PROGRAMMA DI FISICA

Anno Accademico 2009-2010

(Prof. Franco Ronconi)

Corso di laurea triennale in SCIENZE BIOLOGICHE

Facoltà di Scienze Matematiche, Fisiche e Naturali

Università degli Studi di Ferrara

INTRODUZIONE

- Contributo della Fisica allo sviluppo di alcune Scienze moderne.
- Metodo scientifico d'indagine: processi induttivo e deduttivo.
- Verifica della validità dei modelli: confronto tra legge sperimentale e legge teorica.

CINEMATICA

• Grandezze fisiche

- Concetti di spostamento e di durata.
- Operazione di misura per valutare quantitativamente un concetto.
- Grandezza fisica di lunghezza espressa in unità di misura fondamentale S.I..
- Grandezza fisica di intervallo di tempo espressa in unità di misura fondamentale S.I..
- Prefissi e fattori utilizzati nel S.I. per esprimere il valore numerico di una grandezza fisica.
- Grandezze fisiche derivate.
- Analisi dimensionale tra grandezze fisiche.
- Operazioni algebriche tra grandezze fisiche omogenee ed eterogenee.
- Grandezze fisiche adimensionali.

• Moti rettilinei

- Moto rettilineo uniforme:

- sistema di riferimento cartesiano ortogonale,
- tabella oraria e sua rappresentazione grafica,
- concetto di interpolazione ed estrapolazione,
- concetto di funzione,
- equazione di una retta,
- definizione di velocità media.
- unità di misura S.I. della velocità,
- legge oraria del moto rettilineo uniforme,
- osservazioni metodologiche generali.
- Moto rettilineo uniformemente accelerato:
 - tabella oraria e sua rappresentazione grafica,
 - equazione di una parabola,
 - significato geometrico di derivata di una funzione,
 - definizione di velocità istantanea e di accelerazione media,
 - unità di misura S.I. dell'accelerazione,
 - relazione tra velocità istantanea e intervallo di tempo,
 - legge oraria del moto rettilineo uniformemente accelerato.

• Moti su un piano

- Grandezze fisiche scalari e vettoriali.
- Elementi di algebra vettoriale:
 - somma e differenza tra vettori,
 - prodotto di uno scalare per un vettore e concetto di versore,
 - decomposizione e ricomposizione di un vettore,
 - elementi di trigonometria,
 - definizione di angolo piano,
 - grandezza fisica di angolo piano espressa in unità di misura fondamentale S.I..
 - prodotto scalare e prodotto vettoriale tra due vettori.
- Definizione di velocità e di accelerazione in termini vettoriali.
- Caduta dei gravi:
 - decomposizione del moto lungo la direzione orizzontale e verticale e relative leggi orarie,
 - deduzione della traiettoria dalle leggi orarie,
 - proprietà del vettore velocità lungo la traiettoria,
 - condizione generale per ottenere la massima gittata nella caduta dei gravi.
- Moto circolare uniforme:
 - velocità angolare e accelerazione centripeta,
 - unità di misura S.I. della velocità angolare e dell'accelerazione angolare,
 - relazione tra velocità angolare e velocità periferica.
- Leggi cinematiche di Keplero.

DINAMICA

Primo principio della dinamica

- Differenza concettuale tra principio e legge.
- Assenza di interazioni e primo principio della dinamica.
- Sistemi di riferimento inerziali.

• Secondo e terzo principio della dinamica

- Studio del moto di due corpi sottoposti all'azione simultanea di una molla.
- Grandezza fisica di massa espressa in unità di misura fondamentale S.I..
- Definizione di forza.

- Unità di misura S.I. della forza.
- Concetto di interazione e terzo principio della dinamica.
- Effetto di una forza su una massa inerziale e secondo principio della dinamica.
- Interazione gravitazionale (una delle due interazioni fondamentali extranucleari):
 - forza gravitazionale applicata su una massa,
 - costante di gravitazione universale,
 - intensità del campo gravitazionale,
 - unità di misura S.I. del campo gravitazionale,
 - massa gravitazionale,
 - principio di equivalenza,
 - spiegazione del fatto che l'accelerazione di gravità è indipendente dalla massa di un corpo.

