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Abstract. In a thermodynamic treatment electromagnetic radiation of any kind is described. 
The difference between thermal and non-thermal radiation is accounted for by introducing 
the chemical potential of photons. Instead of an effective temperature all kinds of radiation 
have the real temperature of the emitting material. As a result Planck’s law for thermal 
radiation is extended to radiation of any kind. The concept of the chemical potential of 
radiation is discussed in detail in conjunction with light-emitting diodes, two-level systems, 
and lasers. It allows the calculation of absorption coefficients. of emission spectra of lumi- 
nescent materials, and of radiative recombination lifetimes of electrons and holes in semi- 
conductors. Theoretical emission spectra are compared with experimental data on  GaAs 
light-emitting diodes and excellent agreement is obtained. 

1. Introduction 

Electromagnetic radiation consists of photons which do not interact with each other. 
Their properties are therefore entirely determined by the interaction with matter, 
emitters and absorbers. The state of the emitter is reflected in the spectrum of the 
emitted photons. This makes spectroscopy such a powerful tool for the investigation of 
materials. On the other side, this dependence on the radiation-emitting material makes 
it difficult to recognise radiation as a thermodynamic phase. The thermodynamic treat- 
ment of radiation by Kirchhoff (1860), Wien (1896), Rayleigh (1900), and Planck (1906) 
culminated in Planck’s famous radiation formula for black-body radiation. 

Radiation emitted by black bodies is called thermal radiation, because both its 
intensity and its spectrum are a function of the emitter’s temperature only. In contrast, 
non-thermal radiation is mostly recognised by its high intensity, which is far too large 
for the temperature of the body which emits it to be thermal radiation. It is also called 
luminescence and is emitted e.g. by glow discharges, luminescent diodes and lasers. For 
luminescent radiation the actual temperature of the emitting body seems to be of little 
importance. In the literature (Landsberg and Evans 1968, Landsberg and Tonge 1980, 
and references therein). non-thermal radiation is treated thermodynamically like 
black-body radiation. Instead of the real temperature, an effective temperature is used 
which is the temperature of black-body radiation having the same intensity in a given 
photon energy range. Effective temperatures therefore do not exist in any part of a 
system emitting non-thermal radiation. In this context the inversion of the occupation 
of two-level systems and the resulting emission as from masers and lasers are often 
described by negative absolute temperatures (Kittel 1958). A detailed account of the 
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thermodynamics of radiation in terms of effective temperatures was recently given by 
Landsberg and Tonge (1980). 

In this paper a thermodynamic treatment both for thermal and non-thermal radiation 
is presented, in which the temperature of the radiation is the actual temperature of the 
emitting system. The difference between thermal and non-thermal radiation is 
accounted for by the chemical potential of the radiation. In contrast to effective tem- 
peratures this quantity is experimentally accessible. 

2. Thermal radiation 

Since the work of Kirchhoff (1860), Wien (1896), and in particular Planck (1906) thermal 
radiation is well accounted for. For the special case of black-body radiation, contained 
in a cavity with absorbing walls of temperature T, Planck has derived a radiation formula. 
The energy density per photon energy interval is 

(fi43 e(hw) = - [exp(hoikg - I]-' d h 3 2  
The radiation emitted through a small hole of the cavity into a hemisphere is black-body 
radiation and its intensity Z(ho) per photon energy interval is 

Iblack( h w) = k ( h  U) c (2) 

where c is the velocity of light. The factor f stems from the integration of cos 8 over a 
hemisphere, since photons travelling at an angle 8 to the normal of the emitting hole 
contribute only with a factor cos 8 to the photon current. This relation is called 
Lambert's law. 

With Kirchhoff's law the validity of this expression may be extended to the emission 
of thermal radiation from non-black bodies. Considering the equilibrium with a black 
body Kirchhoff finds that the intensity Z(ho) of thermal radiation emitted by a body 
with absorptivity a(ho)  < 1 is related to the black-body intensity in (2) by 

](no) = a(hm) Iblack(hW)* (3) 

For later reference we also give the entropy U per photon of energy ho of thermal 
radiation contained in an absorbing cavity (this radiation is always black). According to 
Planck it is 

h W  

T 
U =  - - k[exp(ho/kT) - 11 ln[l - exp(-hw/kT)]. (4) 

