Recombinant DNA Technology

DNA Cloning

Cloning

rDNA Technology

Restriction Enzymes and DNA Ligase

Origin and function

- Bacterial origin = enzymes that cleave foreign DNA
- Named after the organism from which they were derived
 - EcoRI from Escherichia coli
 - BamHI from Bacillus amyloliquefaciens
- Protect bacteria from bacteriophage infection
 Restricts viral replication
- Bacterium protects it's own DNA by methylating those specific sequence motifs

Availability

 Several hundreds enzymes identified, many available commercially from biotechnology companies

Classes

Type I-III

- Cuts the DNA on both strands but at a nonspecific location at varying distances (>1000 or 24-26bp) from the particular sequence that is recognized by the restriction enzyme
- Therefore random/imprecise cuts
- Not very useful for rDNA applications

• Type II

- Cuts both strands of DNA within the particular sequence recognized by the restriction enzyme
- Used widely for molecular biology procedures
- DNA sequence = symmetrical
 - Reads the same in the 5'→ 3' direction on both strands = Palindromic Sequence
 - Some enzymes generate "blunt ends" (cut in middle)
 - Others generate "sticky ends" (staggered cuts)
 - H-bonding possible with complementary tails
 - DNA ligase covalently links the two fragments together by forming phosphodiester bonds of the phosphate-sugar backbones

Gli enzimi più utilizzati per la manipolazione del DNA sono <u>Enzimi di restrizione di *tipo II*</u>:

- tagliano il Dna in corrispondenza del sito di riconoscimento, in posizione variabile su entrambi i filamenti
- necessitano di Mg⁺⁺
- sono in forma mono-dimerica
- non hanno attività metiltransferasica (presente nel batterio in un enzima separato)

dam Methylation

• Dam methylase puts a methyl group on the nitrogen of 6th position of adenosine at the site: GATC

• All of the E. Coli that we use generate DNA with dam methylation

- Some enzymes *only* cut dam methylated DNA: eg DpnI
- Some enzymes *do not* cut dam methylated DNA: eg Xbal

http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/dam_dcm_methylases_of_ecoli.asp

dcm Methylation

• Dcm methylase puts a methyl group on the carbon of 5th position of cytidine at the site: CCAGG and CCTGG

• The enzyme we use most that can be affected by dcm methylation is Sfil

• XL1-Blues and BL21s are both Dcm⁺

http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/dam_dcm_methylases_of_ecoli.asp

Restriction Enzymes

- Nomenclature
 - EcoRI
 - E = Escherichia
 - co = coli

genus name

- species name
- R = strain RY12 strain or serotype
- I = Roman numeral one = first enzyme
- HinDIII
 - Haemophilus influenza serotype d 3rd enzyme

Restriction Enzymes

- Recognition sites
 - Generally 4, 6, or 8 bp in length
 - Most sites are palindromic
 - OTTO / HANNAH / REGAL LAGER
 - A MAN A PLAN A CANAL PANAMA
 - For REases sequence reads the same in a 5'--->3' direction on each strand

Enzyme	Recognition site	Type of cut end
EcoRI	$G^{\downarrow}A - A - T - T - C$	5'-phosphate extension
	$C-T-T-A-A \uparrow G$	
BamHI	$G^{\downarrow}G - A - T - C - C$	5'-phosphate extension
	$C-C-T-A-G \uparrow G$	
PstI	$C-T-G-C-A^{\downarrow}G$	3'-hydroxyl extension
	$G \uparrow A - C - G - T - C$	
Sau3AI	$\downarrow G - A - T - C$	5'-phosphate extension
	$C-T-A-G_{\uparrow}$	
PvuII	$C - A - G^{\downarrow}C - T - G$	Blunt end
	$G-T-C \uparrow G-A-C$	
HpaI	$G-T-T \downarrow A-A-C$	Blunt end
	$C - A - A \uparrow T - T - G$	
HaeIII	$G-G \downarrow C-C$	Blunt end
	$C-C \uparrow G-G$	
NotI	$G^{\downarrow}C-G-G-C-C-G-C$	5'-phosphate extension
	$C-G-C-C-G-G-C \uparrow G$	* *

Table 4.1 Recognition sequences of some restriction endonucleases

Restriction Enzymes

Cleave DNA to generate different "ends"

- Staggered cut
 - 5' extension
 - 3' extension

Blunt end

Eco RI

SmaI

Restriction Enzymes in DNA Cloning

- How are REases used ?
 - Ends are "sticky"
 - Complementary
 - Any two DNAs cut with same enzyme can stick together through complementary base pairing

Annealing Sticky ends

DNA strands held together only by basepairing Nicks in strands need to be repaired

Restriction fragment length polymorphism

 <u>RFLP</u> is a polymorphic allele identified by the presence or absence of a specific restriction endonuclease recognition site:

– GAATTC versus GATTTC

- RFLP is usually identified by digestion of genomic DNA with specific restriction enzymes followed by Southern blotting
- Regions of DNA with polymorphisms:
 - Introns
 - Flanking sequences
 - Exons

Diagnosi

Digestione

Linking Restriction Fragments

- T4 DNA Ligase
 - repairs nicks in DNA strands
 - (reforms phosphodiester bond)
 - uses energy from ATP
 - works on blunt or sticky ends

T4 DNA Ligase Mode of Action

Recombinant DNA Cloning Procedure

Separation of DNA fragments by gel electrophoresis

Recombinant DNA Cloning Procedure

And in the case we don't have the possibility of using the same restriction enzyme for the vector and the insert? How can we overcome this problem?

