
Recombinant DNA Technology

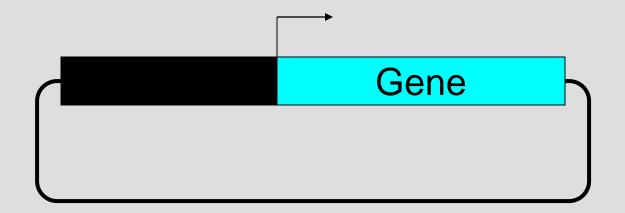
Manipulation of Gene Expression in Prokaryotes

ole 9.2 Some Applications of Genetic Engineering	Medically Important Substances Application		
Genetically Engineered Bacteria			
Protein Production			
Pharmaceutical proteins			
Alpha interferon	Treating cancer and viral infections		
Enthropoietin	Treating some types of anenia		
Beta interfeon	Treating multiple scienosis		
Decrymbonuclease	Treating stic fibrisis		
FactorVIII	Treating temophilie		
Gamma interferon	Treating sancer		
Glacocerebrasidase	Treating Gaucher disease		
Growth hormone	Treating Awarfism		
Inulin	Treating diabetes		
Platelet derived growth factor	Treating bot ulcen in diabetics		
Steptokinase	Dissolving blood cots		
Tissue plasminogen activator	Dissolving blood cots		
lacines			
Hepatitis B	Preventing hepatits		
Lyme disease	Preventing Lyme disease		
Fort-and-mouth disease	Preventing foot-and-mouth disease in animals		

Expression of cloned genes in bacteria Expression vectors contain promoter sequences (pro) that direct transcription of inserted DNA in bacteria and sequences required for binding of mRNA to bacterial ribosomes (Shine-Delgarno [SD] sequences). A eukaryotic cDNA inserted adjacent to these sequences can be efficiently expressed in E. coli, resulting in production of eukaryotic proteins in transformed bacteria.

Plasmid and / or gene can be altered to accomplish high-level expression

- 1) transcriptional promoter & terminator
- 2) Shine Dalgarno Sequence (ribosome binding site)
- 3) efficiency of translation
- 4) Stability of the protein
- 5) Final cellular location (secreted?)
- 6) Number of copies of cloned gene

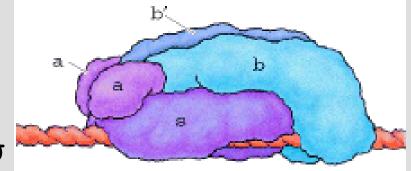

Plasmid vs. chromosomal

many vs. 1

7) Host organism

Gene Expression from a Strong, Regulatable Promoter

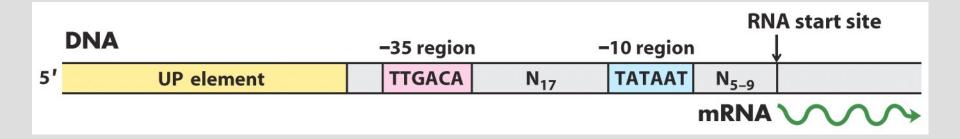
Some plasmids (Expression Plasmids) have promoters upstream of cloning sites for expression of genetic info encoded by DNA fragment

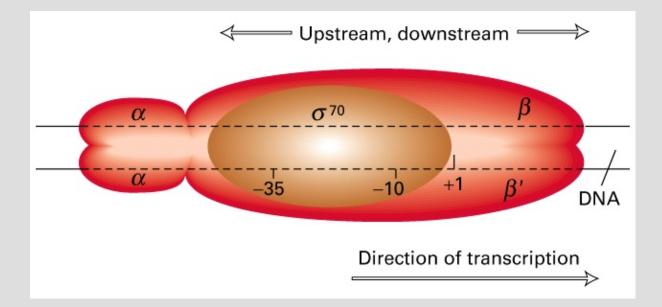

Gene Expression from a Strong, Regulatable Promoter

- Strong
 - high affinity for RNA polymerase
 - tight binding frequently transcribed
 - weak binding RNA Pol falls off, no txn
- Regulatable
 - researcher can control when gene is expressed
 - use inducers / co-repressors

Promoters of Importance in Biotech

- lac
- trp
- tac (or trc)
- phage λp^L
- phage T7 gene 10


Initiation



- RNA polymerase α α β β'σ
- Transcription factors
- Sigma factor (σ)- determines promoter specificity

Start site of txn is +1

E. coli Promoter Sites

E. coli Promoter Sites

(a) Strong E. coli promoters tyr tRNA TCTCAACGTAACACTTTACAGCGGCG • • CGTCATTTGATATGATGC • GCCCCGCTTCCCGATAAGGG rrn D1 GATCAAAAAAATACTTGTGCAAAAAA••TTGGGATCCCTATAATGCGCCTCCGTTGAGACGACAACG rrn X1 ATGCATTTTTCCGCTTGTCTTCCTGA • • GCCGACTCCCTATAATGCGCCTCCATCGACACGGCGGAT rrn (DXE), CCTGAAATTCAGGGTTGACTCTGAAA • • GAGGAAAGCGTAATATAC • GCCACCTCGCGACAGTGAGC rrn E1 CTGCAATTTTTCTATTGCGGCCTGCG++GAGAACTCCCTATAATGCGCCTCCATCGACACGGCGGAT rrn A1 TTTTAAATTTCCTCTTGTCAGGCCGG••AATAACTCCCTATAATGCGCCACCACTGACACGGAACAA rrn A2 GCAAAAATAAATGCTTGACTCTGTAG • • CGGGAAGGCGTATTATGC • ACACCCCGCGCCGCTGAGAA λPR TAACACCGTGCGTG<mark>TTGAC</mark>TATTTTA•CCTCTGGCGGTG<mark>ATAAT</mark>GG••TTGCATGTACTAAGGAGGT λ PL T7 A3 TATCTCTGGCGGTGTTGACATAAATA • CCACTGGCGGTGATACTGA • • GCACATCAGCAGGACGCAC GTGAAACAAAACGGTTGACAACATGA • AGTAAACACGGTACGATGT • ACCACATGAAACGACAGTGA T7 A1 TATCAAAAAGAGTATTGACTTAAAGT • CTAACCTATAGGATACTTA • CAGCCATCGAGAGGGGACACG T7 A2 ACGAAAAACAGGTA<mark>TTGACA</mark>ACATGAAGTAACATGCAG<mark>TA</mark>AG<mark>AT</mark>AC • AAATC<mark>G</mark>CTAGGTAACACTAG fd VIII GATACAAATCTCCGTTGTACTTTGTT • TCGCGCTTGGTATAATCG • CTGGGGGTCAAAGATGAGTG -35-10(b) Consensus sequences of σ^{70} promoters (c) Lac promoter sequence -10 region –35 region -10 region -35 region 17±1bp TTGACAT TATAAT TTTACAC TATGTT ¢¢ ¢¢, G, ψţ A T, AA Promoter mutations Down Up

Deviation from consensus -10, -35 sequence leads to weaker gene expression

• lac operon

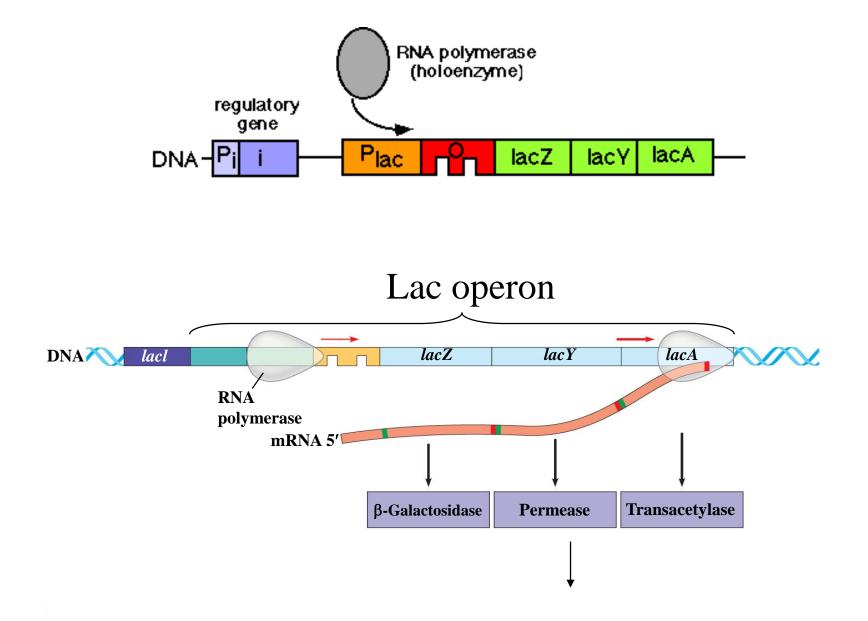
- negative regulation
 - lac repressor binds to operator sequence
 - inducer binds to repressor makes it nonfunctional
 - Inducer = allolactose, IPTG

Operons

- An operon is a group of genes that are transcribed at the same time.
- They usually control an important biochemical process.
- They are **only found in prokaryotes**.

Jacob, Monod & $L_{WOII}^{ONobelPrize.org}$

The lac Operon


- The *lac* operon consists of **three genes** each involved in processing the sugar lactose
- One of them is the gene for the enzyme βgalactosidase
- This enzyme hydrolyses lactose into glucose and galactose

Adapting to the environment

- *E. coli* can use either glucose, which is a monosaccharide, or lactose, which is a disaccharide
- However, lactose needs to be hydrolysed (digested) first
- So the bacterium prefers to use glucose when it can

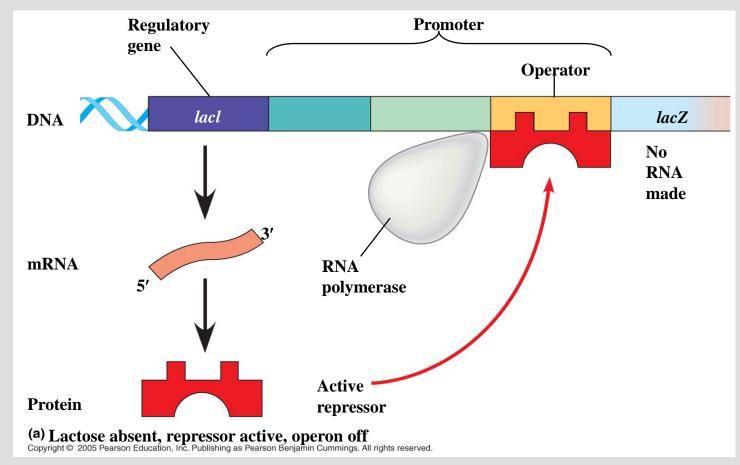
Four situations are possible

- 1. When glucose is **present** and lactose is **absent** the E. coli does **not** produce β -galactosidase.
- 2. When glucose is **present** and lactose is **present** the E. coli does **not** produce β -galactosidase.
- 3. When glucose is **absent** and lactose is **absent** the E. coli does **not** produce β -galactosidase.
- When glucose is **absent** and lactose is **present** the E. coli **does** produce β-galactosidase

Enzymes facilitate lactose import and breakdown

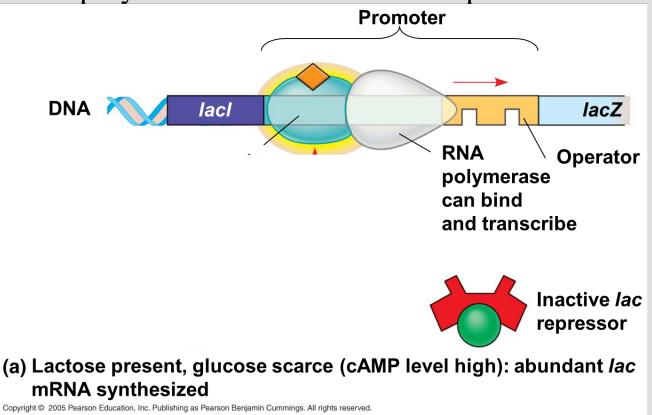
for cellular energy

The control of the lac operon


Let's assume <u>bacteria prefer glucose</u> to lactose as a carbon source.

If glucose is available in the surroundings, does it make sense for the lac operon to be ON?

If it's a waste of energy then how do bacteria repress (turn OFF) the Lac operon?


