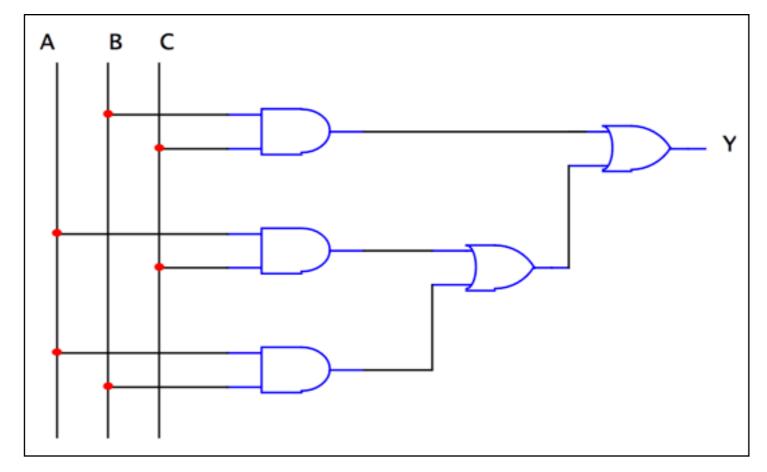
$$Y = BC1 + AC1 + AB1$$

Utilizziamo la proprietà dell'identità $(A \cdot 1 = A)$:

$$Y = BC + AC + AB$$

Esempio

- L'espressione così minimizzata è Y = BC + AC + AB
- Il circuito logico sarà costituito da:
 - tre porte AND
 - due porte OR (o una porta OR a tre ingressi)



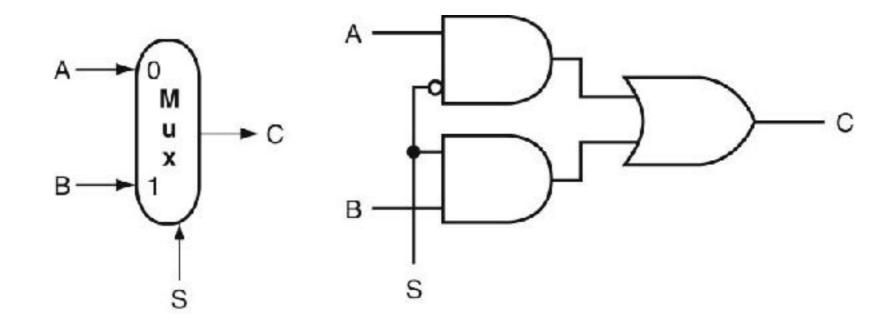
Matteo Manzali - Università degli Studi di Ferrara

ALU

- La ALU (Arithmetic and Logic Unit) o unità aritmetico-logica è il componente hardware che svolge le operazioni aritmetiche e logiche.
- L'ALU è una componente fondamentale della CPU.
- Nelle prossime slides vedremo una ALU semplificata in grado di eseguire le seguenti operazioni su interi signed a 32 bit:
 - somma e sottrazione
 - AND
 - OR
 - altro?
- E' la ALU dell'architettura MIPS.

Multiplexer

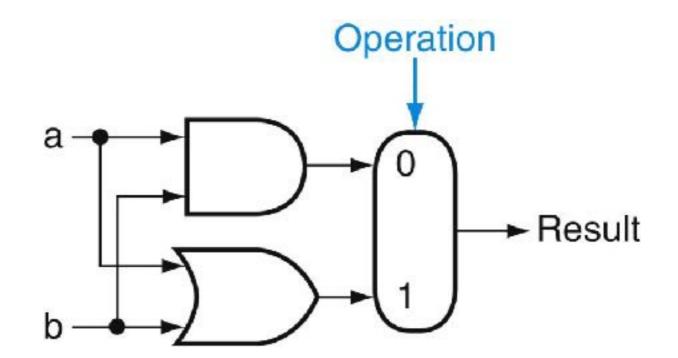
 Funzione logica che permette di replicare in output una delle variabili in input in base al valore di una o più variabili di controllo:



- S è il bit di controllo:
 - $S = 0 \rightarrow C = A$ e $S = 1 \rightarrow C = B$
- Con N bit di controllo posso gestire 2^N bit in input.