Compatible Coesive Ends

	Table 1.19. Newly Generated Recognition Sequences Resulting from Ligation of Protruding Compatible DNA Ends.		
First RE	Second RE	RE cleaving newly generated	
		recognition sequence	
Aatll (GACGTJC)	Tail (ACGTJ)	Maell, Tail	
Acc65I (GJGTACC)	BshNI* (GJGTACC)	Acc651, BshNI, BspLI, Csp61, Kpn1, Rsal	
	Bsp14071 (TLGTACA), Pf/23II (CLGTACG), Tatl* (WLGTACW)	Csp6l, Rsal	
<i>Aci</i> l* (C↓CGC)	Bsp119I (TTLCGAA), Bsu15I (ATLCGAT), Hin11* (GRLCGTC), Maell (ALCGT), Psp1406I (AALCGTT), TaqI (TLCGA), Xmi1* (GTLCGAC)		
	Hin11* (GR↓CGCC), Hin6I (G↓CGC), Narl (GG↓CGCC)	Acil	
	Hpall (C4CGG), Mspl (C4CGG)	Hpall, Mspl	
Acil* (G↓CGG)	Bsp119I (TT↓CGAA), Bsu15I (AT↓CGAT), Maell (A↓CGT), Psp1406I (AA↓CGTT), TaqI (T↓CGA), Xmi1* (GT↓CGAC)		
	Hin11* (GRJCGCC), Hin61 (GJCGC), Narl (GGJCGCC)	Hhal, <mark>Hin6l</mark>	
	Hin11* (GR↓CGTC)	Hgal	
	Hpall (C4CGG), Mspl (C4CGG)	Acil	
AffIII* (A↓CGCGT)	Ascl (GGJCGCGCC), Paul (GJCGCGC)	Bsh1236I, Hhal, Hin6I	
	Dsal* (C↓CGCGG)	Acil, Bsh12361	
	Mlut (A1CGCGT)	AffIII, Bsh12361, Mlul	
Af/III* (A↓CGTGT)	Dsal* (C↓CGTGG)	Maell, Tail	
Af/III* (A↓CACGT)	Dsal* (C↓CACGG)		
AfIIII* (A↓CATGT)	BspLU11I (A↓CATGT)	AffIII, BspLU11I, NIaIII, Xcel	
	Dsal* (CJCATGG), Eco130I* (CJCATGG), Ncol (CJCATGG), Pagl (TJCATGA)	Nlalli	
Alw211* (GTGCTLC)	Sdul* (GTGCTJC)	Alw21I, Sdul	
A/w211* (GTGCA↓C)	BseSI* (GTGCA↓C), SduI* (GTGCA↓C)	Alw211, Alw441, BseS1, Cv/RI, Hpy81, Sdul	
	Mph1103I (ATGCAJT)	CviRI	
	Psti (CIGCALG), Sdai (CCIGCALGG)	Bsgl, CviRl	
A/w211* (GAGCT↓C)	Eco24I* (GAGCTLC), SacI (GAGCTLC), SduI* (GAGCTLC)	Alul, Alw211, CviJl, Ech3611, Eco241, Saci, Sdui	
Alw211* (GAGCAJC)	Sdul* (GAGCA↓C)	Alw211, Sdul	
Alw44I (GJTGCAC)	Bfm1* (CJTGCAG)	Bsgl, CviRl	
Apal (GGGCC↓C)	BseSI* (GGGCC↓C), Eco24I* (GGGCC↓C), SduI* (GGGCC↓C)	Apal, BseSI, Bsp120I, BspLI, BsuRI, Cfr13I, CviJI, Eco24I, SduI	
Ascl (GG‡CGCGCC)	Af/III* (AJCGCGT), MIul (AJCGCGT)	Bsh12361, Hhal, Hin61	
	Dsal* (CJCGCGG)	Acil, Bsh12361, Hhal, Hin61	
	Paul (G4CGCGC)	Bsh12361, Cac81, Hhal, Hin61, Paul	
BamHI (G↓GATCC)	BCII (TIGATCA), Bsp143I (IGATC), MboI (IGATC)	Bsp143I, BspPI, Mbol	
	Bg/II (AJGATCT), Psul* (RJGATCT)	Bsp143I, BspPI, Mbol, Psul	
	Psul* (RJGATCC)	BamHI, Bsp1431, BspLI, BspPI, Mbol, Psul	
Bbel (GGCGC↓C)	Bsp143II* (RGCGC↓C)	Bbel, BshNI, Bsp14311, BspLI, Ehel, Hhal,	
		Hin11, Hin61, Kas1, Narl	
	Bsp143II* (RGCGC↓T)	Bsp143II, Hhal, Hin6I	
BbvCI* (CC↓TCAGC)	Bpu101* (CCJTCAGC), Bpu11021* (GCJTCAGC)	BbvCl, Bpu10l, BseMil, BspCNl, Ddel, Mnll	
	Bpu101* (GCJTCAGG), Eco811* (CCJTCAGG)	BseMII, BspCNI, Ddel, Eco811, MnII	
	Ddel* (CJTCAG)	BseMII, BspCNI, Ddel, MnII	
BbvCI* (GC↓TGAGG)	Bpu101* (CCJTGAGC), Bpu11021* (GCJTGAGC)	Bpu1102I, BseMII, BspCNI, Ddel	
	Bpu101* (GCJTGAGG), Eco811* (CCJTGAGG)	BbvCl, Bpu101, BseMil, BspCNI, Ddel, Mali	
	Ddel* (CJTGAG)	BseMII, BspCNI, Ddel	