1. When lactose is absent, glucose present

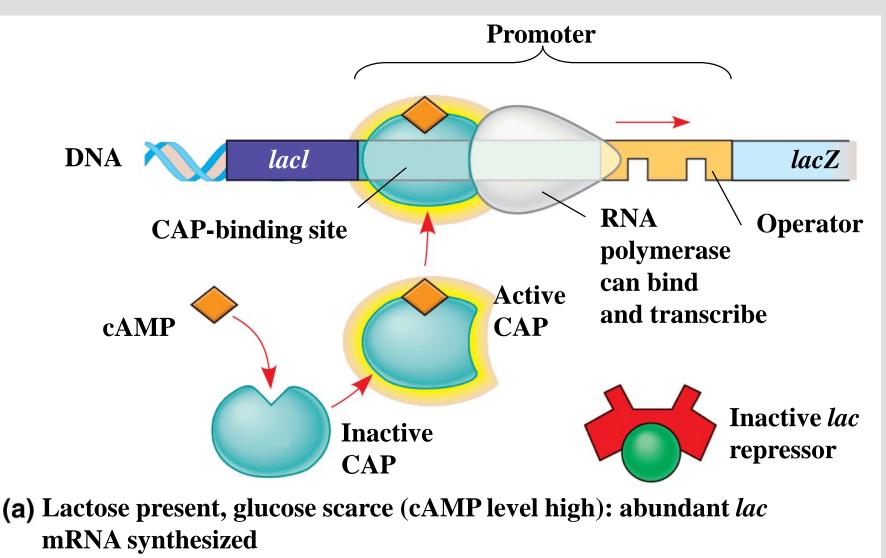
- A repressor protein is continuously synthesised. It sits on a sequence of DNA just in front of the *lac* operon, the **Operator** site
- The **repressor protein** blocks the **Promoter site** where the RNA polymerase settles before it starts transcribing

2. When lactose is present

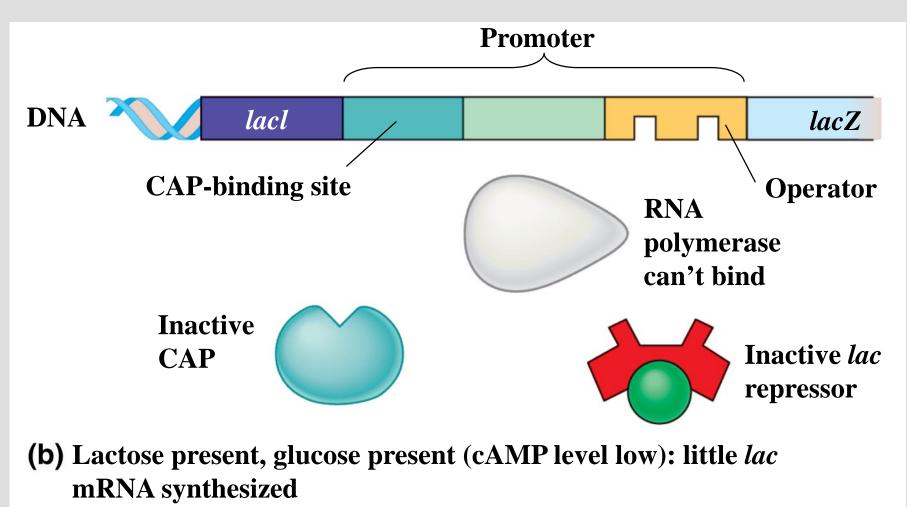
- A small amount of a sugar allolactose is formed within the bacterial cell. This fits onto the repressor protein at another active site (allosteric site)
- This causes the repressor protein to change its shape (a **conformational change**). It can no longer sit on the operator site. RNA polymerase can now reach its promoter site

3. When both glucose and lactose are present

- This explains how the *lac* operon is transcribed only when lactose is present.
- BUT.... this does not explain why the operon is not transcribed when both glucose and lactose are present.


Positive Gene Regulation

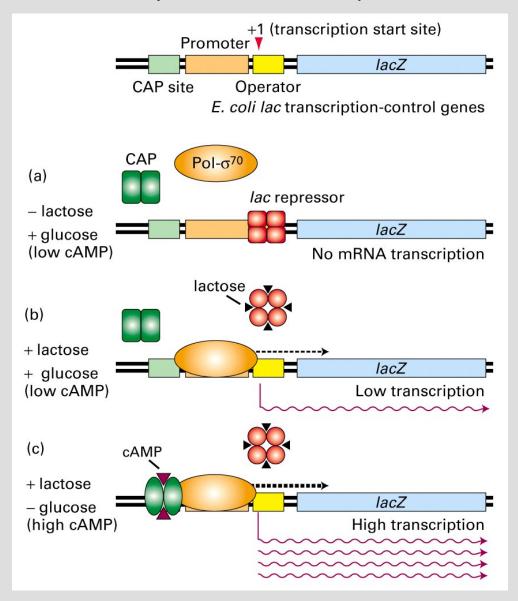
- Activator protein turns on Lac operon
 - catabolite activator protein (CAP)


Glucose high cAMP low Glucose low cAMP high

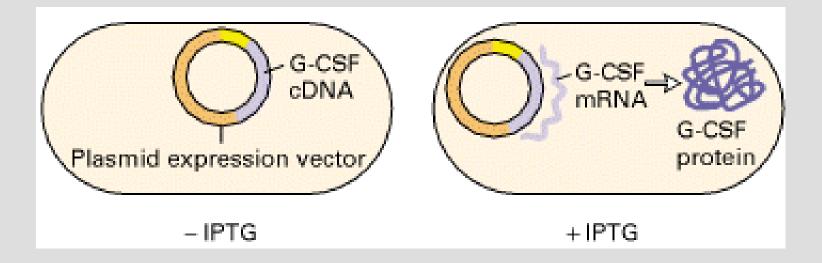
CAP-cAMP binds Lac promoter and induces transcription When would this occur, when glucose is high or low?

Low

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.



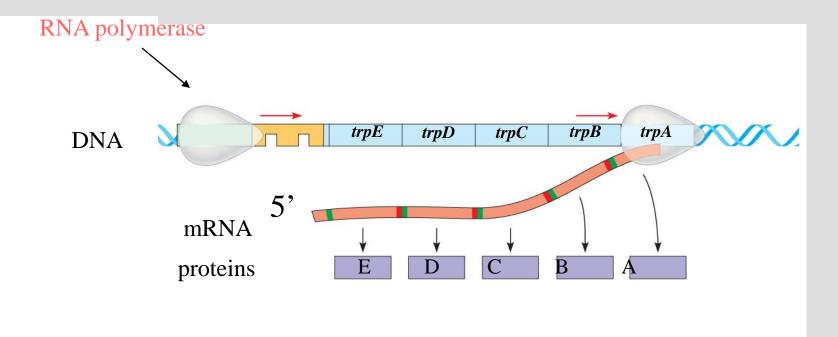
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.


Summary

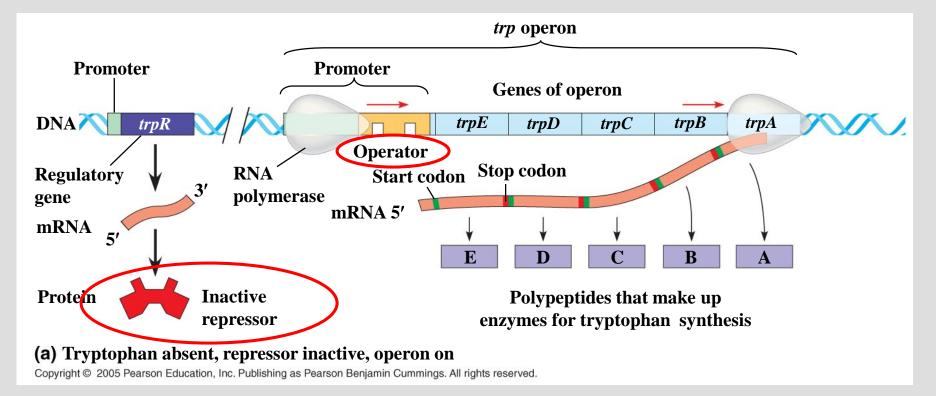
Carbohydrates	Activator protein	Repressor protein	RNA polymerase	<i>lac</i> Operon
+ GLUCOSE + LACTOSE	Not bound to DNA	Lifted off operator site	Keeps falling off promoter site	No transcription
+ GLUCOSE - LACTOSE	Not bound to DNA	Bound to operator site	Blocked by the repressor	No transcription
- GLUCOSE - LACTOSE	Bound to DNA	Bound to operator site	Blocked by the repressor	No transcription
- GLUCOSE + LACTOSE	Bound to DNA	Lifted off operator site	Sits on the promoter site	Transcription

The Lac promoter System

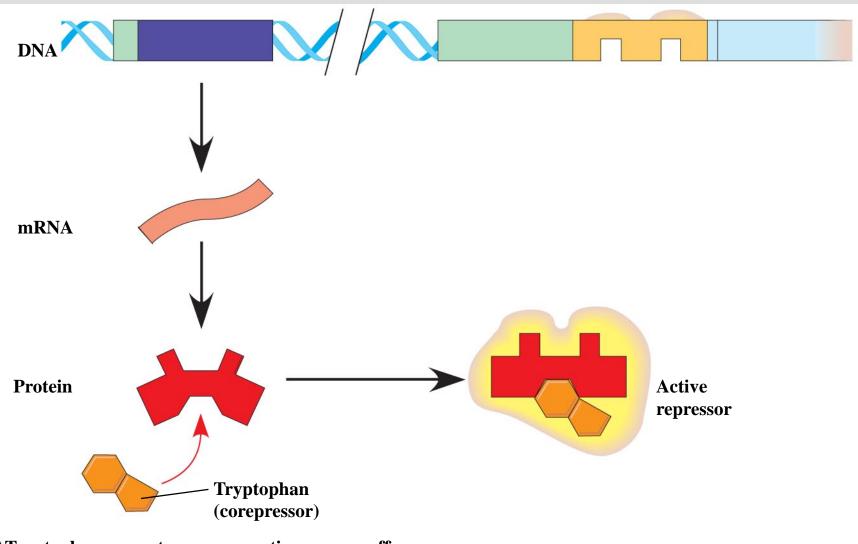
A simple *E. coli* expression vector utilizing the *lac* promoter. In the presence of the lactose analog IPTG, RNA polymerase normally transcribes the *lacZ* gene, producing *lacZ* mRNA, which is translated into the encoded protein, G-CSF



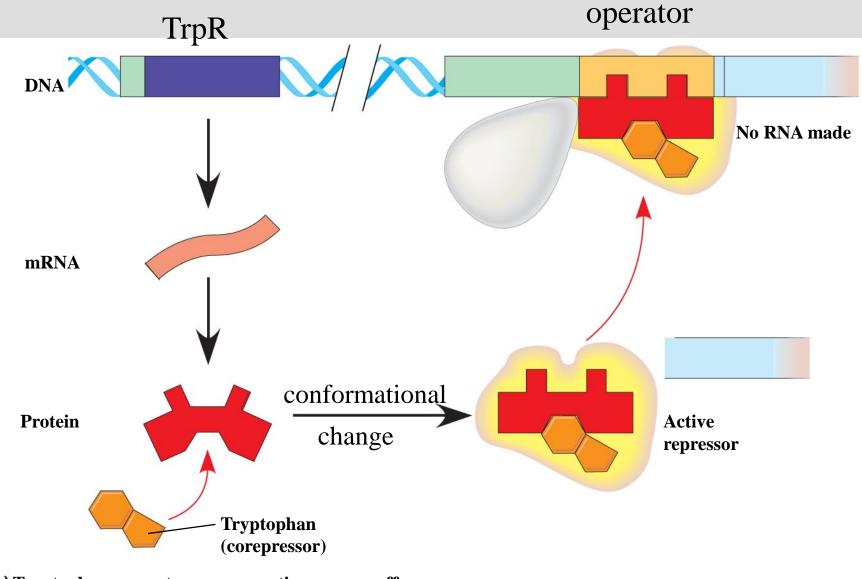
- from E. coli tryptophan operon
- controlled by
 - trp repressor co-repressor (tryptophan)
 - repressor synthesized in non-functional form
 - repressor-co-repressor complex is functional


Group of genes that encode enzymes for tryptophan synthesis (an amino acid)

shing as Pearson Benjamin Cummings. All rights reserved.


Trp Operon ON most of the time

TrpR gene also ON: makes inactive repressor protein


If the cell is not synthesizing much protein (e.g. low nutrients), will it need to continue to make trp?

How to shut off the trp operon?

(b) Tryptophan present, repressor active, operon off

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

(b) Tryptophan present, repressor active, operon off

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

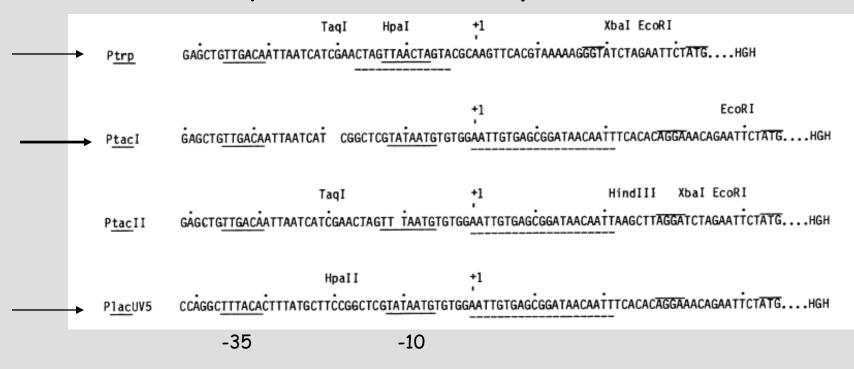
Is the trp operon repressible or inducible?