Apart from the detailed relations in (1) and (4), thermal radiation is best characterised 
by a vanishing chemical potential p, of its photons, which is thought to be a consequence 
of the non-conservation of photon number N,. According to Gibbs, energy changes d E  
in a system are related to changes of extensive variables. For photons in a cavity it is 

d E =  T d S - p d V + p , d N ,  ( 5 )  

where S is entropy, V volume, T temperature and p pressure. The equilibria of the 
system are characterised by a minimum of the energy E.  For the chemical equilibrium 
at constant S and V this yields p,dN, = 0. Due to the non-conservation of photon 
number it could be dN, # 0, and therefore in equilibrium it must be py = 0. It is common 
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belief that a vanishing chemical potential is a general property of photons and is true 
also for luminescent radiation (Bebb and Williams 1972). The above argument, however, 
is not a strong argument. Since photons do not interact with each other, they cannot 
achieve equilibrium by themselves. As will be discussed later, other particles which 
interact with photons have to be included into the system and into equation ( 5 )  describing 
it. The result will be that a non-zero chemical potential of photons may occur. In any 
case, the chemical potential, as the Gibbs free energy per particle, has to be smaller 
than the smallest energy per particle in the system, otherwise the entropy could become 
negative. 

3. Non-thermal radiation 

The emission of radiation reflects the properties of the emitting material. Luminescent 
radiation may be calculated in a microscopic way quantum-mechanically, if the state in 
which the emitter is is known in detail. There are many cases, however, like the 
luminescent diode, where the existence of internal equilibria permits a more general, 
less microscopic treatment, and we will concentrate on these cases in the following. 

Thermal radiation can be emitted by any material. Its spectrum may contain photons 
with any energy hw > 0. In contrast, the spectrum of non-thermal radiation is charac- 
terised by some threshold photon energy hm, with photons of smaller energy missing. 

in the distribution of 
states as a function of energy which is characteristic for luminescent materials, like 
semiconductors, insulators and isolated molecules. Since the photons of luminescent 
radiation have energies hw 2 hwo = Aeg the argument that their chemical potential pu 
must be smaller than fi% does not exclude py > 0 in luminescence. 

is the 
gap between valence and conduction bands as shown in figure 1. Whether a semicon- 
ductor at a given temperature emits thermal radiation or luminescent radiation is 
determined by the concentrations of electrons in the conduction band and of holes in 
the valence band, which depend not only on the temperature but also on their chemical 
potentials. 

The threshold photon energy h~ is a consequence of a gap 

As a typical luminescent material we consider a semiconductor, for which 

4. Electronic transitions in semiconductors 

We consider the equilibrium between photons and electrons in a cavity with perfectly 
reflecting walls filled with homogeneous semiconducting material. The concentration 
no(&) of occupied states with energy &per energy interval in the conduction band follows 
from Fermi statistics 

no(&) = D(E)  f(&) = D(E)  {exp[(& - qc)/kT] + I}-'. (6) 

The concentration nu of unoccupied states per energy in the valence band is likewise 

nu(&) = D(E) [1 -f(&)] = D(E) (1 - {exp[(&- q,) /kT] + I}-'} (7) 

D(E)  is the density of states, and qc and qv are the electron chemical potentials governing 
the occupation of states with electrons in the conduction band and in the valence band 
respectively, as shown in figure 1. qc and q, are also known in semiconductor physics as 
quasi-Fermi energies. The electrochemical potential q is related to the chemical potential 
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Figure 1. Energy diagram for electrons in a semiconductor. Electrons in the conduction band 
(4 3 G) have electrochemical potential (quasi-Fermi energy) qc = cc, - ep. Electrons in the 
valence band ( E ~  s E,) have qv = y - ep. fi and p, are the respective chemical potentials. 

,U and the electrical potential cp by q = ,U + qcp, where q is the charge of the particle of 
interest. As will be seen we are interested only in local processes involving both occupied 
and unoccupied states. Thus only the difference q, - qv = & - 

In assigning a single chemical potential and a single temperature T to all the 
occupied states in the conduction band, we take advantage of two equilibria: 

(i) the chemical equilibrium with regard to the exchange of electrons between states 
of different energy in the conduction band, which establishes a uniform chemical poten- 
tial 

(ii) the thermal equilibrium regarding the exchange of entropy between the electrons 
and the lattice which establishes a uniform temperature T equal to the lattice tempera- 
ture. The same equilibria exist separately for the states in the valence band. 

