PV in Europe from PV Technology to Energy Solutions, Conference and Exhibition Palazzo dei Congressi, Rome, Italy, 7-11 October 2002

Analysis of light backscattered from textured silicon surfaces

<u>A. Parretta</u>, E. Bobeico, L. Lancellotti and P. Morvillo ENEA Research Centre, Portici (Na), Italy

A. Wang and J. Zhao

Photovoltaics Special Research Centre, UNSW, Sydney, Australia

INTRODUCTION

TEXTURED SILICON IN PHOTOVOLTAIC DEVICES

SEM photo of the "PERL" cell (UNSW)

ANGLE-RESOLVED REFLECTANCE OF PERL CELL

TEXTURED SILICON IN PHOTOVOLTAIC DEVICES

SEM photo of the "Honeycomb" cell (UNSW)

ANGLE-RESOLVED REFLECTANCE OF HONEYCOMB CELL

LIGHT BACKSCATTERING FROM TEXTURED SILICON SURFACES

Surface roughness promotes light trapping and produces spatially distributed reflected light

LIGHT BACKSCATTERING FROM TEXTURED SILICON SURFACES

Light diffusion

Randomly textured surface

Light diffraction

Regularly textured surface

VISUALIZING GLOBE

The plastic globe is internally sand-blasted in order to scatter, and then visualize, the light backscattered by the sample.

VISUALIZING GLOBE

Backscattering figure produced by a solar cell textured by inverted pyramids (Fraunhofer).

							4	(1) 4										•					
			0															9					
																		(
																		4					
						1.00												4					
			1					j.		*													
	<u>(</u>					12			Sec.	e.	10												
		10	1			17						1. S. S.											
						14	93				53			and a	A.,								
							٠	1	Turk		d.		11						8.				
1						÷	1	1.	472				T_{j}				1			1			
計	in an		1.		2.		٠	aut	20.		1	5				H				DR.			
	6.8					a.	5 4		2 2														
																			•				
																		4					
				1 in																			

PIERCED SCREEN

Inverted pyramids in a square lattice (IP)

Hemispherical wells in a honeycomb lattice (HC)

Porous silicon (PS)

SEMITRANSPARENT GLOBE

Simple apparatus for backscattered light measurements. The photodetector is moved over the globe surface.

SEMITRANSPARENT GLOBE

Porous Si, 40 µm, n-type Diagramma polare Nord 60 dell'intensità 40 90 120 60 Latitude (°) 20 150 30 0 180 scattering at 0° longitude -0- $-\Delta$ cosine function -20 -40 South -80 -60 -40 -20 0 20 40 60 80 West Est Longitude (%

Laser light λ =633 nm; 0° incidence.

TWO-AXIS ROTATION STAGE APPARATUS

The detector is moved in front of the sample, at constant distance, changing angles Θ and ϕ by two goniometers.

PHOTOCAMERA "CARDIFF"

Inverted pyramids texture

Does light backscattered from textured Si surface bring information about light collection process? ...

INVERTED PYRAMIDS (IP)

POROUS SILICON (PS)

SCATTEROMETER "BASALT" (*Backscattered Light Topographer*)

MODELS OF LIGHT BACKSCATTERING

LIGHT BACKSCATTERING MEASUREMENTS

CONCLUSIONS

Methods and apparatus for visualizing, measuring and recording the light backscattered from textured silicon samples have been presented.

 The angular distribution of backscattered light could play a role in the light collection process.

The investigation made on different types of texturisations on c-Si substrates (pyramids, wells, porous silicon) has shown that a sort of linear correlation exists between light collection and distribution and weight of the backscattered light.

Work is in progress to confirm this type of correlation.