ON unless excess trp binds and activates repressor protein->

Active TrpR binds operator Blocks transcription Trp operon OFF

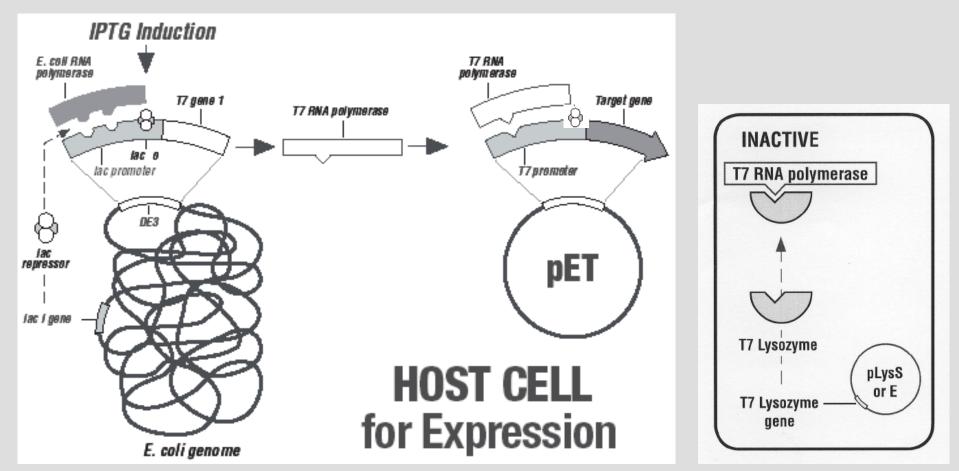
Trp promoter

Repressor only → Gene Expressed Repressor + → No Expression co-repressor (Trp)

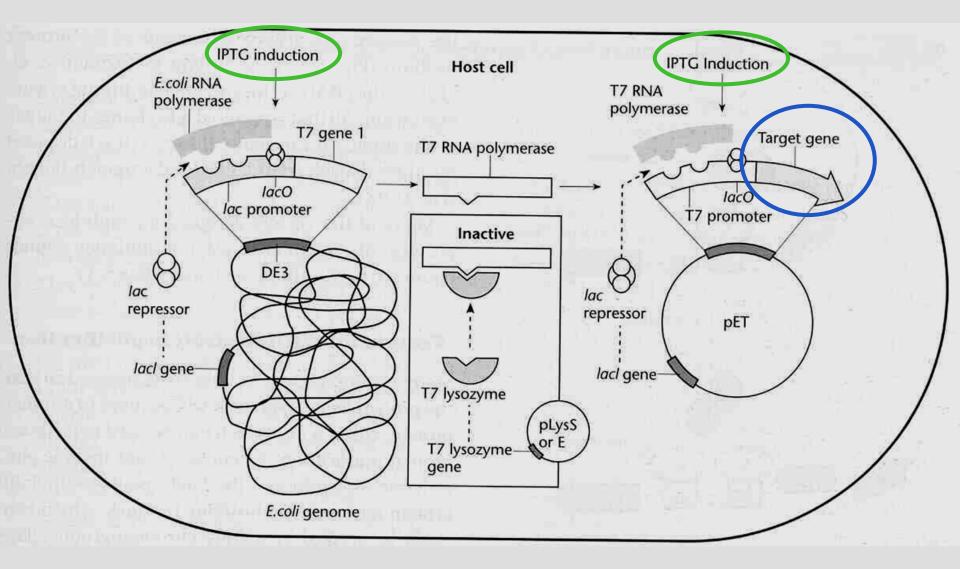

tac (trc) promoter

- Hybrid of lac and trp promoters

 -35 region from trp
 -10 region from lac


 separated by 16bp = tac promoter
 separated by 17bp = trc promoter
- **3x stronger than trp**
- 5-10x stronger than lac

Synthetic E. coli promoters

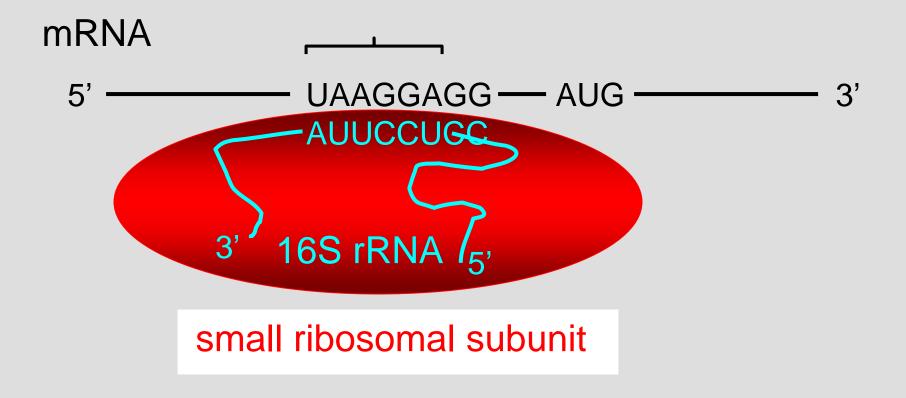


Hybrid Promoters: ptac Promoter (P_{trp} -35 +16pb + P_{lac} -10; IPTG) ptrc Promoter (P_{trp} -35 +17pb + P_{lac} -10; IPTG)-> invitro most powerful -> invivo 90% of ptac ptic Promoter (P_{trp} -35 +18pb + P_{lac} -10; IPTG) -> 65 % of ptac **T7 promoter**

- From T7 phage
- Use T7 polymerase need it

pET vectors: protein expression

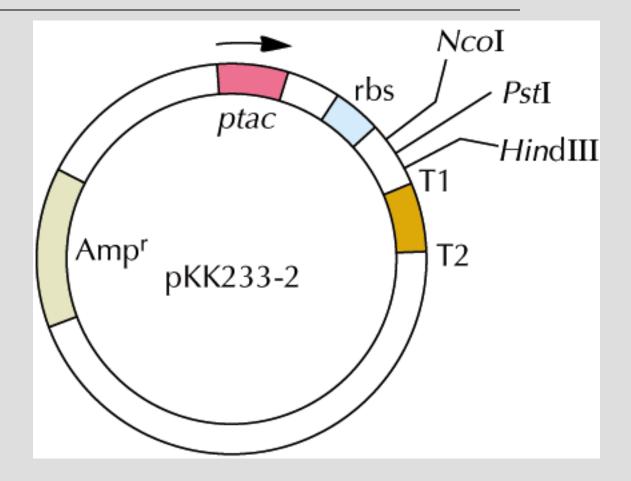
Enhancing Translation


- Strong promoter will produce lots of mRNA
- Also need effective translation to obtain lots of protein
- DNA \longrightarrow RNA \longrightarrow Protein

Enhancing Translation

- In Prokaryotes
 - translation signal is RBS
 - ribosome binding site
 - Shine-Dalgarno sequence
 - 6-8 nt in length
 - located short distance (~10nt) upstream of AUG translation start codon

Enhancing Translation-Shine Dalgarno


 sequence complementary to region on 16S rRNA of small subunit of ribosome

Expression Vector pKK233-2

selectable marker tac promoter **RBS** unique REase sites Txn terminators

not shown: ori of replication

UUU F 0.57	UCU S 0.11	UAU Y 0.53	UGU C 0.42																	
UUC F 0.43	UCC S 0.11	UAC Y 0.47	UGC C 0.58																	
UUA L 0.15	UCA S 0.15	UAA * 0.64	UGA * 0.36																	
UUG L 0.12	UCG S 0.16	UAG * 0.00	UGG W 1.00																	
CUU L 0.12	CCU P 0.17	CAU H 0.55	CGU R 0.36																	
CUC L 0.10	CCC P 0.13	CAC H 0.45	CGC R 0.44																	
CUA L 0.05	CCA P 0.14	CAA Q 0.30	CGA R 0.07																	
CUG L 0.46	CCG P 0.55	CAG Q 0.70	CGG R 0.07																	
COG L 0.40	CCG P 0.55	CAG Q 0.70	CGG R 0.07																	
	3 CTT III 0 1 C	A A A A A A A A A A A A A A A A A A A	3 CTL C 0 14																	
AUU I 0.58	ACU T 0.16	AAU N 0.47	AGU S 0.14																	
AUC I 0.35	ACC T 0.47	AAC N 0.53	AGC S 0.33												Ŵ	ww.a	enosp	here-	biotec	h.com
AUA I 0.07	ACA T 0.13	AAA K 0.73	AGA R 0.02	GENOSPHERE	G	GENE E	BUILDE	ER: O	ptimis	e you	r sequ	ence								
AUG M 1.00	ACG T 0.24	AAG K 0.27	AGG R 0.03	non-choice as	1															
GUU V 0.25	GCU A 0.11	GAU D 0.65	GGU G 0.29	Gene AAT	AGT /	ATT	ATT [TTA	AGT	AGT	GTA	TTG	AGC	TTA	CAA	AAC	AAT	AAA	AAT	GCT
GUC V 0.18	GCC A 0.31	GAC D 0.35	GGC G 0.46	Protein N	s	•	•	L	s	s	v	1	s	•	Q	Ν	N	к	N	Α
GUA V 0.17	GCA A 0.21	GAA E 0.70	GGA G 0.13			<u> </u>	<u> </u>					-	-	-						
GUG V 0.40	GCG A 0.38	GAG E 0.30	GGG G 0.12	Build1 AAT	AGC A	ATT /	ATT 🚺	CTG	TCT	TCT	GTA	CTG	AGC	CTG	CAA	AAC	AAT	AAA	AAT	GCT
				Build2 AAT	AGC I	ATC 2	ATT 【	CTG	TCT	TCT	GTC	CTG	TCT	CTG	CAA	AAC	AAC	AAA	AAC	GCC
[Codon/a.a.	/fraction per	codon per a.	a.1	Build3																
	data from the	-																		
				TTA ACA	TCA	GGA	AAT	AAT	GCA	GAA	GTG	AGG	TTT	GGA	GAT	ATA	GTA	AAT	CTT	AAT
							_		-											

TTA	ACA	TCA	GGA	AAT	AAT	GCA	GAA	GTG	AGG	TTT	GGA	GAT	ATA	GTA	AAT	CTT	AAT
L	т	s	G	N	N	A	Е	v	R	F	G	D	I	v	N	L	Ν
CTG	ACT	TCA	GGC	AAT	AAT	GCA	GAA	GTG	CGT	TTT	GGT	GAT	ATC	GTA	AAT	CTG	AAT
CTG	ACT	TCT	GGC	AAC	AAC	GCA	GAA	GTA	CGT	TTC	GGT	GAC	ATC	GTG	AAC	CTG	AAT

ACG ACA AAT GAC TAT AAA GAT TCA AAA TCA GGA GAT AAA AAT GTT CAA AAT TTA Т Ν D Υ κ D s κ s G D к Ν ۷ Q Ν т L ACG ACC AAT GAC TAT AAA GAT TCA AAA TCT GGC GAT AAA AAT GTT CAA AAT CTG ACC ACC AAC GAT TAC AAA GAT TCT AAA TCT GGC GAC AAA AAC GTT CAG AAC CTG

Choice of Host Organism

- E.coli is organism of choice
 - well characterized growth
 - lots of experience
 - NOT always the best organism

- Sometimes overexpression can reduce amount of recovered protein
 - Protein forms insoluble aggregates
 - Proteins is found in Inclusion bodies
 - Degradation
 - results in low level of expression
 - difficulty in purifying desired protein

HOW OVERCOME THESE DRAWBACKS:

• Inducible promoters

• Decrease T e growth rate

• Little changes into aa sequences (i.e introducing Cys)

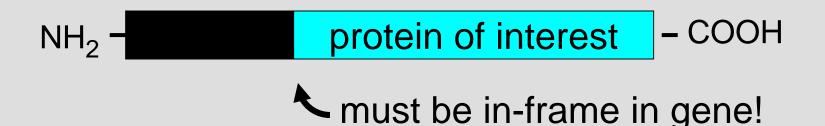
• **Fusion protein** with Tyreodoxin

Fusion Proteins

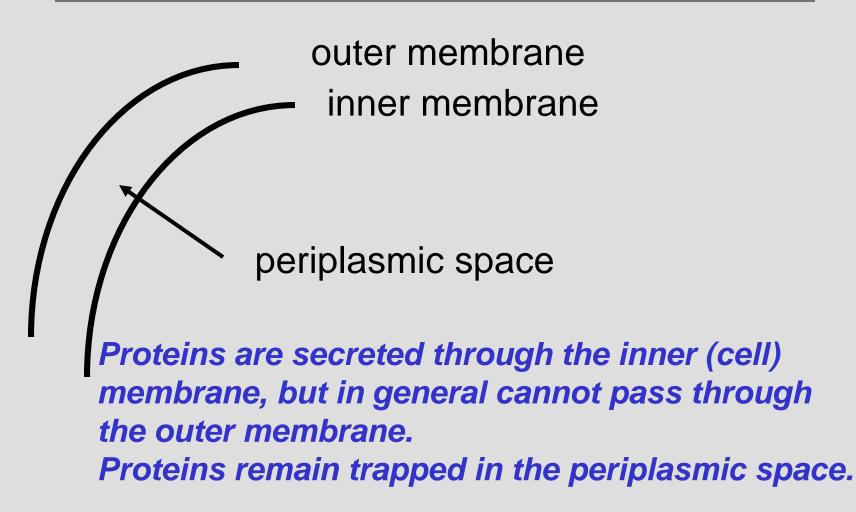
- Protein fusion done at level of DNA (genes)
 - coding region of cellular protein fused in frame to coding region of target protein gene
 - when transcribed and translated generates a *fusion protein*