• Considerazioni su alcuni tipi di forze di uso comune

- Forza peso in termini di interazione gravitazionale.
- Reazione vincolare.
- Forze di attrito statico e dinamico.
- Forza centripeta.
- Forza elastica.
- Definizione di momento di una forza e sua misura S.I..

• Studio di alcuni moti notevoli

- Problema fondamentale della dinamica.
- Moto su un piano orizzontale privo di attrito.
- Moto su un piano inclinato senza attrito.
- Moto su un piano inclinato in presenza di attrito.
- Moto prodotto dalla sola forza elastica (oscillatore meccanico):
 - relazione tra accelerazione e spostamento,
 - legge oraria del moto periodico armonico,
 - definizioni di ampiezza del moto, fase iniziale, pulsazione, frequenza e periodo,
 - dipendenza della frequenza dalla costante elastica e dalla massa del corpo.

• Lavoro ed energia cinetica

- Impulso come misura dell'effetto cumulativo di una forza nel tempo.
- Lavoro come misura dell'effetto cumulativo di una forza nello spazio.
- Definizione di lavoro finito e di lavoro elementare.
- Significato geometrico di integrale di una funzione.
- Definizione di energia cinetica.
- Teorema del lavoro e dell'energia cinetica.
- Unità di misura S.I. del lavoro e dell'energia.
- Definizione di potenza.

• Lavoro delle forze conservative

- Come calcolare il lavoro senza conoscere a priori la traiettoria.
- Lavoro delle forze peso:
 - indipendenza del lavoro della forza peso dalla traiettoria,
 - concetto di forza conservativa (in generale),
 - definizione di energia potenziale (in generale),
 - energia potenziale della forza peso,
 - lavoro e variazione dell'energia potenziale (in generale),
- Lavoro delle forze centrali:
 - definizione e proprietà delle forze centrali,
 - indipendenza del lavoro della forza elastica dalla traiettoria,
 - energia potenziale della forza elastica.
- Previsione sull'evoluzione spontanea del moto basata sulle variazioni dell'energia potenziale.

• Energia meccanica

- Definizione di energia meccanica.
- Conservazione dell'energia meccanica per le forze conservative.
- Variazione di energia meccanica per le forze non conservative.

Sistemi composti da moltissime particelle

- Natura conservativa delle forze interne al sistema.
- Lavoro delle forze interne al sistema e variazione di energia potenziale.
- Lavoro delle forze esterne e variazione dell'energia meccanica.
- Concetto di energia interna del sistema.
- Modello di gas perfetto.
- Energia cinetica del sistema e concetto meccanico della temperatura.
- Grandezza fisica di quantità di sostanza espressa in unità di misura fondamentale S.I..

PROPRIETA' MECCANICHE DEI FLUIDI

- Discontinuità della materia e stati di aggregazione.

• Statica

- Forze agenti sui fluidi:
 - forze di volume e forze di superficie,
 - definizione di pressione e sua unità di misura S.I.,
 - proprietà dello sforzo di pressione nei liquidi.
- Definizione di densità.
- Fluidi pesanti in generale:
 - legge di Stivino.
- Fluidi pesanti incomprimibili:
 - principio di Pascal,
 - barometro di Torricelli,
 - spinta di Archimede.

Cinematica

- Metodo euleriano:
 - concetto di campo di velocità stazionario,
 - linea di flusso e di tubo di flusso.
- Conservazione della portata di massa in un tubo di flusso:
 - equazione di continuità per tutti i fluidi,
 - equazione di continuità per i fluidi incomprimibili,
 - definizione di portata volumetrica.

• Dinamica dei fluidi ideali

- Campi di velocità stazionari e irrotazionali:
 - teorema di Bernoulli,
 - legge di Torricelli,
 - tubo di Venturi,
 - portanza dell'ala.

• Dinamica dei fluidi reali

- Modello di moto laminare piano:
 - esperienza di Newton,
 - concetto di viscosità,
 - unità di misura S.I. della viscosità,
 - modello di moto laminare piano,

- definizione dei fluidi newtoniani.
- Modello di moto laminare cilindrico:
 - legge di Poiseuille.
- Sedimentazione,
 - forza di Stokes,
 - velocità di sedimentazione,
 - ultracentrifugazione,
 - coefficiente di sedimentazione,
 - unità Swedberg del coefficiente di sedimentazione.
- Fluidi con viscosità indipendente dal tempo: viscoplastici, plastici, pseudoplastici, dilatanti.
- Fluidi con viscosità dipendente dal tempo: fluidi tixotropici o reopectici.
- Limite di validità del modello di moto laminare:
 - numero di Reynolds.