Transitions between occupied states in the conduction band and unoccupied states 
in the valence band are comparatively rare and chemical equilibrium with regard to the 
exchange of electrons between states of the conduction band and of the valence band 
does not always exist. it is therefore not necessarily H = b. 

Occupied states in the conduction band and unoccupied states in the valence band 
are generated in pairs by transitions from the valence band to the conduction band. They 
disappear in pairs through recombinative transitions. For the moment we assume that 
these transitions are entirely radiative. This means that generating transitions are 
accompanied by the absorption of photons with ho 2 A E ~  and recombinative transitions 
by the emission of such photons. In the cavity the equilibrium with the photons is 
characterised by the balance between absorption and emission processes, 

The absorption rate per volume and per photon energy interval ra(ho) is proportional 
to the density of photons ndhw) and to the density of all pairs of occupied valence band 
states and unoccupied conduction band states, which differ in energy by ho (Stern 1963) 

is important. 

for the conduction band; and 

ra(ho)  = ndhw) M(E, hw) ndE) nu(& + ho)  dc (8) LX 
M contains the matrix element which may depend on E and fLw. 

In a stimulated emission process a photon triggers the transition from the conduction 
band to the valence band. The stimulated emission rate per volume and per energy 
(=rate of stimulated recombination) is 

r,,(hw) = n d h o )  M ( E ,  hw) nu(&) ndE + hw) dE. (9) 
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The rate of spontaneous emission processes per volume and per energy rsp(hw) is 
proportional to the density of the same semiconductor states that give rise to stimulated 
emission and it is proportional to the density of states per energy for photons D,(hw) 

r,,(hw) = D ~ h w ) I x M ( ~ , h w ) n u ( ~ ) n , ( ~ + h w )  0 dE. (10) 

The density of states for photons in a cavity with refractive index K is 

From the balance 

r,,(hw) + r,,(hw) - ra(hw) = 0 

the density of photons n,(hw) is 

I?(hW)* 
n,(hw) = - 

IZh3c3 

(13) 
J$ M (  E ,  hw) nu( E )  no( E + hw) de 

J; M ( E ,  hw) nu(&) no(& + hw) [ng(E) nu(& + hw)/n.(E) ndE + hw) - 11 & '  
X 

With the distribution functions for no and nu in equations (6) and (7) the expression in 
square brackets in the denominator of (13) is 

Since this expression does not depend on the variable E equation (13) is simplified 
considerably 

This relation was derived under the condition of equilibrium between the excitations of 
a semiconductor characterised by their chemical potential ,uc - b and the photons. In 
this equilibrium the chemical potential of photons is therefore 

P y  = pc - pvs 

This yields the radiation formula 

Equation (16) gives the density of photons in equilibrium with an electronic system in 
which each of the two sets of states involved in optical transitions is described by a single 
chemical potential (pc and b). It is of general validity, since all details of the states, like 
their density or transition probabilities, drop out in its derivation. The general radiation 
formula (16) describes all kinds of radiation, thermal and non-thermal. It contains 
Planck's formula for thermal black-body radiation as a special case, in which the two 
sets of states have the same chemical potential and pr = p, - b = 0. 
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5. Generalisation of Kirchhoff's law for non-thermal radiation 

By regarding the equilibrium between a black and a non-black body of equal tempera- 
ture, Kirchhoff (1860) related the photon emission of the non-black body to its absorp- 
tivity. This relation has been extended to the non-equilibrium case, where a non-black 
body emits thermal radiation into an environment of different temperature by Weinstein 
(1960), Bauer (1969), and Baltes (1976). Here we will show that Kirchhoff's relation 
can even be extended to the case where a non-black body emits non-thermal radiation 
into an environment of different temperature and different chemical potential pu of its 
photons. 

We consider a slab of material in vacuum with no photons incident from the outside 
as shown in figure 2. 

j ,  Id ' 

.x 
0 d 

Figure 2. In a material with no incident photons the photon current j,increases inx-direction 
and is partly reflected before emission. 