Fusion Proteins

MET ... LEU ARG THR MET VAL ILE ... End ATG ... GTG CGA ACC ATG GTG ATC ... TAG

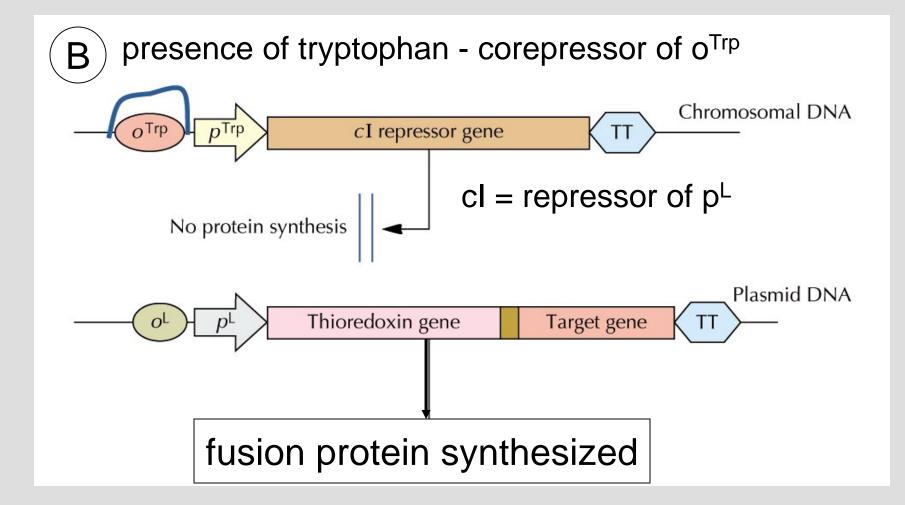

Note: translation stop of cellular gene must be removed Note: reading frame of fusion protein must be contiguous

Secretion of Protein of Interest


- Why secrete Protein of Interest?
 - stability of the protein may be increased
 - protein may be easier to purify
- Stability of the protein may be increased
 - remove from cytoplasm and its proteases
 - recombinant human proinsulin (rh-proinsulin)
 stability is increased <u>10X</u> if secreted

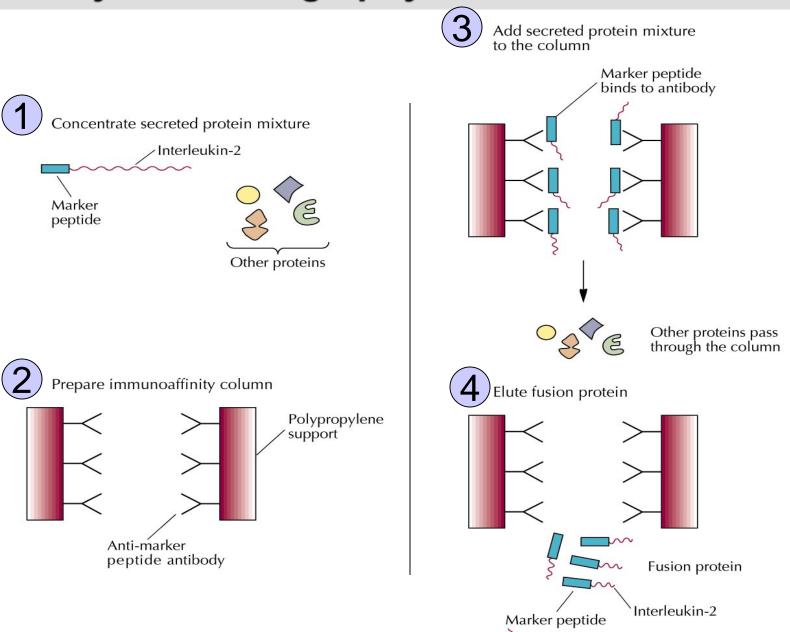
Secretion of Protein of Interest

- What is required for secretion?
 - Signal peptide sequence required for passage through cell membrane
 - added at NH_2 end of protein (5' end of gene)


Secretion in Gram - Bacteria

Increase stability

- Insolubility may be due to aggregation caused by incorrect folding
 - Solution:
 - make a fusion protein with thioredoxin
 - 11.7 kdal protein
 - can keep the fusion protein soluble even when it makes up 40% of total protein


Thioredoxin-target fusion protein

Construction of Fusion Proteins might help purification

- Fusion partner ("tag") binds to small molecule or Antibody (Ab)
- Small molecule or Ab can be linked to inert matrix
- Fusion protein will bind, other proteins won't
- Elute purified protein from column

Affinity Chromatography Purification

Helper tags for protein production and purification

• 6/7 histidine tag: interacts very specifically with Ni2+ ions, which can be immobilized on columns or beads

- Biotin carboxylase: covalently attaches to biotin, biotin binds to streptavidin which can be immobilized on columns or beads
- Epitopes (e.g. c-myc) for specific antibodies can be included as tags--purify on antibody column
- Tags can be engineered to be <u>removable</u>

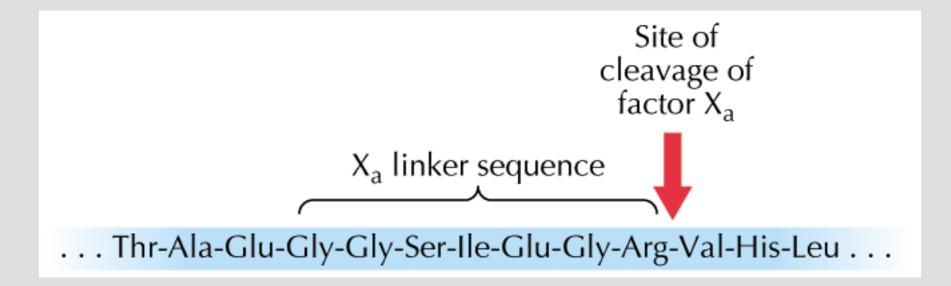
Fusion partner	Size	Ligand	Elution condition
ZZ	14 kDa	IgG	Low pH
His tail	6–10 aa	Ni ²⁺	Imidazole
Strep-tag	10 aa	Streptavidin	Iminobiotin
PinPoint	13 kDa	Streptavidin	Biotin
MBP	40 kDa	Amylose	Maltose
β -Lactamase	27 kDa	Phenyl-boronate	Borate
GST	25 kDa	Glutathione	Reducing agent
Flag	8 aa	Specific MAb	Low calcium

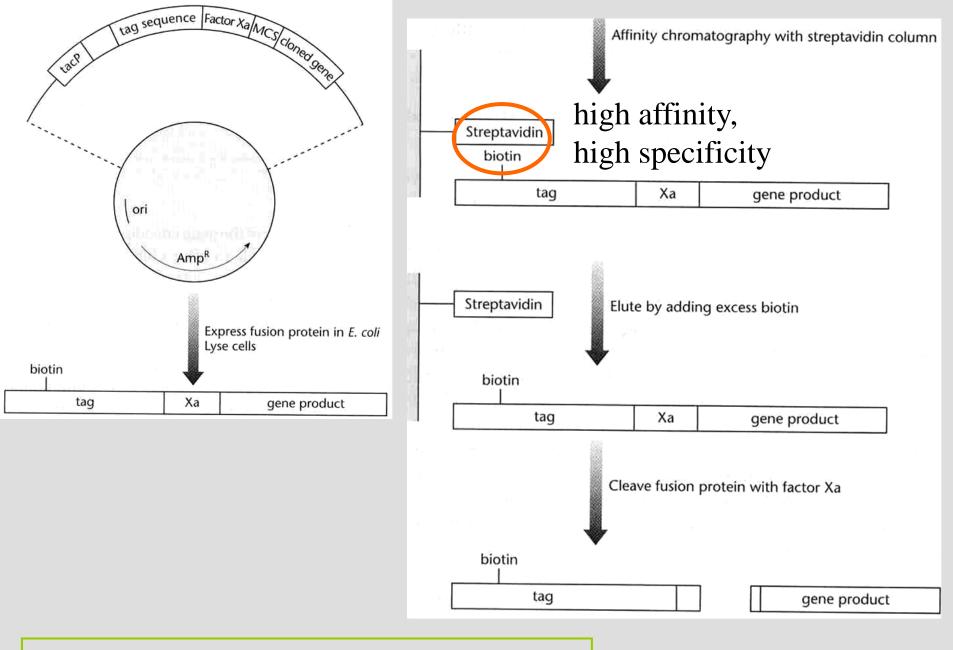
Adapted from Nygren et al., 1994, Trends Biotechnol. 12:184-188.

Abbreviations: aa, amino acids; kDa, kilodaltons; ZZ, a fragment of *Staphylococcus aureus* protein A; His, histidine; Strep-tag, a peptide with affinity for streptavidin; PinPoint, a protein fragment which is biotinylated in vivo in *E. coli*; MBP, maltose binding protein; GST, glutathione *S*-transferase; Flag, a peptide recognized by enterokinase.

Fusion Proteins

- Produce fusion protein
 - prevent degradation
 - increase ease of purification
- May need to remove fusion "tag"
 - may effect biological functioning
 - may make it unsuitable for clinical use
 - FDA might not grant approval

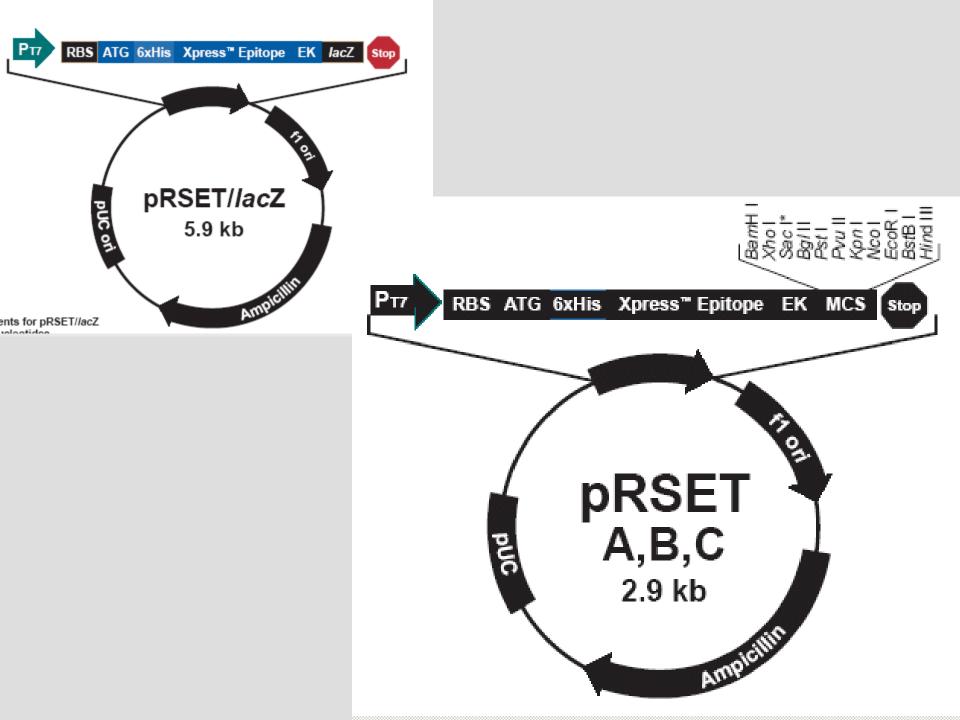

Fusion Proteins

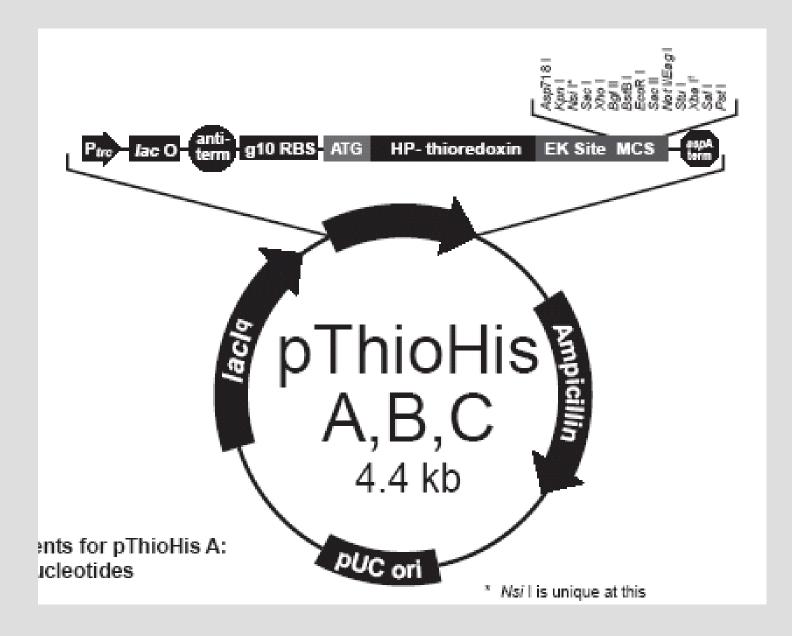

- Need Proteases equivalent to REases
 - Several have been developed
 - cleave a short defined aa sequence
 - insert protease cleavage sequence between fusion partner gene and G of I

