Recombinant DNA Technology

Characterization of transcription regulatory sequences by exploiting reporter genes How can we demonstrate whether a given sequence has a functional role in transcription?? Once the promoter has been individuated, how can we identify the short

regulatory sequences?

30 nm

TRANSCRIPTION IS FINELY REGULATED

Reporter gene technology

Reporter genes are nucleic acid sequences encoding easily assayed proteins. They are used to replace other coding regions whose protein products are difficult to assay.

5'				3
	PROMOTER	exon 1	intron	exon 2
PROMOTER		REPORTER GENE		
		e.g. luciferase		

Design and engineer reporter gene construct *i.e. clone reporter gene* downstream of the promoter of interest

Introduce into cells Transfection Stable or transient

Assay activity of reporter genes *e.g. luciferase*

Reporter Assay

- 1. Measures gene expression or transcriptional activity
- 2. Assay of transcription factors.
- 3. DNA promoter assay
- 4. Confirmation of transgenosis

Choice of Reporter genes

CAT (chloramphenicol acetyltransferase)

Transfers radioactive ¹⁴C acetyl groups to chloramphenicol. Detection by thin-layer chromatography and autoradiography or EISA

GAL (β-galactosidase)

Hydrolyzes colourless galactosides to yield coloured products. Assay change/production of colour

LUC (luciferase)

Oxidizes a luciferin emitting photons. Count photons by luminometer or photon-counting camera. Different luciferases avaiable

SEAP (secreted human placental alkaline phosphatase) highly-sensitive bioluminescent alkaline phosphatase assay

GH (Growth hormon)

Secreted and detected by ELISA

CAT: chloramphenicol acetyltransferase

- 1. 1st reporter gene used to monitor transcriptional activity in cells
- Bacterial enzyme that transfers acetyl groups from acetyl-CoA to chloramphenicol, detoxifying it
- Reaction quantified by monitoring acetylation of radiolabeled substrates (¹⁴C-chloramphenicol) or by ELISA (non-radioactive)

CAT assay: ELISA

β-gal (β-galactosidase):

- •E. coli enzyme (encoded by lacZ) that hydrolyzes galactosidase sugars such as lactose
- Many assay formats: colorimetric, fluorescent, chemiluminescent

GUS Reporter Gene System GUS encodes the beta-glucuronidase enzyme from *E. coli*.

An active enzyme may be detected using X-gal, which forms an intense blue product after cleavage by β -galactosidase

Luciferase:

Renilla reniformis

Photinus pyralis

Firefly (Photinus pyralis) luciferase Sea pansy (Renilla reniformis) luciferase Firefly luciferase produces light by ATP-dependent oxidation

Bioluminescence or light emission is determined by a luminometer

Co-transfection of reporter genes Dual Luciferase Assay system - Promega

Clone promoter of interest in front of firefly luciferase and use Renilla luciferase as an internal control co-transfect and assay

Renilla luciferase driven by constitutive promoter e.g. SV40 I/E HSV TK Period (hr)

SEAP (secreted alkaline phosphatase):

- •Secreted outside the cell (can assay sample repeatedly and non-destructively by sampling culture medium)
- •This protein is quantified directly by measuring the enzyme activity in the supernatant of the culture medium.
- •Fluorescence and chemiluminescence assays are available for detection.

Human Growth Hormone (hGH) Reporter Gene System

- The human growth hormone (hGH) encoded reporter protein is secreted into the culture medium by transfected cells.
- The hGH from the supernatant of the culture medium binds to the antibody on the plate.
- Subsequently, the bound hGH is detected in two steps via a digoxigenincoupled anti-hGH antibody and a peroxidase-coupled anti-digoxigenin antibody.
- Bound peroxidase is quantified by incubation with a peroxidase substrate such as TMB (3,3',5,5'-tetramethylbenzidine)

Green Fluorescent Protein (GFP)

- Gene encoding GFP isolated from the jellyfish *Aequoria victoria*
 - GFP can be cloned and introduced into cells of other species

Use of Green Fluorescent Protein (GFP)

- As a reporter molecule to monitor gene expression
 - Transgenic organism made with the GFP-coding sequence under the transcriptional control of the promoter belonging to the gene of interest

Promoter Coding region

GFP-reporter gene construct

PromoterCoding region forfor Gene AGFP

Can be used to visualize the expression of Gene A

Promoter for Gene A regulates the expression of GFP

Use of Green Fluorescent Protein (GFP)

- As a tag to localize proteins
 - The GFP-encoding sequence is placed at the beginning or end of the gene for another protein
 - This yields a chimeric protein consisting of the protein of interest with a GFP domain attached
 - GFP-fusion protein often behaves like the original protein, directly revealing its subcellular location (Fig. 9-44)

GFP-fusion protein construct

PromoterCoding regionfor Gene AFor Gene A

Coding region for GFP

Can be used to visualize the subcellular location of the protein encoded by Gene A

Use of reporter proteins

e.g. yellow fluorescent protein note that GFPs can report on protein location or movement in cells not just act as reporters of gene activation

• As Two-Color Splicing Reporter