• Fenomeni molecolari nei liquidi

- Lamine liquide piane,
 - lavoro delle forze di tensione superficiale,
 - coefficiente di tensione superficiale e sua misura S.I..
- Lamine liquide sferiche:
 - legge di Laplace.
- Capillarità:
 - legge di Jurin,
 - definizione di forze di coesione e di adesione,
 - effetto dell'azione contemporanea di forze di adesione e di coesione.

TERMOLOGIA

• Temperatura

- Limiti della valutazione soggettiva della sensazione di caldo e di freddo.
- Variazione volumetrica della materia per effetto del riscaldamento o del raffreddamento:
 - termoscopi,
 - invarianza volumetrica della materia durante le transizioni di fase (solido-liquido e liquido-gas),
 - taratura di un termoscopio,
 - scala centigrada della temperatura.
- Termometri a gas:
 - prima legge di Gay-Lussac applicata ai gas perfetti,
 - scala assoluta delle temperature,
 - unità di misura assoluta della temperatura.

Calore

- Densità dell'acqua a zero gradi centigradi sia allo stato solido, sia allo stato liquido.
- Calorimetro di Bunsen:
 - principio di funzionamento del calorimetro di Bunsen,
 - definizione operativa di calore,
 - unità di misura del calore (kCal).
- Scambio di calore di un corpo con l'ambiente:
 - relazione tra calore scambiato e variazione di temperatura,
 - capacita termica,
 - calore specifico dei solidi e dei liquidi,
 - calore specifico molare dei gas a pressione costante o a volume costante,

- relazione di Mayer.
- Propagazione del calore mediante conduzione:
 - legge di Fourier,
 - coefficiente di conducibilità termica,
 - materiali conduttori e isolanti di calore,
 - concetto di schermo adiabatico.
- Cenni sulla propagazione del calore mediante convezione o mediante irraggiamento.

TERMODINAMICA

• Osservazioni preliminari di carattere generale

- Scopo della termodinamica.
- Definizioni di sistema termodinamico e di ambiente circostante.
- Coordinate termodinamiche intensive ed estensive.
- Concetto di stato termodinamico.
- Definizione di equilibrio termodinamico.
- Trasformazioni reversibili (quasistatiche) e trasformazioni irreversibili.
- Trasformazioni notevoli: isobara, isocora, isoterma e adiabatica.

• Lavoro effettuato su sistemi termodinamici fluidostatici

- Definizione di lavoro finito e di lavoro elementare per tutte le trasformazioni.
- Definizione di lavoro finito e di lavoro elementare per le sole trasformazioni reversibili.
- Valutazione del lavoro effettuato durante una trasformazione reversibile:
 - isobara.
 - isocora,
 - dipendenza del lavoro dalle coordinate termodinamiche.
- Lavoro adiabatico:
 - indipendenza del lavoro dal tipo di trasformazione reversibile o irreversibile,
 - dipendenza del lavoro dallo stato iniziale e finale,
 - prima formulazione del primo principio della termodinamica.
- Lavoro non adiabatico:
 - dipendenza del lavoro dal tipo di trasformazione termodinamica,
 - seconda formulazione del primo principio della termodinamica,
 - unità di misura S.I. del calore,
 - equivalente meccanico della caloria.

• Sistema gas perfetto

- Esperienza di Joule:
 - irreversibilità dell'espansione libera,
 - dipendenza dell'energia interna dalla sola temperatura.
- Variazione dell'energia interna durante una trasformazione aperta.
- Lavoro effettuato durante una trasformazione reversibile isotermica.
- Calore scambiato durante una trasformazione reversibile isobara:
 - definizione di entalpia e sua proprietà.
- Calore scambiato durante una trasformazione reversibile isoterma.