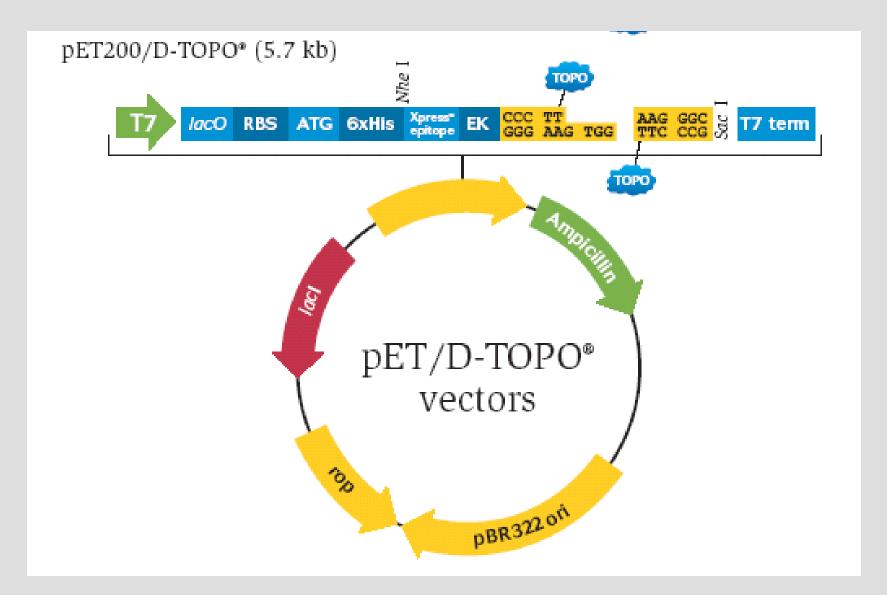
protease cleavage sequence

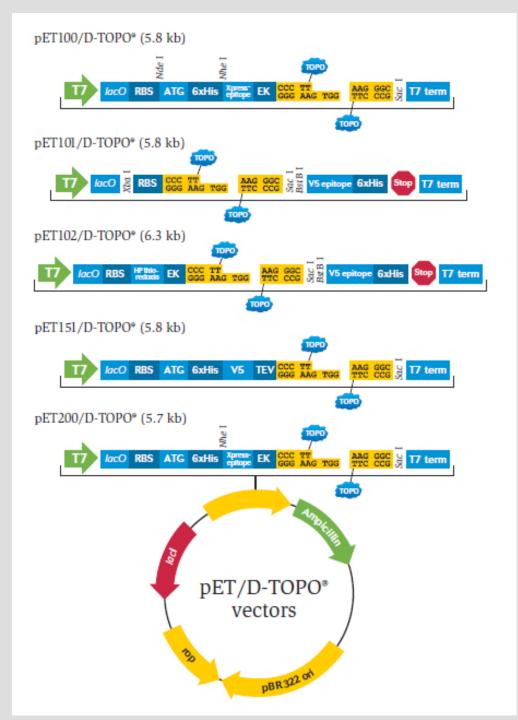
gene of interest

Cleavage by Factor Xa


Using tags in protein purification


Fusion Protein Cleavage


Protease


Source

Factor Xa Thrombin Enterokinase blood clotting factors

Recombinant DNA Technology

Manipulation of Gene Expression in mammalian cells

Recombinant Protein Production in Eukaryotic Cells

- Occassionally problems will arise when eukaryotic proteins are expressed in prokaryotic cells
 - unstable
 - no biological activity
 - prokaryotic contaminants

Eukaryotic Expression Systems

- To eliminate prokaryotic expression problems, eukaryotic expression systems were developed
 - Esp. important for therapeutic proteins
 - Need to have identical: biochemical

biochemical biophysical functional properties as the natural protein

Euk. Expression Systems

- What's different?
 - Post-translational modification of most eukaryotic proteins

Such as:

- Correct disulfide bond formation
- Proteolytic cleavage of inactive precursor
- Glycosylation addition of sugar residues
- Alteration of amino acids in protein
 - phosphorylation
 - acetylation
 - sulfation
 - fatty acid addition

Eukaryotic Cell Exp. Systems

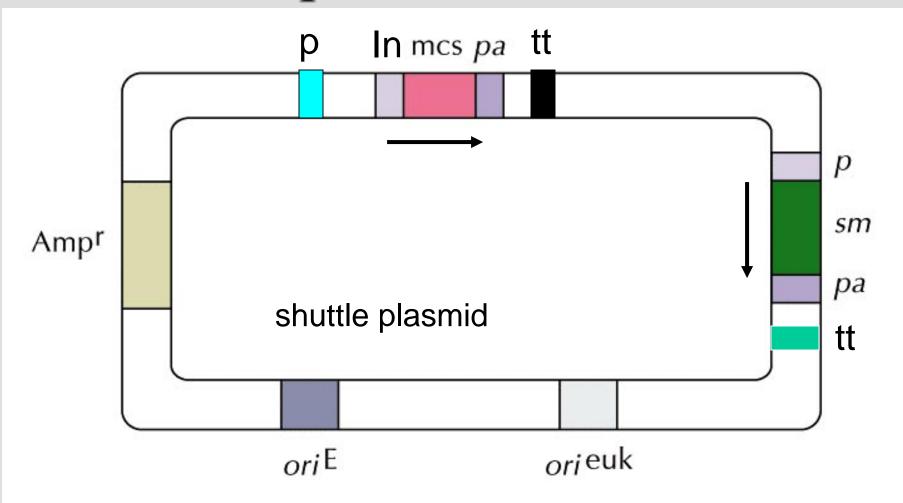
• Therapeutic proteins may need to be expressed in eukaryotic cells to be effective

– correct post-translational modifications

Protein Drugs Produced by Eukaryotic Cell Culture

Protein Factor IX & VIIIc CD4 receptor erythropoetin $\beta \& \gamma$ interferons Interleukin-2 growth hormone tissue plasminogen activator Hepatitis B surface antigen monoclonal antibodies

Condition hemophiliacs AIDS cancer cancer cancer dwarfism heart attack/stroke vaccine various


Eukaryotic Expression Vectors

- Same sorts of genetic features
 - selectable marker (for eukaryotic cell)
 - eukaryotic promoter
 - mRNA polyadenylation signal
 - ori of replication (if plasmid based)
 - chromosomal DNA segment for homologous recombination into host Chr

Eukaryotic Expression Vectors

- They have genetic features for selection and maintenance in E.coli cells
 - ori of replication
 - selectable marker

Generalized Mammalian Expression Vector

Eukaryotic Expression Vector

• Ori of replication

– generally derived from animal virus (SV40)

- **Promoters**
 - generally derived from animal viruses or from highly expressed mammalian genes
 - SV40, cytomegalovirus (CMV), herpes simplex virus (HSV), etc,

Translation control elements

Transcribed Region of Gene

 1
 2
 3
 4
 gene of interest

- 1 AUG (Kozak sequence = CCRCCAUGG)
- 2 Signal sequence for secretion
- 3 Affinity tag for purification
- 4 Proteolytic cleavage site

Euk. Selectable Markers

Agent	Action	Marker Gene
Xyl-A	DNA damage	Adenine deaminase
Blasticidin S	Inhibits protein syn.	BlasticidinS deaminase
<mark>G-418</mark>	Inhibits protein syn.	Neomycin phosphotransferase
MSX	Inhibits glutamine syn.	Glutamine synthetase
MTX	Inhibits DNA syn.	Dihydrofolate reductase

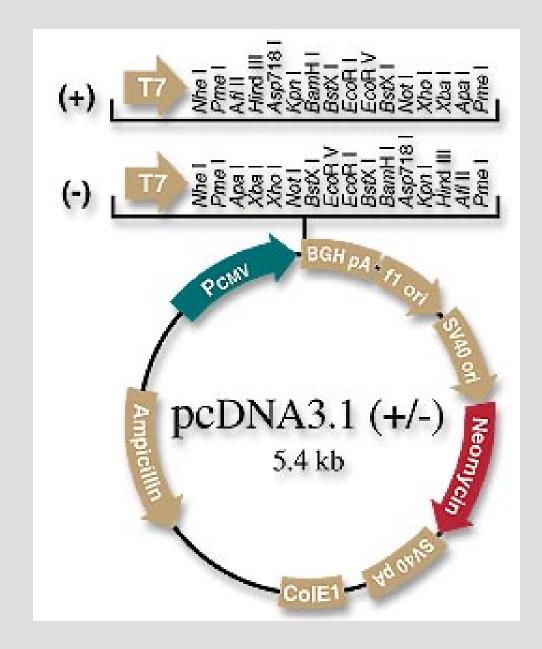
and others

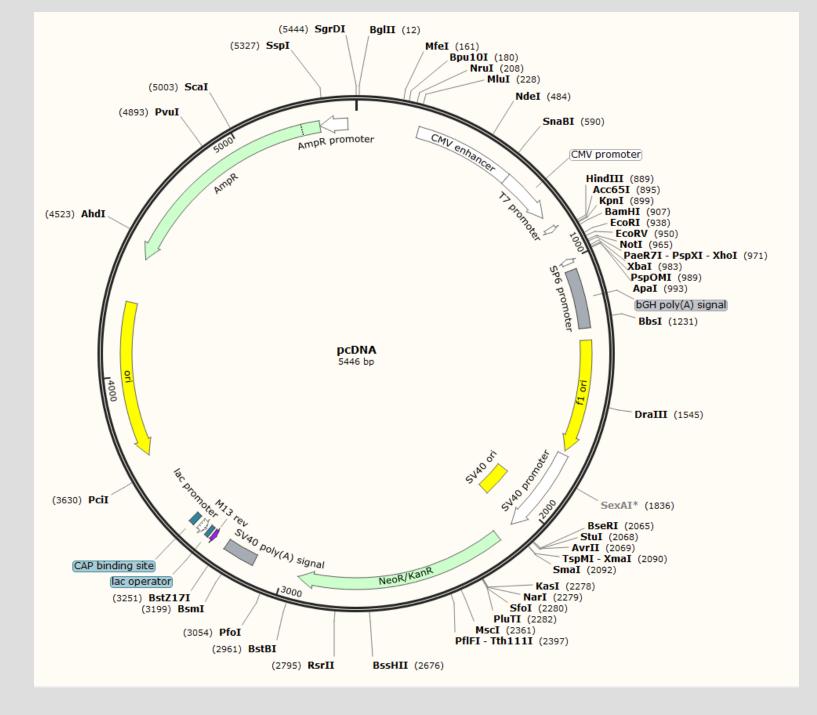
Eukaryotic Selectable Markers

- G418 (Geneticin)
 - blocks translation
 - neomycin phosphotransferase confers resistance (Neo^r)

Eukaryotic Selectable Markers

• Methotrexate (MTX)

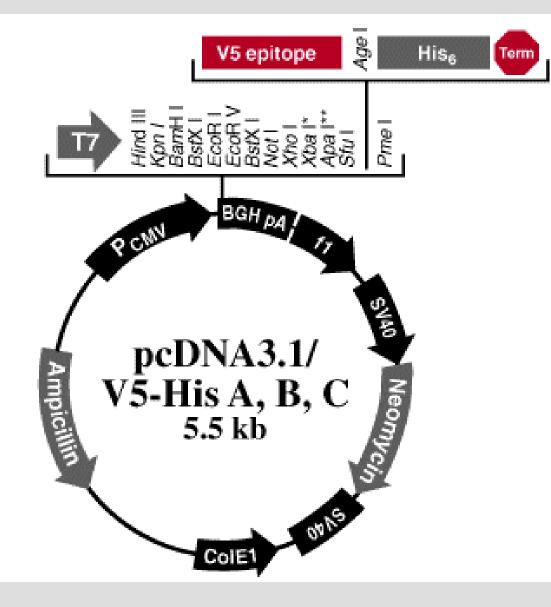

- kills cells which lack dihydrofolate reductase
- host cell line made DHFR⁻
- vector carries a functional DHFR gene