ALU - operazioni logiche

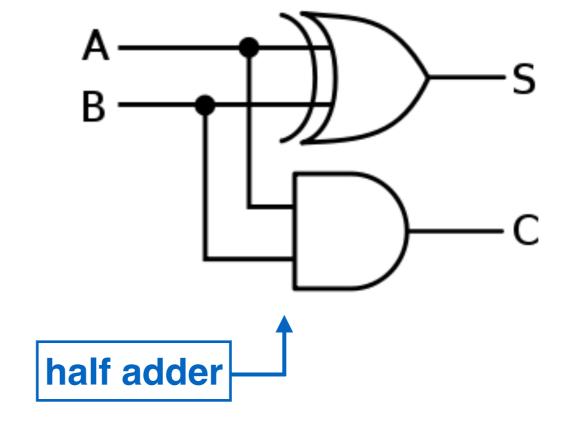
- Le operazioni AND e OR nella ALU sono svolte dai corrispondenti circuiti elettrici.
- Un multiplexer sceglie quale delle due operazioni deve essere svolta.



ALU - Half adder

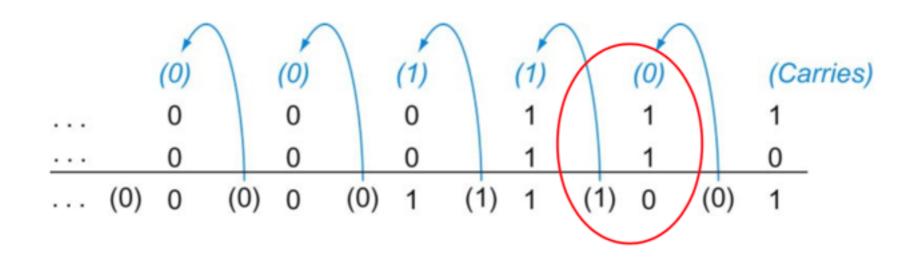
- La funzione somma tra due bit genera due bit in output:
 - la somma (S) → vale 1 se solo uno dei due bit vale 1 (XOR)
 - il riporto (C) → vale 1 se entrambi i bit valgono 1 (AND)

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1



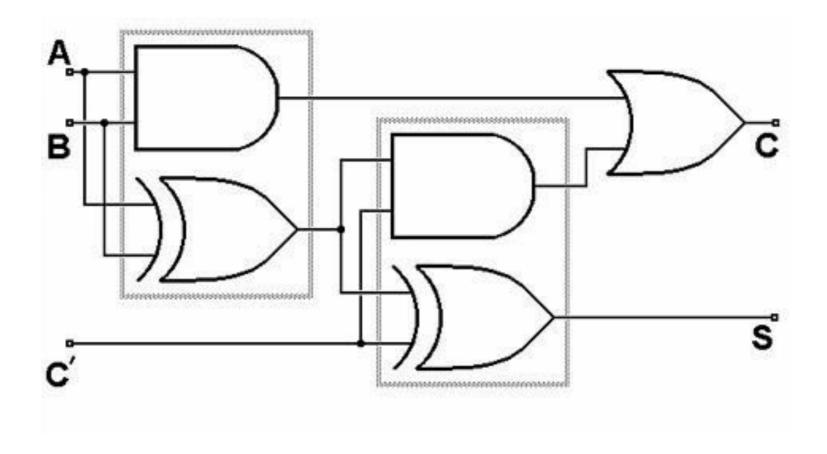
ALU - Carry In

- L'addizione di numeri composti da più di 1 bit comporta un problema:
 - potrebbe esserci un riporto "pendente" dall'addizione dei bit nella posizione precedente
 - questo riporto diventa un terzo input della addizione (Carry In)