• Trasformazione di energia interna in lavoro

- Trasformazione della variazione di energia interna in calore:
 - contenuto energetico degli alimenti.
- Definizione di potenza metabolica.
- Definizione di rendimento di una generica macchina termica.
- Definizione di sorgente termica.

- Secondo principio della termodinamica secondo Kelvin-Planck.
- Rendimento di una macchina termica ciclica.
- Ciclo bitermico reversibile di Carnot:
 - rendimento del ciclo in generale per qualsiasi sistema,
 - equazioni di Poisson relative alle trasformazioni reversibili adiabatiche,
 - rendimento del ciclo su sistema gas perfetto.
- Prima parte del teorema di Carnot.

• Entropia

- Teorema di Clausius per trasformazioni reversibili cicliche bitermiche e politermiche.
- Definizione e proprietà dell'entropia elementare e entropia finita.
- Variazioni di entropia nelle trasformazioni reversibili non cicliche (aperte):
 - in sistemi che scambiano calore con l'ambiente,
 - in sistemi termicamente isolati.
- Seconda parte del teorema di Carnot.
- Teorema di Clausius per trasformazioni irreversibili cicliche bitermiche e politermiche.
- Valutazione della variazione di entropia per trasformazioni non cicliche:
 - isobara,
 - isocora.
 - isoterma.
- Irreversibilità delle trasformazioni spontanee.
- Previsione dell'evoluzione spontanea di un sistema isolato termicamente.
- Previsione sull'evoluzione spontanea di un sistema non isolato termicamente:
 - potenziale termodinamico di Gibbs per trasformazioni a pressione e volume costante.

ELETTROSTATICA

- Interazione elettrostatica (una delle due interazioni fondamentali extranucleari)
 - Generalità sull'interazione elettrostatica.
 - Cariche elettriche positive e negative,
 - definizione di unità di carica elettrica e sua unità di misura S.I.,
 - carica elettrica elementare.
 - Forza elettrostatica applicata su una carica elettrica:
 - legge di Coulomb,
 - costante dielettrica assoluta e relativa.
 - Campo elettrostatico:
 - definizione di campo elettrostatico,
 - definizione di intensità del campo elettrostatico,
 - campo elettrostatico prodotto da due o più cariche elettriche.
 - Flusso del campo elettrostatico:
 - definizione di superficie orientata,
 - definizione di flusso sia finito che elementare,
 - flusso intercettato da una superficie chiusa,
 - legge di Gauss per il campo elettrostatico (prima equazione di Maxwell).
 - Applicazioni del teorema di Gauss:
 - intensità del campo elettrostatico all'interno di un conduttore elettrico,
 - intensità del campo elettrostatico in prossimità di un conduttore carico,
 - definizione di densità di carica elettrica,
 - relazione tra campo elettrostatico e densità di carica elettrica.
 - Campo elettrostatico all'interno di un condensatore piano ideale:

- relazione tra campo elettrostatico e cariche elettriche presenti sulle armature,
- effetto di polarizzazione del dielettrico interposto tra le due armature del condensatore,
- fenomeno dell'induzione elettrostatica.

Lavoro delle forze elettrostatiche

- Lavoro elementare e lavoro finito.
- Natura conservativa delle forze elettrostatiche:
 - energia potenziale,
 - potenziale e sua unità di misura,
 - differenza di potenziale, finita ed elementare.
- Condensatore piano:
 - differenza di potenziale tra le armature del condensatore,
 - relazione tra la carica elettrica sulle armature e la differenza di potenziale tra esse,
 - definizione di capacità elettrica,
 - unità di misura della capacità elettrica,
 - dipendenza della capacità elettrica dalle grandezze geometriche delle armature e dalla costante dielettrica del mezzo interposto tra esse,
 - capacità elettrica di due condensatori collegati in serie o in parallelo,
 - condensatori elettrici in un circuito elettrico equivalente di un assone.

ELETTRODINAMICA

• Corrente elettrica

- Definizione di corrente elettrica continua ed istantanea.
- Grandezza fisica di corrente espressa in unità di misura fondamentale S.I..
- Prima e seconda legge di Ohm.
- Resistenza e resistività di un conduttore elettrico.
- Dipendenza della resistività elettrica dalla temperatura.
- Materiali conduttori ed isolanti.