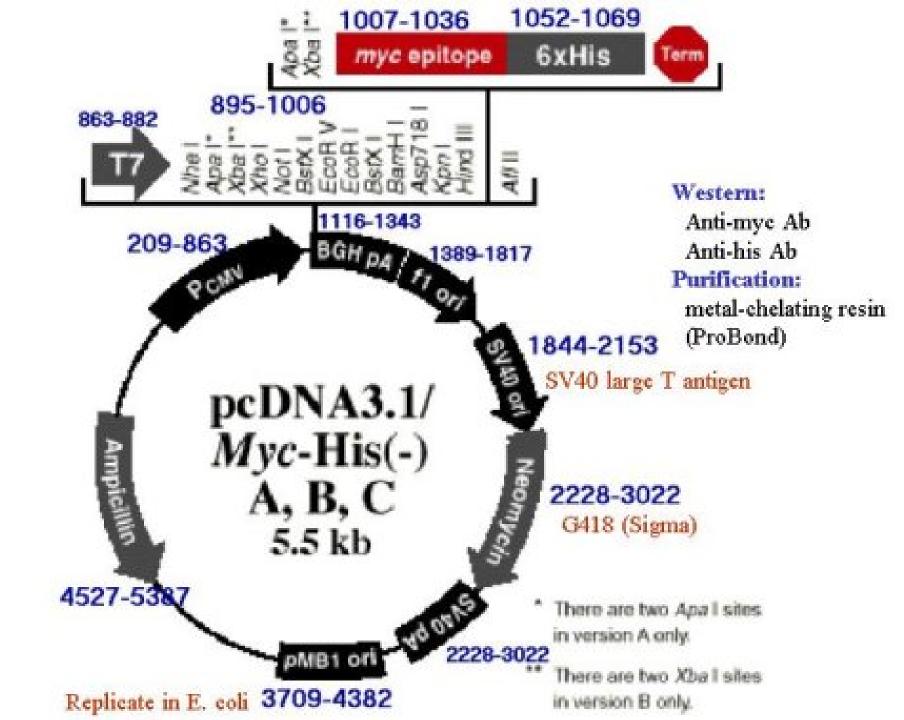

Proteins can be also expressed as fusion protein as described before

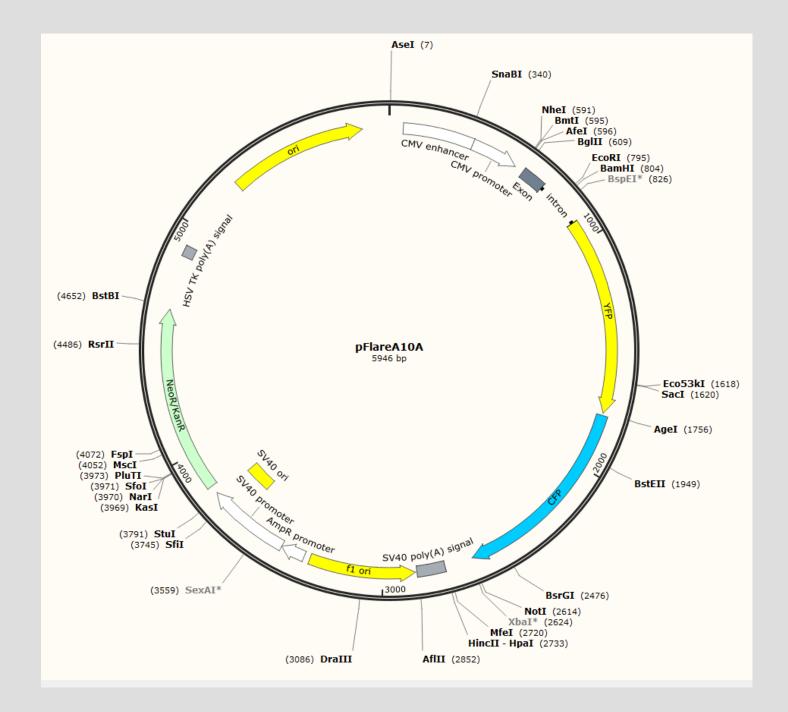
Fusion partner	Size	Ligand	Elution condition
ZZ	14 kDa	IgG	Low pH
His tail	6–10 aa	Ni ²⁺	Imidazole
Strep-tag	10 aa	Streptavidin	Iminobiotin
PinPoint	13 kDa	Streptavidin	Biotin
MBP	40 kDa	Amylose	Maltose
β -Lactamase	27 kDa	Phenyl-boronate	Borate
GST	25 kDa	Glutathione	Reducing agent
Flag	8 aa	Specific MAb	Low calcium

Adapted from Nygren et al., 1994, Trends Biotechnol. 12:184–188.

Abbreviations: aa, amino acids; kDa, kilodaltons; ZZ, a fragment of *Staphylococcus aureus* protein A; His, histidine; Strep-tag, a peptide with affinity for streptavidin; PinPoint, a protein fragment which is biotinylated in vivo in *E. coli*; MBP, maltose binding protein; GST, glutathione *S*-transferase; Flag, a peptide recognized by enterokinase.




Comments for pcDNA3.1/V5-His A 5503 nucleotides

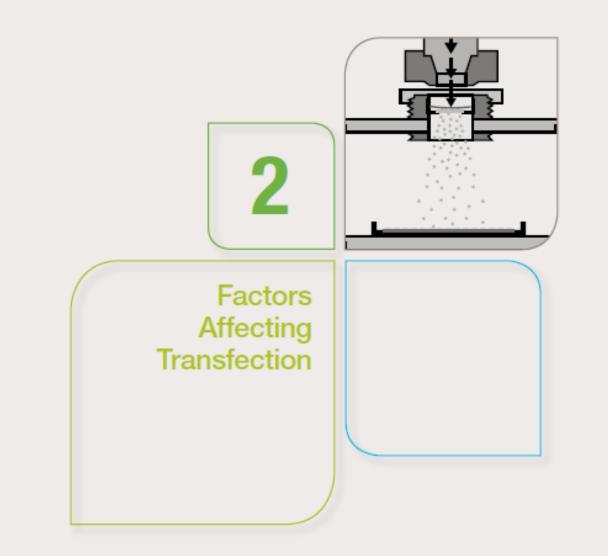

CMV promoter: bases 209-863 T7 promoter/priming site: bases 863-882 Multiple cloning site: bases 902-999 V5 epitope: bases 1000-1041 Polyhistidine tag: bases 1051-1068 pcDNA3.1/BGH reverse priming site: bases 1091-1108 BGH polyadenylation signal: bases 1090-1304 f1 origin of replication: bases 1357-1780 SV40 promoter and origin: bases 1345-2170 Neomycin resistance gene: bases 2206-3000 SV40 polyadenylation signal: bases 3019-3257 ColE1 origin: bases 3689-4362 Ampicillin resistance gene: bases 4507-5367

> * After the Xho I site, there is a unique BstE II site, but no Xba I or Apa I sites in version C.

> ** There is a unique Sac II site between the Apa I site and the Sfu I site in version B only.

Transfection of Euk. cells

- Introduction of DNA into prokaryotic (and yeast) is cells termed Transformation
- Transformation of animal cells refers to changes in growth characteristics of cells in culture
- Transfection is term used for uptake of foreign DNA into eukaryotic cells resulting in inherited change


METODI DI TRASFEZIONE

- CARATTERISTICHE:
 - Elevata efficienza
 - Bassa tossicità
 - Riproducibilità in vitro e in vivo
- PROCESSO:
 - Introduzione del DNA nella cellula
 - Ottenimento dell'espressione del gene d'interesse
 - (selezione delle cellule che si sono trasfettate stabilmente)
 - Caratterizzazione del gene/ proteina prodotta
- PROBLEMATICHE:
 - Come superare le barriere naturali???
 - DNA: fortemente POLARE (carica negativa)
 - MEMBRANA CELLULARE LIPOFILA

1) METODI CHIMICI

2) METODI FISICI

Host Cell Cell health Cell culture

Genetic Material

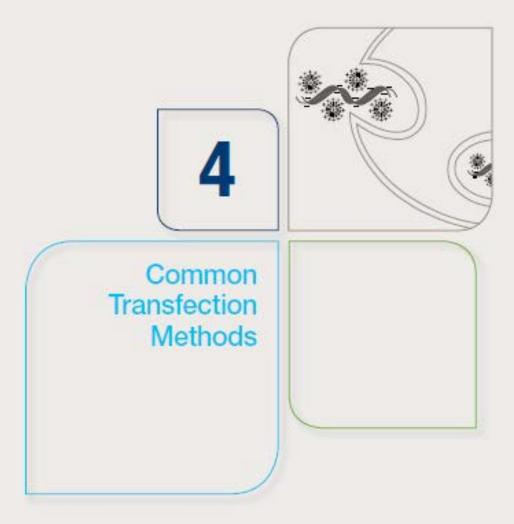
DNA quality and quantity

Cell Health

- · Cells should be grown in appropriate medium with all necessary factors
- Cultures must be free of contamination
- · Fresh medium must be used if it contains chemically unstable components, such as thiamine
- Cells should be incubated at 37°C with CO₂ supplied at the correct percentage (5–10%) and 100% relative humidity
- · Cells should be maintained in log phase growth

Cell Culture

Confluency and Growth Phase


- Cells should be transfected at 40–80% confluency (cell type dependent)
 - Too few cells cause cell cultures to grow poorly without cell-to-cell contact
 - Too many cells result in contact inhibition, making cells resistant to uptake of DNA and other macromolecules
- Actively dividing cells take up DNA better than quiescent cells (breakdown and perforation
 of the nuclear membrane during mitosis enable nuclear delivery)

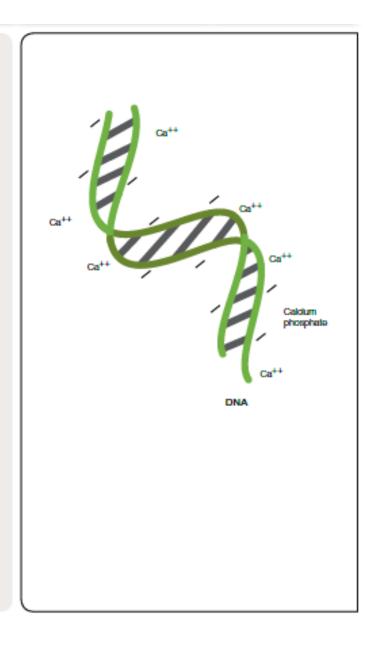
Number of Passages for Primary Cells

- The number of passages should be low (<50)
- The number of passages for cells used in a variety of experiments should be consistent
- Cell characteristics can change over time with immortalized cell lines and cells may not respond to the same transfection conditions
- · Cells may not respond to the same transfection conditions after repeated passages

DNA Quality and Quantity

- Use high-quality plasmid DNA that is free of proteins, RNA, and chemicals for transfections; endotoxin removal should be part of the preparation procedure
- Typically, DNA is suspended in sterile water or TE buffer to a final concentration of 0.2–1 mg/ml
- The optimal amount of DNA to use in the transfection will vary widely depending upon the type of DNA, transfection reagent/method, target cell line, and number of cells

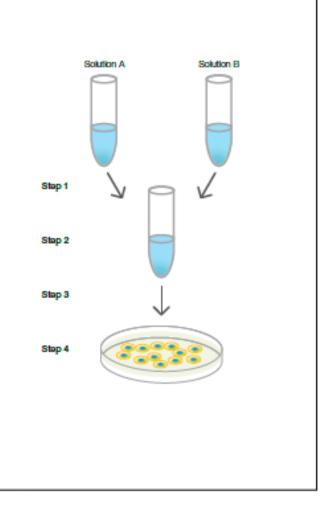
Reagent-Based Methods Lipids Calcium phosphate Cationic polymers DEAE-dextran Activated dendrimers Magnetic beads Instrument-Based Methods Electroporation Biolistic technology Microinjection


Laserfection/optoinjection

Virus-Based Methods

Calcium Phosphate

The protocol involves mixing DNA with calcium chloride, adding this in a controlled manner to a buffered saline/ phosphate solution, and allowing the mixture to incubate at room temperature.


This step generates a precipitate that is dispersed onto the cultured cells. The precipitate is taken up by the cells via endocytosis or phagocytosis.

Method Overview

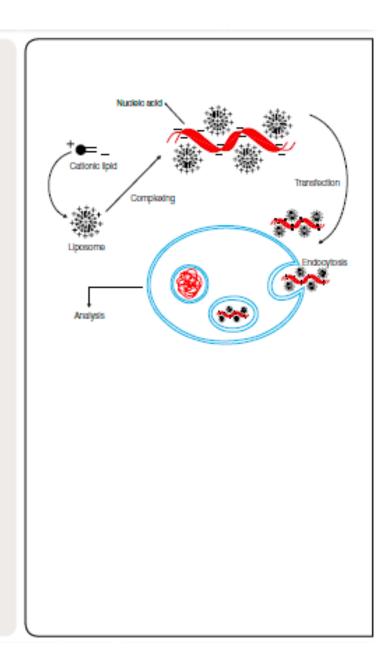
Solution A:	DNA in calcium solution		
Solution B:	2x Hanks buffered saline solution		

- 1 Add solution A to solution B while vortexing.
- 2 Incubate 20-30 min. Apply the solution to a subconfluent cell culture.
- 3 Incubate 2-12 hr. Replace the solution with complete growth medium.
- 4 Assay for transient gene expression or begin selection for stable transformation time.

