Esame scritto di Istituzioni di metodi matematici della fisica. Università di Ferrara

July 23, 2015

1. (15 punti)

Sia S un operatore autoaggiunto in $L^2(-\pi,\pi)$ e si consideri l'operatore

$$T \equiv e^{aS} = 1 + (aS) + \frac{(aS)^2}{2!} + \dots$$

con $a \in C$.

- Considerando la serie al 1^o e al 2^o ordine in a si dica se:
 - Esistono valori di a per cui T è autoaggiunto? Quali? Bisogna dimostrare che (Tv,w)=(v,Tw) per ogni vettore v,w. Al primo ordine ho: $(Tv,w)=((1+aS)v,w)=(v,w)+a^*(Sv,w)$ e ho (v,Tw)=(v,(1+aS)w)=(v,w)+a(v,Sw). Siccome (v,Sw)=(Sv,w) allora le due quantita' sono uguali se e solo se $a^*=a$, cioe' se a è reale. Al 2 ordine uso lo stesso procedimento: $(Tv,w)=((1+aS+a^2/2S^2)v,w)=(v,w)+a^*(Sv,w)+(a^*)^2/2(S^2v,w)$ e ho $(v,Tw)=(v,(1+aS+a^2/2S^2)w)=(v,w)+a(v,Sw)+a^2/2(v,S^2w)$. Ora, siccome $(v,S^2w)=(Sv,Sw)=(S^2v,w)$ allora la condizione e' la stessa, cioe' a deve essere reale.
 - Esistono valori di a per cui T conserva i prodotti scalari? Quali? Stavolta bisogna dimostrare che (Tv, Tw) = (v, w) per ogni vettore v, w. Al primo ordine ho: $(Tv, Tw) = ((1 + aS)v, (1 + aS)w) = (v, w) + a^*(Sv, w) + a(v, Sw)$, dove ho tenuto solo termini al piu' del 1 ordine in a. :La condizione e' quindi che $a + a^* = 0$, cioe' che a sia immaginario. Al 2 ordine uso lo stesso procedimento e la condizione e' la stessa.
 - Esistono valori di a per cui T contemporaneamente è autoaggiunto e conserva i prodotti scalari? Quali? Solo a=0, dato che deve essere sia reale che immaginario.
- Se S possiede una base di autovettori, è vero che T possiede una base di autovettori? si', poiche' dato un autovettore v si ha $Sv = \lambda v$ e quindi $Tv = (1 + aS + a^2S^2/2 + ...)v = (1 + a\lambda + a^2\lambda^2/2 + ...)v = e^{a\lambda}v$
- Si consideri l'operatore T dostruito come sopra, partendo da $S = -i\frac{d}{dx}$.
 - Si scriva esplicitamente l'azione di T su una base di $L^2(-\pi,\pi)$, sommando tutti i termini della serie. Per quali valori di a accade che T=I sulla base? Scegliamo la base $e_n\equiv e^{inx}$, allora avro' $Se_n=-ne_n$, quindi $Tv=e^{-an}v$. Questo agisce come la identita' se $a=2k\pi i$, dove k e' un numero intero.

- Sia data una funzione f(x) in $L^2(-\pi,\pi)$ che possieda una estensione analitica a tutto il piano complesso. Si scriva il risultato della serie T applicata a tale funzione f(x) e si dica a cosa converge la somma di tutta la serie. L'operatore applicato a una funzione f(x) e' $Tf(x) = (1 + ia\frac{d}{dx} + (ia)^2\frac{d^2}{dx^2} + ...)f(x) = f(x+ia)$, poiche' questo e' lo sviluppo in serie di Taylor.
- Si trovi una condizione su tale f affinchè T conservi i prodotti scalari in $L^2(-\pi,\pi)$ per ogni a immaginario. Preso a immaginario lo possiamo scrivere come $a=i\alpha$, con α reale e quindi l'operatore e' una traslazione della funzione f(x) si una quanitita' reale α : $Tf(x)=f(x-\alpha)$. Una condizione sufficiente sulle funzioni f(x) affinche' i prodotti scalari siano conservati e' ad esempio che la f(x) sia periodica di periodo 2π .
- Se sono dati due operatori autoaggiunti S_1 e S_2 , è vero che $e^{S_1}e^{S_2}=e^{S_2}e^{S_1}$? Se no, trovare due operatori S_1 e S_2 sulle precedenti funzioni f(x), che servano da controesempio. No. Se sviluppo al 2 ordine $e^{S_1}e^{S_2}=1+S_1+S_2+S_1S_2+S_1^2/2+S_2^2/2$ che e' diverso da $e^{S_2}e^{S_1}=1+S_1+S_2+S_2S_1+S_1^2/2+S_2^2/2$ poiche' in generale $S_1S_2\neq S_2S_1$. Solo se i due operatori commutano allora anche gli esponenziali commutano. Un controesempio puo' essere dato da $S_1=i\frac{d}{dx}$ e S_2 operatore di moltiplicazione definito come S_1 0, che e' autoaggiunto ma non commuta con S_1 1.