Circuiti elettrici

- Circuito puramente resistivo:
 - generatore di campo elettromotore,
 - unità di misura della forza elettromotrice (f.e.m.) del campo elettromotore,
 - legge generalizzata di Ohm,
 - natura non conservativa del campo elettromotore,
 - potenza e sua unità di misura,
 - resistenza elettrica di due resistenze collegate sia in serie che in parallelo,
 - circuito elettrico equivalente dell'Electrophorus e sua straordinaria potenza elettrica.
- Circuito resistivo-capacitivo (R-C):
 - carica e scarica di un condensatore,
 - energia del campo elettrico in un condensatore elettrico carico,
 - circuito elettrico equivalente di un assone.

Principali effetti della corrente elettrica

- Effetto termico e legge di Joule.
- Effetto termoelettronico.
- Effetto meccanico (in un campo magnetico preesistente):
 - generazione di campi magnetici mediante magneti permanenti,
 - seconda legge di Laplace,
 - definizione del vettore induzione del campo magnetico e sua unità di misura S.I.,
 - forza di Lorentz,

- proprietà del vettore induzione del campo magnetico,
- legge di Gauss per il campo magnetico (seconda equazione di Maxwell).
- Effetto magnetico:
 - legge di Biot-Savart,
 - permeabilità magnetica assolta e relativa,
 - legge della circuitazione di Ampère (quarta equazione di Maxwell per correnti continue).

ELETTROMAGNETISMO

• Induzione elettromagnetica

- Definizione e proprietà del flusso concatenato del vettore induzione magnetica.
- Legge di Faraday-Lenz.
- Legge di Neumann.
- Legge di Lenz.

• Autoinduzione elettromagnetica

- Coefficiente di autoinduzione o induttanza e sua unità di misura S.I..
- Circuito resistivo-induttivo (R-L):
 - energia immagazzinata in un campo magnetico.

• Circuito oscillante ideale (L-C)

- Conservazione della somma delle energie elettrica e magnetica per piccoli valori di frequenza.
- Moto oscillatorio armonico delle cariche elettriche.
- Dipendenza della frequenza di oscillazione dai valori dell'induttanza e della capacità elettrica.
- Intuizione di Maxwell sulla causa dell'attenuazione dell'ampiezza delle oscillazioni al crescere della frequenza:
 - definizione di corrente di spostamento,
 - le quattro equazioni di Maxwell in assenza di cariche e di cariche in movimento,
 - generazione della radiazione elettromagnetica da parte del circuito oscillante.

FENOMENI ONDULATORI

• Proprietà dei moti ondulatori

- Trasferimento di energia senza trasferimento di materia.
- Onde elastiche nella materia.
- Onde trasversali e longitudinali.
- Modello di onda:
 - equazione di un'onda trasversale piana, sinusoidale, progressiva e monocromatica,
 - definizioni di lunghezza d'onda e di numero d'onda,
 - relazione tra lunghezza d'onda e periodo,
 - rappresentazioni grafiche di un'onda.
- Diffrazione di onde.
- Interferenza tra onde.
- Polarizzazione di onde trasversali.

• Onde elettromagnetiche (onde e.m.)

- Conclusioni teoriche di Maxwell sulla natura ondulatoria delle onde e.m.:
 - relazione tra vettore campo elettrico, vettore induzione magnetica e velocità di propagazione dell'onda e.m.,
 - dipendenza della velocità dell'onda e.m. dal mezzo nel quale si propaga,

- valore della velocità di propagazione di un'onda e.m. nel vuoto.
- Conferme sperimentali sulla validità dei risultati teorici di Maxwell:
 - misura sperimentale della velocità di un'onda e.m.,
 - natura ondulatoria delle onde elettromagnetiche osservata mediante i fenomeni di diffrazione e di interferenza,
 - natura trasversale delle onde e.m. confermata osservando il fenomeno di polarizzazione.
- Definizione di indice di rifrazione.
- Rappresentazione grafica di un'onda e.m..
- Onde e.m. naturali e onde e.m. polarizzate sia linearmente che circolarmente.
- Trasporto di energia mediante onde e.m.:
 - intensità di un'onda e.m. e relativa unità di misura S.I.,
 - relazione tra l'intensità di un'onda e.m. e i campi elettrico e magnetico.
- Natura elettromagnetica della luce.
- Polarizzazione della luce:
 - polarizzazione mediante riflessione (legge di Brewster),
 - polarizzazione mediante dicroismo,
 - intensità della luce polarizzata linearmente attraverso un analizzatore (legge di Malus).
- Spettro della radiazione elettromagnetica.
- Produzione delle onde e.m.:
 - circuito oscillante,
 - tubo raggi X,
 - sincrotrone.