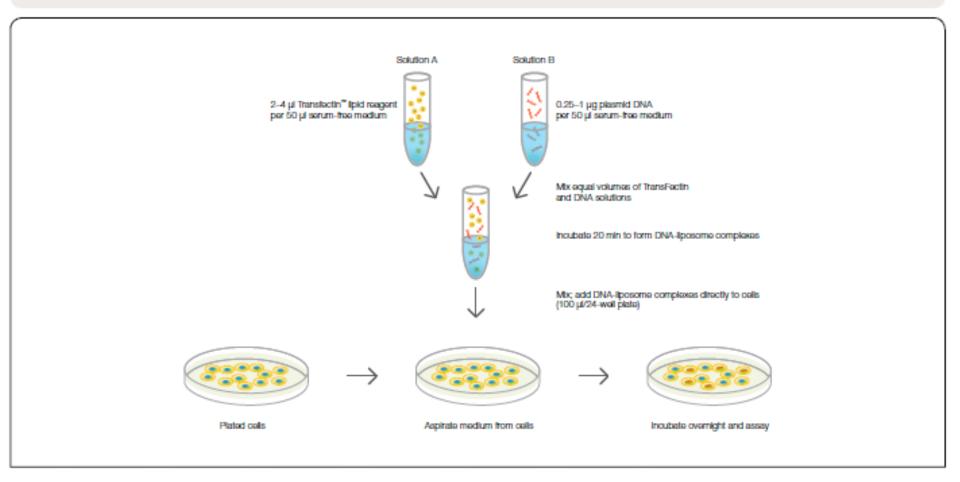
Pros and Cons

Advantages of Calcium Phosphate

- Inexpensive
- High efficiency (cell type dependent)
- Can be applied to a wide range of cell types
- Can be used for transient and stable transfection


Disadvantages of Calcium Phosphate

- Reagent consistency is critical for reproducibility
- Small pH changes (±0.1) can compromise transformation efficiency
- Size and quality of the precipitate are crucial to the success of transfection
- Calcium phosphate precipitation does not work in RPMI, due to the high concentration of phosphate within the medium


Lipid-Mediated Gene Delivery

Lipid-mediated gene delivery is also referred to as lipofection, or liposome-based gene transfection. It uses lipids to cause a cell to absorb exogenous DNA.

Transfer of genetic material into the cell takes place via liposomes, which are vesicles that can merge with the cell membrane since they are both made of a phospholipid bilayer.

Method Overview

Pros and Cons

Advantages of Lipids

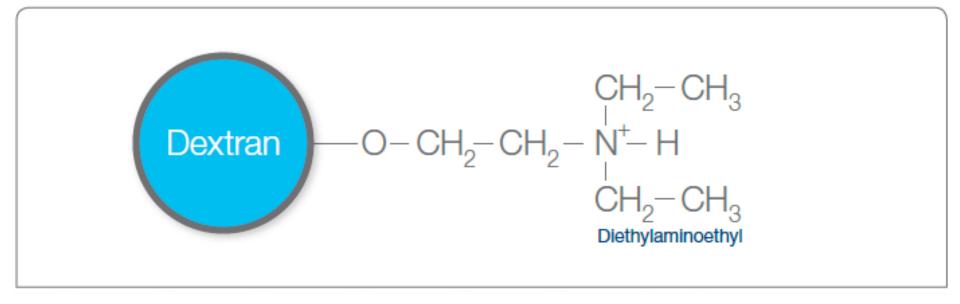
- Deliver nucleic acids to cells in a culture dish with high efficiency
- Easy to use, minimal steps required; adaptable to high-throughput systems
- Using a highly active lipid will reduce the cost of lipid and nucleic acid, and achieve effective results

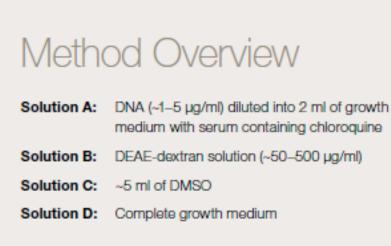
Disadvantage of Lipids

Not applicable to all cell types

Cationic Polymers

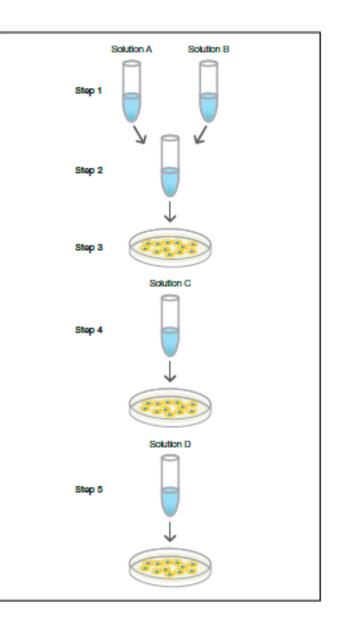
Cationic polymers differ from cationic lipids in that they do not contain a hydrophobic moiety and are completely soluble in water. Given their polymeric nature, cationic polymers can be synthesized in different lengths, with different geometry (linear versus branched). The most striking difference between cationic lipids and cationic polymers is the ability of the cationic polymers to more efficiently condense DNA.


There are three general types of cationic polymers used in transfections:


- Linear (histone, spermine, and polylysine)
- Branched
- Spherical

Cationic polymers include polyethyleneimine (PEI) and dendrimers.

DEAE-Dextran


DEAE-dextran is a cationic polymer that tightly associates with negatively charged nucleic acids. The positively charged DNA:polymer complex comes into close association with the negatively charged cell membrane. DNA:polymer complex uptake into the cell is presumed to occur via endocytosis or macropinocytosis.

1 Add solution A to solution B, then mix gently.

- 2 Aspirate cell medium and apply the mixed A and B solutions to the subconfluent cell culture. Incubate the DNA mixture for ~4 hr.
- 3 Aspirate supernatant.
- 4 Add solution C to induce DNA uptake.
- 5 Remove DMSO and replace with complete growth medium; assay for transient gene expression.

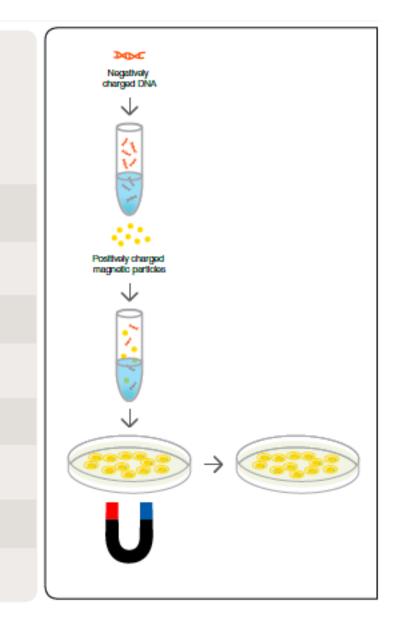
Pros and Cons

Advantages of DEAE-Dextran

- Inexpensive
- Easy to perform and quick
- Can be applied to a wide range of cell types

Disadvantages of DEAE-Dextran

- High concentrations of DEAE-dextran can be toxic to cells
- Transfection efficiencies will vary with cell type
- Can be used only for transient transfection
- Typically produces less than 10% delivery in primary cells


Magnet-Mediated Transfection

Magnet-mediated transfection uses magnetic force to deliver DNA into target cells.

Nucleic acids are first associated with magnetic nanoparticles. Then, application of magnetic force drives the nucleic acid-particle complexes toward and into the target cells, where the cargo is released.

Method Overview

- 1 Dilute nucleic acid in medium.
- 2 Add magnetic nanoparticle.
- 3 Incubate 10-20 min.
- 4 Add medium to adherent cells (2-4 x 10⁵ cells).
- 5 Add nucleic acid/nanoparticle solution.
- 6 Place culture plate on magnet plate.
- 7 Incubate 15 min.
- 8 Remove magnet plate.

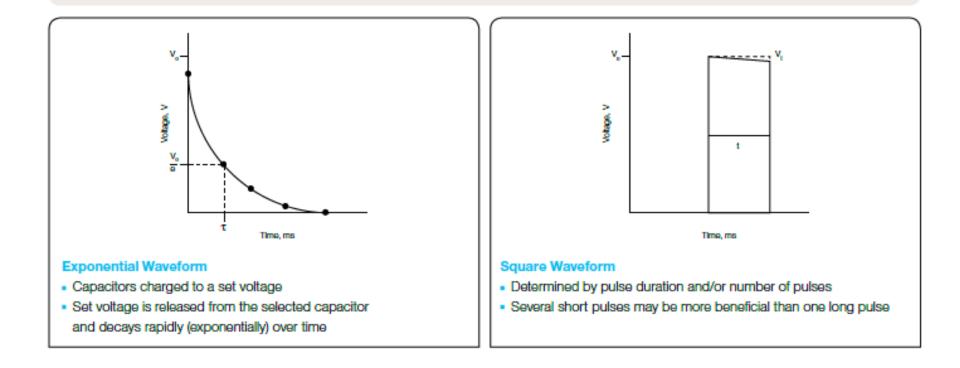
Pros and Cons

Advantages of Magnetic Beads


- Rapid
- Increased transfection efficiency by the directed transport, especially for low amounts of nucleic acids
- High transfection rates for adherent mammalian cell lines and primary cell cultures (suspension cells and cells from other organisms also successfully transfected but need to be immobilized)
- Mild treatment of cells
- · Can also be performed in the presence of serum

Disadvantages of Magnetic Beads

- Relatively new method
- Requires adherent cells; suspension cells need to be immobilized or centrifuged


How Electroporation Works

- Electroporation exposes a cell to a high-intensity electric field that temporarily destabilizes the membrane.
- 2 During this time the membrane is highly permeable to exogenous molecules present in the surrounding media.
- 3 DNA then moves into the cell through these holes.
- 4 When the field is turned off, the pores in the membrane reseal, enclosing the DNA inside.

Type of Electrical Pulse — the Waveform

The most common electrical fields are exponential and square waveforms. The waveform has a significant effect on the transfection efficiency for different cell types. Both exponential-decay and square-wave pulses have been used very effectively for electroporation.

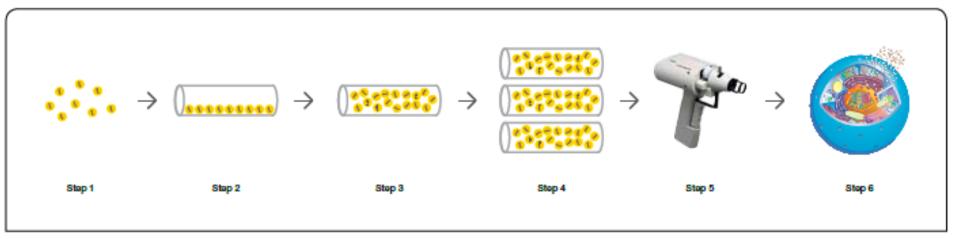
Pros and Cons

Advantages of Electroporation

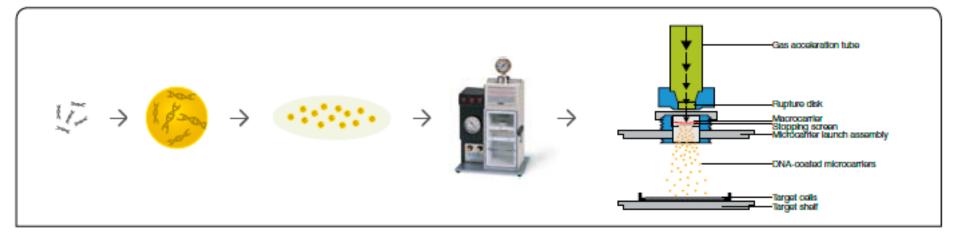
- Nonchemical method that doesn't seem to alter the biological structure or function of the target cells
- Easy to perform
- High efficiency
- · Can be applied to a wide range of cell types

Disadvantage of Electroporation

Cell mortality (if using suboptimal conditions)


Biolistic Particle Delivery

Biolistic transformation is the delivery of nucleic acids into cells via high velocity nucleic acid-coated microparticles.


Helios® Gene Gun — Process Overview

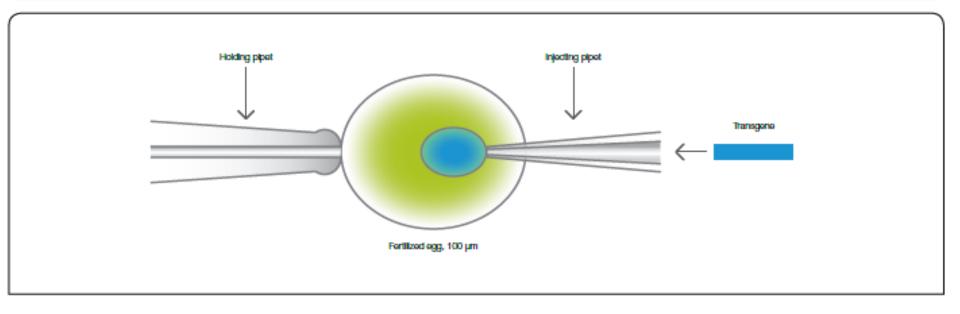
- Precipitate DNA onto gold particles.
- 2 Load DNA/gold into tubing.
- Rotate tubing to coat DNA gold over inside surface.
- 4 Cut tubing into cartridges.
- 5 Load cartridges into gene gun.
- 6 Deliver DNA into target cells.