- 2. Si consideri (13 punti) $f_{\epsilon}(x) = \frac{1}{(x-i\epsilon)^2}$, con $\epsilon > 0$ e con $x \in R$.
 - Si dica (senza effettuare il calcolo) se la sua trasformata di Fourier è continua, L2 e se è a decrescenza rapida. La funzione e' L1 quindi la trasformata e' continua. E' L2 quindi la trasformata e' L2. E' C^{∞} con tutte le derivate L1, quindi la trasformata e' a decrescenza rapida.
 - Si calcoli la sua trasformata di Fourier f̂_ϵ(ω). La trasformata si ottiene col lemma di Jordan: chiudendo nel semipiano inferiore ottengo zero mentre nel semipiano superiore trovo un polo e ottengo: -2πωθ(ω)e^{-ϵω} A cosa converge puntualmente la f̂_ϵ(ω) per ϵ → 0? Converge a -2πωθ(ω) E uniformemente? Non converge uniformemente poiche' per ogni valore di ϵ la f̂_ϵ(ω) e' fuori da una striscia di spessore ϵ attorno alla f̂(ω) = -2πωθ(ω) , se si va a valori di |ω| abbastanza grandi E in senso L2? No, poiche' la f̂(ω) cresce all'infinito e quindi non e' L2.
 - (*) E in senso S'? Si', poiche' c'e' convergenza puntuale a una funzione localmente sommabile e che cresce all'infinito come un polinomio (vedi libro sez. 5.2)(si giustifichino tutte le risposte).
 - Siano f_{ϵ}^{R} e f_{ϵ}^{I} le parti reale e immaginaria di f_{ϵ} e si calcolino le \hat{f}_{ϵ}^{R} e \hat{f}_{ϵ}^{I} separatamente. Se moltiplico sopra e sotto per $(x+i\epsilon)^{2}$ separo parte reale e immaginaria : $f(x) = \frac{x^{2}-\epsilon^{2}}{(x^{2}+\epsilon^{2})^{2}} + \frac{2ix\epsilon}{(x^{2}+\epsilon^{2})^{2}}$. A quale distribuzione tende la $f_{\epsilon}^{I}(x)$ per $\epsilon \to 0$? Tende $a i\delta'(x)$, poiche' e' proporzionale alla derivata di $\epsilon/(x^{2}+\epsilon^{2})$ che tende alla δ Esiste il limite della $f_{\epsilon}^{R}(x)$ per $\epsilon \to 0$? Si', basta applicare a una funzione test, integrare col metodo dei residui e vedere che il polo da' un contributo finito per $\epsilon \to 0$.
 - (*) Si dimostri che in senso S' vale:

$$\lim_{\epsilon \to 0} \frac{x}{x^2 + \epsilon^2} = P \frac{1}{x}$$

dove P è la parte principale di Cauchy in x=0 basta applicare a una funzione test (oppure fare la trasformata di Fourier), integrare col metodo dei residui e vedere che il risultato e' lo stesso al membro di destra o sinistra per $\epsilon \to 0$.

- (*) A cosa tende in senso S' la f_{ϵ}^R per $\epsilon \to 0$ (si usi la distribuzione $P_{\overline{x}}^1$)? Alla derivata di $-\frac{x}{x^2+\epsilon^2}$, cioe' alla derivata della distribuzione $-P_{\overline{x}}^1$..
- (*) A cosa tende in senso S' la $g_{\epsilon}(x) \equiv \frac{1}{(x-i\epsilon)^n}$ per $\epsilon \to 0$ e per n intero positivo? E' proporzionale alla derivata n-1-esima di $P\frac{1}{x}+i\pi\delta(x),\ cioe', \frac{(-1)^{(n-1)}}{(n-1)!}\frac{d}{dx^{n-1}}(P\frac{1}{x})+i\pi\delta^{(n-1)}(x)$.

3. Si calcoli (7 punti)

$$\int_0^\infty \frac{Log[x]}{1+x^3} dx$$

Un cammino di integrazione utile e': semiasse asse reale positivo, poi porzione di cerchio all'inifinito (che da' zero) e poi chiuderlo a $z=re^{i2\pi/3}$ (integrando in dr da $r=+\infty$ fino a r=0). C'e' un solo polo a $z=e^{i\pi/3}$. Il risultato e' $-\frac{2\pi^2}{27}$.