• Aspetti microscopici dell'interazione onde e.m. e materia (cenni di Fisica quantistica)

- Energia di un fotone.
- Costante di Planck.
- Intensità dell'onda e.m..
- Quantità di moto dei fotoni.
- Onde di materia.
- Processi di assorbimento e di emissione molecolare.

CENNI SU ARGOMENTI PARTICOLARI

Acustica

- Onde sonore.
- Dipendenza della velocità di propagazione del suono dal mezzo.
- Sensazione sonora e legge di Fechner-Weber.
- Intensità del suono e sua dipendenza dalla distanza.

• Ottica geometrica

- Lenti sottili:
 - relazione fondamentale delle lenti sottili,
 - definizione di potere diottrico,
 - costruzione grafica delle immagini.
- Microscopio semplice:
 - ingrandimento lineare.
- Microscopio composto:
 - ingrandimento obiettivo e ingrandimento totale.
- Caratteristiche ottiche dell'occhio umano:
 - potere di accomodamento.

Radioattività

- Proprietà dei nuclei atomici:
 - numero di massa e numero atomico,
 - isotopi radioattivi,
 - stabilità e instabilità dei nuclidi.
- Decadimento radioattivo dei nuclei instabili:
 - particelle emesse durante i processi di decadimento radioattivo,
 - legge del decadimento radioattivo,
 - costante di decadimento e sua proprietà,
 - tempo di dimezzamento,
 - attività di una sorgente radioattiva e unità di misura.
- Datazione con l'isotopo carbonio-14.

LABORATORIO

• Elaborazione dei dati sperimentali

- Errori sistematici e casuali.
- Misura diretta di una grandezza fisica.
- Valore medio e deviazione standard.
- Errore relativo.
- Propagazione degli errori in una grandezza valutata in modo indiretto.
- Adattamento dei dati ad una funzione lineare.
- Metodo dei minimi quadrati per il calcolo delle costanti di una retta.
- Coefficiente di correlazione lineare e suo significato quantitativo.

• Esecuzione pratica di una delle seguenti esperienze finalizzata alla valutazione del valore medio e della deviazione standard di una grandezza fisica misurata in modo indiretto:

- Coefficiente di tensione superficiale con lo stalagmometro e della densità con la bilancia di Mohr-Westphal di una soluzione liquida.
- Coefficiente di tensione superficiale con il dinamometro.
- Viscosità con il viscosimetro e della densità con la bilancia di Mohr-Westphal di una soluzione liquida.
- Concentrazione di molecole otticamente attive in una soluzione liquida con il polarimetro.
- Concentrazione di una soluzione liquida con lo spettrofotometro.
- Densità di un liquido con il picnometro.
- Densità di un solido con il picnometro.

• Esecuzione pratica di una delle seguenti esperienze finalizzata alla valutazione delle costanti di una legge fisica con il metodo dei minimi quadrati e alla determinazione del coefficiente di correlazione lineare:

- Dipendenza della pressione in un liquido dalla profondità.
- Dipendenza dell'altezza di una colonna liquida dal tempo di efflusso
- Dipendenza della pressione di un gas dal volume in regime isotermico.
- Dipendenza della resistenza elettrica di un metallo o di un liquido dalla temperatura.
- Assorbimento lineare di una radiazione elettromagnetica in un solido.
- Attenuazione di una radiazione elettromagnetica con la distanza.
- Assorbimento ottico di una soluzione liquida valutato con il colorimetro fotoelettrico.
- Legge dei punti coniugati di una lente sottile convergente.
- Dispersione rotatoria ottica di una soluzione di molecole otticamente attive con il polarimetro.
- Dipendenza della lunghezza d'onda dalla frequenza di un'onda sonora in un gas.