PDS-1000/He[™] System — Process Overview

- 1 DNA-coated gold particles (microcarrier) are spread over the central area of a thin plastic disk (macrocarrier).
- 2 Disk loaded with the DNA-gold particles is placed into a holder inside the PDS-1000/He system.
- 3 The system uses high-pressure helium, released by a rupture disk, and partial vacuum to propel the macrocarrier loaded with microcarrier toward the target cells.
- 4 Macrocarrier is stopped after a short distance by a stopping screen.
- 5 DNA-coated gold particles continue travelling toward the target to penetrate the cells.
- 6 Sample chamber is subjected to partial vacuum, from 15 to 29 inches of mercury, depending on the target cells.

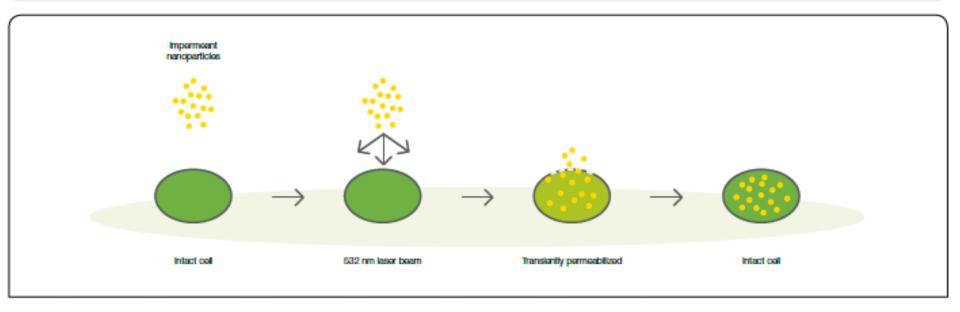
Pros and Cons

Advantages of Biolistic Technology


- · Simple, rapid, versatile technique
- Targeted intracellular gene delivery
- Cell type independent
- Uses small amounts of DNA
- Delivers single or multiple genes
- No carrier DNA needed
- Can deliver large DNA fragments
- No extraneous genes or proteins delivered
- Requires little manipulation of cells
- High reproducibility

Disadvantages of Biolistic Technology

- Generally lower efficiency compared to electroporation or viral- or lipid-mediated transfection
- Limited bacterial transfection data
- Preparation of microparticles
- Instrument cost
- Requires purchase agreement


Microinjection

- Direct injection of naked DNA
- Laborious (one cell at a time)
- Technically demanding and costly
- · Can be used for many animals

Laserfection/Optoinjection

- . This procedure uses laser light to transiently permeabilize a large number of cells in a very short time
- Various substances can be efficiently optoinjected, including ions, small molecules, dextrans, short interfering RNAs (siRNAs), plasmids, proteins, and semiconductor nanocrystals, into numerous cell types
- Advantages: very efficient; works with many cell types; fewer cell manipulations needed
- Disadvantages: requires the cells to be attached; expensive laser-based equipment needed

Viral Vectors

Retroviruses

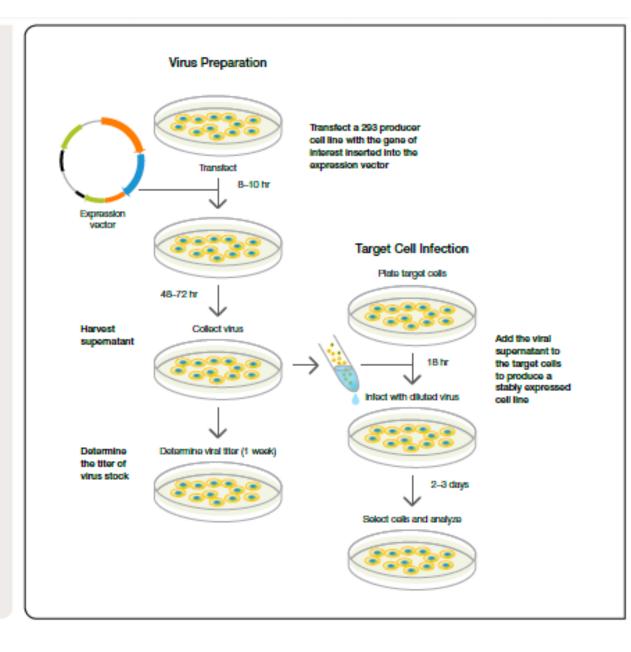
- Murine leukernia virus (MuLV)
- Human immunodeficiency virus (HIV)
- Human T-cell lymphotropic virus (HTLV)

DNA Viruses

- Adenovirus
- Adeno-associated virus (AAV)
- Herpes simplex virus (HSV)

Retroviruses — a class of viruses that can create double-stranded DNA copies of their RNA genomes; these copies can be integrated into the chromosomes of host cells. HIV is a retrovirus.

Adenoviruses — a class of viruses with double-stranded DNA genomes that cause respiratory, intestinal, and eye infections in humans. The virus that causes the common cold is an adenovirus.


Adeno-associated viruses — a class of small, single-stranded DNA viruses that can insert their genetic material at a specific site on chromosome 19.

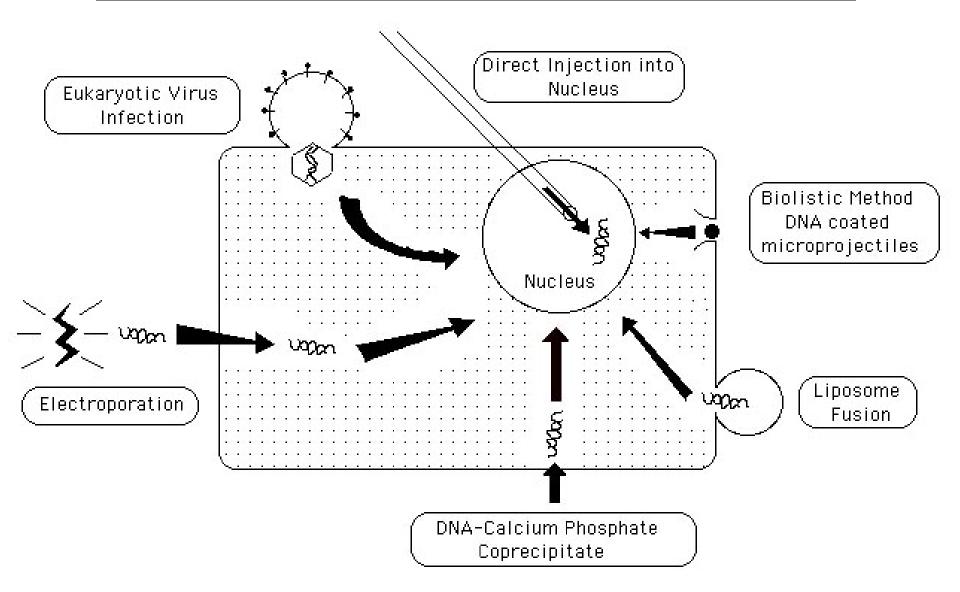
Herpes simplex viruses — a class of double-stranded DNA viruses that infect a particular cell type, neurons. Herpes simplex virus type 1 is a common human pathogen that causes cold sores.

Viral Attributes

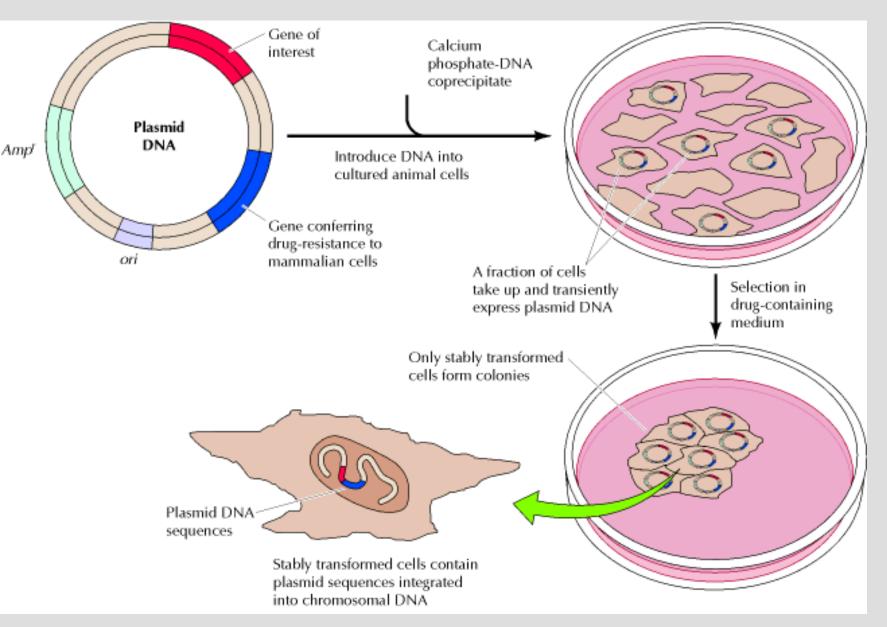
DNA Insert Size	Maximum Titer	Cell Type	Expression	Pitfalls
8 kb	1 x 10 ⁰	Dividing cells	Stable	Random insertion site
9 kb	1 x 10 ⁵	Dividing cells Nondividing cells	Stable	Random insertion site
8 kb	1 x 10 ¹⁹	Dividing cells Nondividing cells	Transient	Highly immunogenic
5 kb	1 x 10 ¹¹	Dividing cells Nondividing cells	Stable, site-specific location	Requires helper virus to grow; difficult to remove helper virus
30–40 kb	1 x 10 ⁰	Dividing cells Nondividing cells	Transient	No gene expression during latent infection
25 kb	3 x 10 ^p	Dividing cells	Transient	Potential cytopathic effects
	8 kb 9 kb 8 kb 5 kb 30–40 kb	8 kb 1 x 10 ⁹ 9 kb 1 x 10 ⁹ 8 kb 1 x 10 ¹⁹ 5 kb 1 x 10 ¹¹ 30-40 kb 1 x 10 ⁹	8 kb1 x 10 ⁹ Dividing cells9 kb1 x 10 ⁹ Dividing cells Nondividing cells8 kb1 x 10 ¹³ Dividing cells Nondividing cells5 kb1 x 10 ¹¹ Dividing cells Nondividing cells90-40 kb1 x 10 ⁹ Dividing cells Nondividing cells	8 kb 1 x 10 ⁹ Dividing cells Stable 9 kb 1 x 10 ⁹ Dividing cells Stable 8 kb 1 x 10 ¹⁹ Dividing cells Transient 5 kb 1 x 10 ¹¹ Dividing cells Stable, site-specific location 30-40 kb 1 x 10 ¹⁰ Dividing cells Transient

Viral Workflow

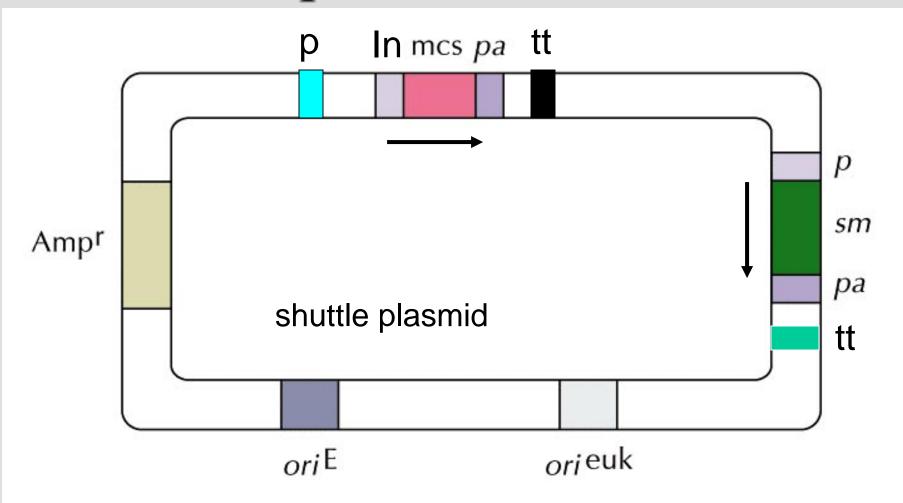
Pros and Cons


Advantages of Virus-Based Methods

- Very high gene delivery efficiency, 95–100%
- Simplicity of infection


Disadvantages of Virus-Based Methods

- Labor intensive
- Best for introducing a single cloned gene that is to be highly expressed
- P2 containment required for most viruses
 - Institutional regulation and review boards required
 - Viral transfer of regulatory genes or oncogenes is inherently dangerous and should be carefully monitored
 - Host range specificity may not be adequate
- Many viruses are lytic
- Need for packaging cell lines


Transfection Methods

Generalized Mammalian Expression Vector