BamHI (GJGATCC) BcfI (TJGATCA), Bsp143I (JGATC), MboI (JGATC) BafII (AJGATCT), Psul* (RJGATCT)

Unfortunately, you have no luck!!! How can we modify the ends to make them compatible??

Filling recessed 3' ends

Linkers

Adapters

TdT (terminal deossinucleotidil transferase)

 What prevents plasmid DNA from reforming during ligation and transforming cells as do the recombinant molecules?

Two ways to prevent

 Treat with Alkaline Phosphatase
 Directional Cloning

Cohesive termini can associate intramolecularly and intermolecularly. *Note* that only some of the possible outcomes are shown. For example, vector molecules may also form intermolecular concatemers, multimers can undergo cyclization and co-ligation events can involve two different target sequences being included with a vector molecule in the same recombinant DNA molecule. The tendency towards cyclization of individual molecules is more pronounced when the DNA is at low concentration and the chance of collision between different molecules with complementary sticky ends is reduced

Alkaline Phosphatase

- removes 5' PO₄ from end of DNA strand
- prevents formation of new phosphodiester bond by DNA Ligase

Alkaline Phosphatase Action

Alkaline Phosphatase Action

Two nicks remain

Will be repaired in bacterial cell follow-ing transformation

Directional Cloning

- Digest plasmid and target DNA with two different restriction enzymes
 - Hind III and BamHI
 - Ends are not compatible (can't basepair)
 - Plasmid won't re-circularize unless target DNA has inserted

Directional Cloning

Cloning of PCR fragments

Cloning of PCR products

PCR products frequently have an overhanging adenosine at their 3 ends. The <u>**T-A cloning**</u> system has a polylinker system with complementary thymine overhangs to facilitate cloning.

Topo Cloning

- DNA topoisomerase I from *Vaccinia* virus binds to double strand DNA at specific sites and cleaves the phosphodiester backbone after 5'-CCCTT in one strand (Shuman, 1991).
- The energy from the broken phosphodiester backbone is conserved by formation of a covalent bond between the 3' phosphate of the cleaved strand and a tyrosyl residue (Tyr-274) of topoisomerase I.

rDNA Technology

Transformation of Bacteria

CHOICE OF THE BACTERIAL HOST

(generally E.Coli)

res –

→ mutants of the restriction system

Rec A (-) → mutants of the recombination system

- rDNA constructed in the lab must be introduced into "host" cell
- Cells must be able to take up DNA -"COMPETENT"
- Growing bacteria will produce lots of copies of the DNA

 Two basic methods to produce competent bacteria (able to take up added DNA)
 – Chemical competent
 – Electroporation

- Chemical competent
 - Divalent metal ion Ca++ , required
 - treat cells with ice-cold CaCl₂ solutions
 - Ca⁺⁺ ions alter membrane so it is permeable to DNA

- Electroporation
 - Cell/DNA mix given high voltage electric shock
 - 2.5kvolts, ~5msec
 - useful for high efficiency transformation
 - 10⁹ transformants / µg of DNA

Both methods are very inefficient

 only a few % of cells actually take up DNA

How are the transformed cells selected?

 antibiotic resistance gene on plasmid
 ampicilin, tetracycline, chloramphenicol, etc.
 transformed cells grow; non-transformed die

Selection of clones by antibiotic

Chemically Competent E. coli

1 x 10⁹ cfu/µg plasmid DNA

1 µg plasmid DNA

99,999% is cut

0,001% isn't cut

1ng plasmid DNA

