Esame scritto di Istituzioni di metodi matematici della fisica. Università di Ferrara

July 24, 2015

1. (14 punti)

Si considerino le funzioni $f(\theta, \phi)$ dove θ e ϕ sono le coordinate angolari sulla sfera (S^2) , $0 \le \phi < 2\pi$ e $0 \le \theta \le \pi$.

- Sia per definizione $f(\theta, \phi) = 0$ per $\theta = \pi/2$ e $f(\theta, \phi) = \cos(\theta)^{\alpha}$ per $\theta \neq \pi/2$
 - Se α intero ≥ 0 si dica quali dei coefficienti dello sviluppo in armoniche sferiche $a_{\ell m}$ sono nulli e quali non-nulli con $\ell = 0, 1, 2$.

La forma esplicita dei Polinomi di Legendre Θ^m_ℓ è data da:

$$\Theta_{\ell}^{m}(x) = \frac{(-1)^{m}}{2^{\ell} \ell!} (1 - x^{2})^{m/2} \frac{d^{l+m}}{dx^{l+m}} \left[(x^{2} - 1)^{\ell} \right]$$

dove $x = \cos(\theta)$.

- Se α è un numero reale qualsiasi, per quali α i coefficienti $a_{\ell m}$ sono ℓ^2 (cioè $\sum_{\ell \geq 0} \sum_{-\ell \leq m \leq \ell} |a_{\ell m}|^2 < \infty$) ?
- Sia dato l'operatore $Tf = \frac{f}{\cos(\theta)}$
 - Il dominio è tutto $\mathcal{H} = L^2(S^2)$? È denso? È un sottospazio di Hilbert?
 - L'immagine è tutto \mathcal{H} ? È densa?
 - Tè continuo? È autoaggiunto in un dominio denso?
 - Si trovino eventuali autovettori e autovalori di T in $L^2(S^2)$.
 - (*) Si trovino eventuali autovettori e autovalori di T in $\mathcal{S}'(S^2)$.
- Si consideri l'operatore $S_c f(\theta, \phi) = f(\theta', \phi')$, dove (θ', ϕ') si ottengono a partire da (θ, ϕ) tramite una rotazione di angolo ϵ attorno a un dato asse (si consideri per semplicita' ϵ piccolo a piacere). Per che tipo di rotazioni esistono autovettori comuni a T e S_c (in $L^2(S^2)$ o in $S'(S^2)$)? Si trovino tali autovettori. (*)

2. Si consideri la equazione differenziale (14 punti)

$$y'(t) + y(t) = f'(t)$$
 con $y(0) = 0$ (1)

- Si consideri il caso in cui $f(t) = \theta(t a)$ con a > 0. Si trovi la soluzione per la trasformata di Fourier $\hat{y}(\omega)$. Si dica se
 - la soluzione y(t) è L^2 ? È continua?
 - La funzione $h(t) = t \cdot y(t)$ è L^2 ? È continua?
 - Si consideri anche la funzione g(t) = (t c) y(t): esistono valori di c per cui la funzione è continua?
- Si consideri il caso in cui $f(t) = \theta(t a)t$, con a > 0. Si trovi la soluzione esplicita della $\hat{y}(\omega)$ e quindi si trovi la soluzione y(t).
- 3. Si calcoli il seguente integrale col metodo dei residui (7 punti)

$$\int_0^\infty \frac{a^{7/12} x^{1/4}}{x^3 + a} dx \qquad \text{con } a \text{ reale(2)}$$

Esiste il limite per $a \to 0$?