The continuity equation in steady state for the photon current ju, flowing through the 
slab towards the right surface in the x-direction is 

divj, = f r s p  - ( I ,  - rst). (17) 

According to Lambert's law only 4 of all photons generated spontaneously and homo- 
geneously contribute to the current in the x-direction, whereas the net absorption rate, 
the difference between the actual absorption rate I ,  and the stimulated emission rate rst, 
is proportional to all photons N ,  in the photon current j, = N+/K.  The net absorption 
rate can also be expressed by the absorption coefficient a(hw) as 

r ,  - rst = cr(hw) ju = c r ( h ~ ) N , c / ~  

div j, = aysp - cxjy 

(18) 

(19) 

which yields 

With no photons incident from the left the spatial dependence of the photon current in 
the x-direction is 

jdx) = jJW) (1 - e-m)  (20) 

jJ") = r s p l ( 4 4  (21) 

where 

is the photon current at x = CQ of an infinitely thick slab, where div j ,  = 0. 
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In a slab of finite thickness d ,  the part R’jdd) of the photon current incident from a 
hemisphere onto the right surface from the inside is reflected back into the slab. The 
part (1 - R’)jdd)  is transmitted through the surface. The transmission (1 - R ‘ )  of the 
surface for radiation incident from the inside of a medium with refractive index K is an 
unusual quantity. It is related to the more familiar transmission (1 - R )  of the surface 
for radiation incident from the outside, where K = 1, by (Drude 1959, Stern 1963) 

(1 - R’) = (lid) (1 - R) .  (22) 
With this relation and allowing for multiple reflection between the two surfaces of the 
slab, a distance d apart, the photon current emitted through the right surface is 

jdd)  = a(hw) rsd(4ad).  (23) 

(24) 

a(hw) is the absorptivity of the slab and is 

a(hw) = [ l  - R(hw)] [l - exp(-ct(fiw)d)] [ l  - R(hw) exp(-a(hw)d)]-’. 

The absorption coefficient LY as a material property is related to the transition probabil- 
ities and the occupation of the electronic states of the material. By comparison of (18) 
with (8) and (9) using (6) and (7) this relation is (Stern 1963) 

c t ( h w ) = ( I d c ) ~ ~ M ( ~ , h w ) D ( ~ ) D ( ~ + f i ~ ) [ f ( ~ )  - f ( ~ + h w ) ]  dE. (25) 

With (25) also the spontaneous emission rate rsp in (10) can be expressed in terms of the 
absorption coefficient a by (Bebb and Williams 1972) 

With (26) the generalised Kirchhoff law is obtained for thermal and non-thermal photon 
currents emitted by a non-black emitter 

This relation could be interpreted as describing a photon current in equilibrium with the 
excitations of the emitter, i.e. with py = K - b, but modified for an absorptivity 
a(fiw) < 1. A more detailed interpretation of this generalised Kirchhoff law has to 
distinguish between two cases. 

(i) If the penetration depth of the photons l i a i s  much smaller than the thickness of 
the material opposite to the direction of photon emission, then divj, = 0 at the emitting 
surface and absorption and emission rates are balanced. Since this is the condition for 
equilibrium between the excitations of the emitter and the photons, the chemical poten- 
tial of the emitted photons is p, = - b, identical to the equilibrium in the cavity. In 
general, chemical equilibrium with p, = K - exists for a given photon momentum 
fik, if opposite to k ,  i.e. to the direction of emission, the transmissivity of the emitter is 
zero and a(hw) = 1 - R(hw). It is irrelevant for this equilibrium whether the emitted 
photon current is balanced by an incident photon current or not, since the incident 
photons with their opposite momentum are not involved in the equilibrium of the 
emitted photons. 

(ii) If the penetration depth of the photons is not much smaller than the thickness of 
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the emitter in a direction opposite to the emission current, and there are no photons 
incident from the outside, then divj, > 0 at the emitting surface. Although this is a 
non-equilibrium situation, the photon emission current is still given by (27). The non- 
equilibrium is taken care of by the value of the absorptivity a(hw) rather than by the 
proper value of the chemical potential of the emitted photons which in this case is 
p, < - b, since div j ,  > 0. In general, in this non-equilibrium case, photons with 
different energies have different chemical potentials. We note that this problem exists 
for ‘thermal’ emitters with pc - b = 0, too. If their transmissivity is non-zero, then the 
emitted radiation has p, < 0 and is ‘non-thermal’ according to the definition that radia- 
tion with py # 0 is non-thermal radiation. 