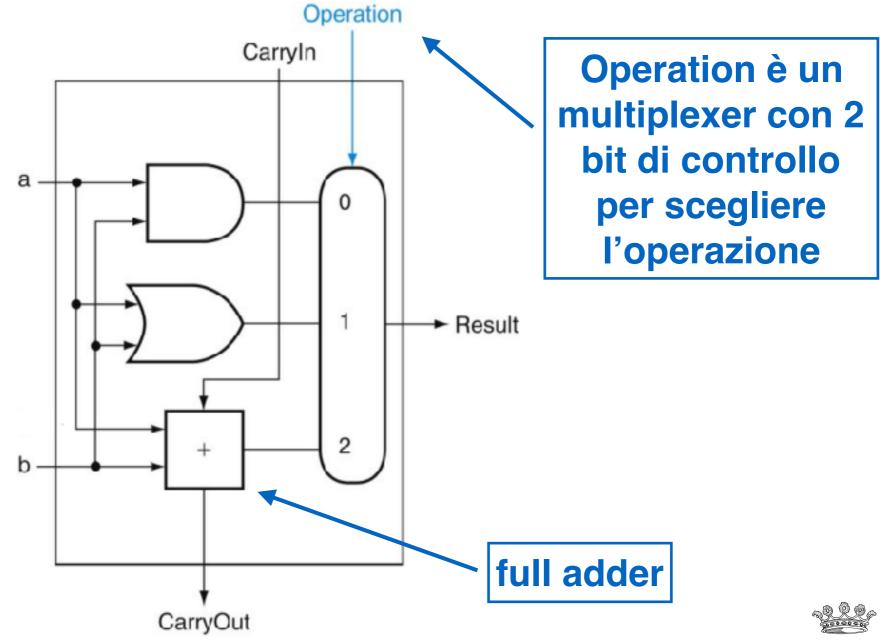


ALU - Full adder

- Il circuito che tiene conto del Carry In (riporto in input) si chiama "full adder".
- E' composto da due "half adder" in cascata più un OR che prende in input i due Carry Out.

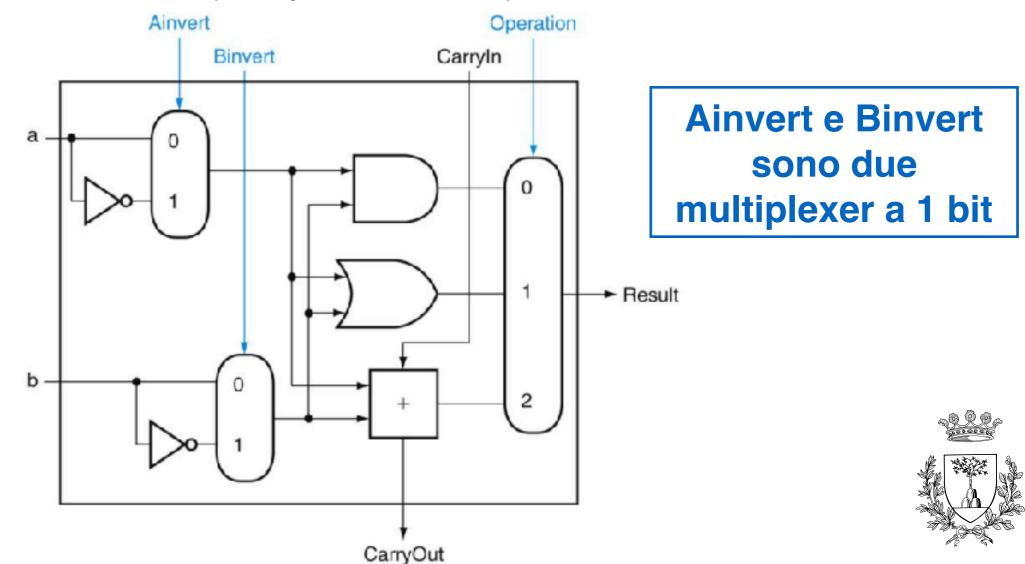


ALU a 1 bit che implementa le operazioni di somma, AND e OR:

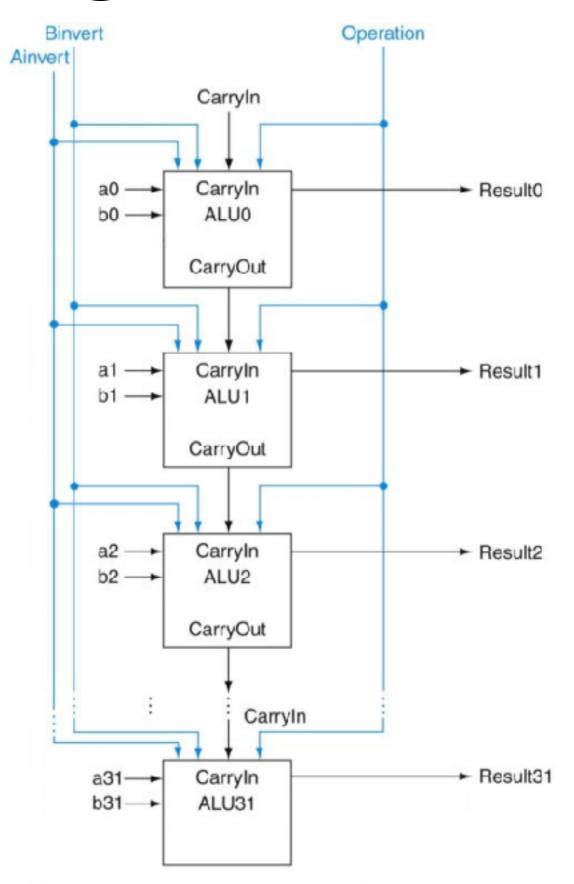


1-bit ALU → inversione

- Inversione degli input a e b
- Utile per:
 - $a + b = a \cdot b$ (teorema di De Morgan)
 - a b = a + b + 1 (complemento a 2)



- La ALU del processore MIPS deve gestire interi di 32 bit.
- Si mettono in array 32 ALU a 1 bit.



32-bit ALU → confronto

- Aggiungiamo il supporto hardware per eseguire il confronto:
 - istruzione slt (set-on-less-than)
 slt rd, rs, rt → se rs < rt allora rd = 1
 - istruzione beq (branch-on-equal)
 beq rs, rt, label → se rs = rt allora salta a label
- Soluzione: si effettua la sottrazione tra a e b (rs e rt).
- Se a b è minore di zero allora a < b (per istruzione slt)
 - se a b < 0 il risultato sarà 00....01, altrimenti sarà 00....00
- Se a b è uguale a 0 allora a = b (per l'istruzione beq)
 - se a b = 0 si deve mettere a 1 una linea di output utilizzata per l'uguaglianza (verrà aggiunta)

Matteo Manzali - Università degli Studi di Ferrara

Istruzione slt

 E' sufficiente vedere il bit più significativo (bit del segno) del risultato a - b.

Problema:

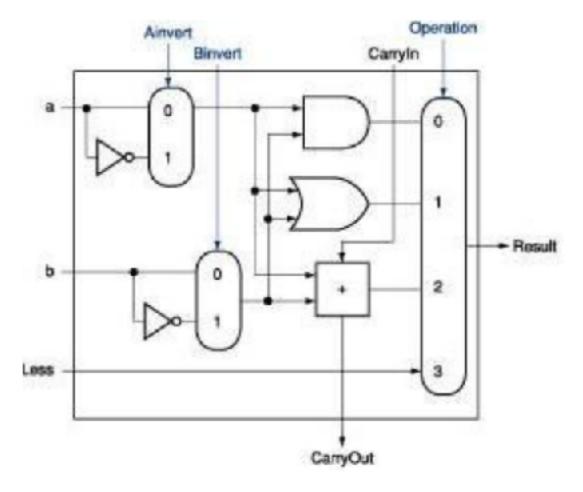
- se il bit più significativo del risultato di a -b vale 1, allora il bit meno significativo del risultato deve essere 1
- se il bit più significativo del risultato di a b vale 0, allora il bit meno significativo del risultato deve essere 0
- Quindi costruiamo l'ALU per tutti i bit eccetto il MSB (0 → 30) con un segnale Less aggiuntivo:
 - Attenzione: Less è un segnale di input, non di controllo del multiplexer!

Istruzione slt: 0 → 30

 Soluzione per i bit da 0 a 30: se dal segnale di controllo Operation viene selezionata la linea 3 (Less) di input del multiplexer, il risultato diventa esattamente il valore di Less:

 basta mettere 0 in ingresso a Less per ottenere il risultato voluto (eccezione fatta per il bit 0, ma lo vedremo nelle prossime

slides)



Matteo Manzali - Università degli Studi di Ferrara

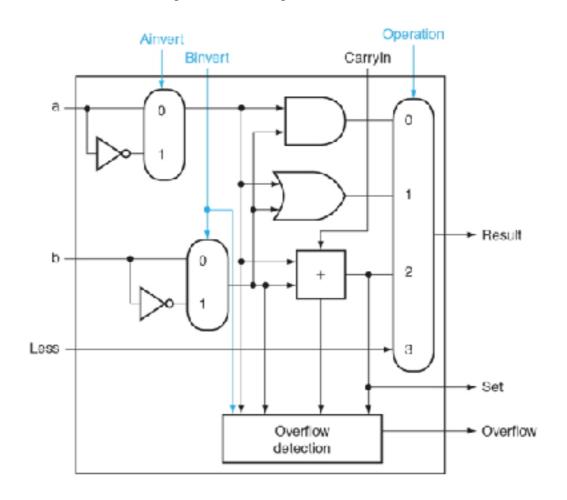
Istruzione slt: 31

Il risultato del full adder (bit di segno) va sulla linea Set:

 serve un output aggiuntivo, ossia il risultato del full adder (Set), che diventa l'input Less per la ALU del bit 0

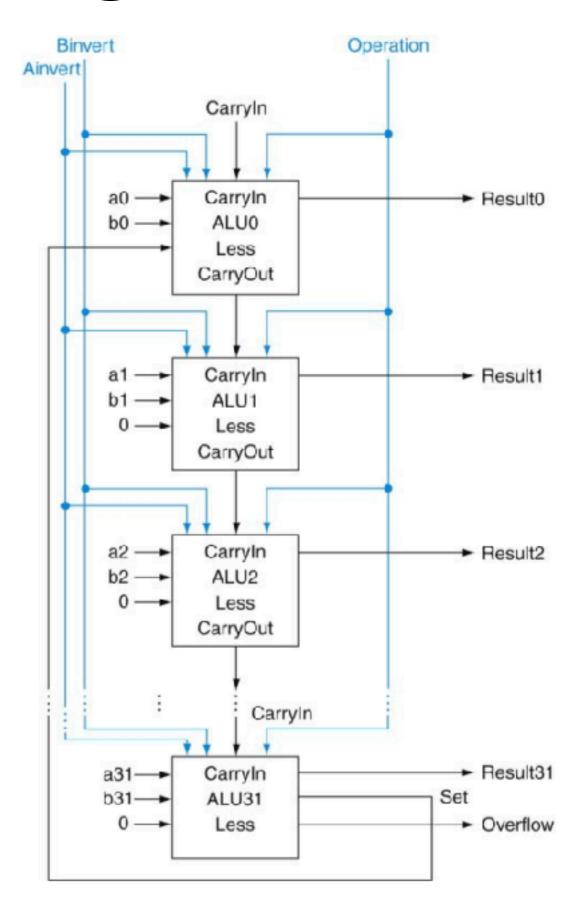
E' aggiunta anche una parte per determinare la condizione di

Overflow.

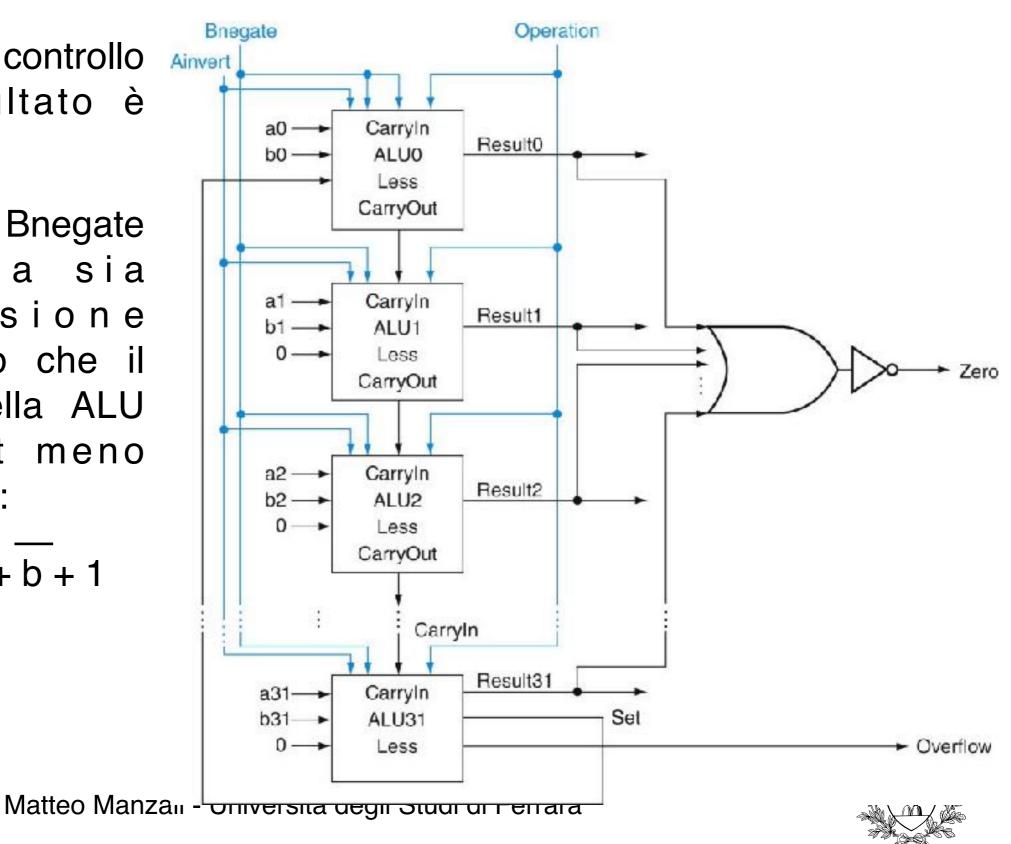


Matteo Manzali - Università degli Studi di Ferrara

- Il bit più significativo di a b viene usato per settare il bit meno significativo del risultato slt:
 - se a < b → a b < 0 (numero negativo)



- Aggiungo il controllo se il risultato è uguale a 0.
- Notare che Bnegate controlla sia l'inversione dell'input b che il Carryln della ALU per il bit meno significativo:
 - a b = a + b + 1



- L'ALU è controllabile da 4 segnali:
 - Ainverse
 - Bnegate
 - 2 bit di selezione per il multiplexer Operation

ALU control lines	Function	
0000	AND	
0001	OR	
0010	add	
0110	subtract	
0111	set on less than	
1100	NOR	

Simbolo usato per l'ALU (chiamata anche adder):