The thermodynamic treatment of radiation as presented in this paper relies on the 
chemical and thermal equilibrium among the electrons in the conduction band and 
among the electrons in the valence band. If these equilibria exist, the emission of 
luminescent radiation is an equilibrium problem as much as the emission of thermal 
radiation. If these equilibria do not exist, which may occur if the lifetime of the excitations 
of an emitter is very short, a thermodynamic treatment is inappropriate (Fowler and 
Dexter 1962). 

6. Chemical reactions of electrons and holes with photons and phonons 

Unoccupied states in the valence band make up the free hole gas and occupied states in 
the conduction band constitute the free electron gas. On the energy scale of figure 1, 
where electron energies increase ‘upwards’, hole energies increase ‘downwards’. If the 
energy of an electron in a given state is E,, the energy of a hole in this state would be 

&h = -&e (28) 

counted from the same (arbitrary) zero line. This applies also to the chemical potential 
of holes ph which is related to that of the electrons in states in the valence band ,& by 

p h  = -pv. (29) 

This notation has been introduced by Tauc (1962). With the chemical potential for free 
electrons equal to the chemical potential for the conduction band p c ,  the difference 
of quasi-Fermi levels is equal to the chemical potential p e h  of electron-hole pairs 

pc - pv = p e  + ph = peh. (30) 

In figure 3 four different kinds of processes are shown in which electrons and holes 
participate. With process 1, the thermalisation of electrons in the conduction band and 
of holes in the valence band is achieved by reactions with a phonon r 

e * e ’ + r  

h h’ + r. 
In process 2 the same thermalisation of electrons in the conduction band and of 

holes in the valence band is accomplished by intraband transitions in reactions with 
photons y 

e $ e ‘ + y  (32) 
h e h ’  + y. 
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Process 3, the radiative generation or recombination of electron-hde pairs via 
interband transitions is a reaction with photons ywhich are either absorbed or emitted. 
The spontaneous reaction is 

e + h e y  

and the stimulated reaction is 

e + h + y $ 2 y .  

Process 4, the non-radiative generation or recombination of electron-hole pairs, is 

Figure 3. Reactions of electron-hole pairs with photons (full curves) and phonons (broken 
curves) are classified as non-radiative (1) and radiative (2) thermalisation and radiative (3) 
and non-radiative (4) generation and recombination. 

a reaction with many phonons vT, since the phonon energy is usually much smaller than 
the energy of an electron-hole pair. 

e + h*  vT. (34) 
Each of the above reactions has its own equilibrium, in which at constant entropy S 

and volume V the energy E has a minimum as a function of the exchange of particles 
participating in the reaction. 

For process 3, the generation or recombination reaction of electron-hole pairs with 
photons, it is therefore according to (5) 

dE=CledN,+~hdNh+CILydNLy=O. (35) 
From the reaction equations (33a, b) follows the relation between the particle numbers 
for spontaneous and stimulated reactions 

dN, = dNh = -dN, (36) 
which express the conservation of the number of electron-hole pairs and photons. With 
(35) and (36) the equilibrium condition for the reaction of electron-hole pairs with 
photons is 

Pe + p h  = yp 

This relation is the justification for introducing the chemical potential of photons y,into 
the radiation formula (16). 

(37) 
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Equilibrium of process 1 in the thermalisation reactions with phonons (31) exists in 
analogy to (37) if 

Since the energy per phonon is very small, it is always Pr = 0. 
The same can be argued about the thermalisation reaction with photons in process 

2. These small-energy photons react directly with phonons and have the same chemical 
potential as the phonons. They belong to thermal black-body radiation which is always 
present. Since photons do not react with each other, the small-energy photons are not 
necessarily in equilibrium with the high-energy photons participating in interband tran- 
sitions in process 3. In summary, thermalisation reactions do not alter the chemical 
potential of electrons or holes. 

Parallel to radiative generation and recombination reactions with photons in process 
3 occur non-radiative reactions with phonons in process 4. Their equilibrium condition 
is 

/ie + Ph = v/ir z 0. (39) 

One reason for pLv = 0 in thermal black-body radiation was that there is no conservation 
of the number of photons. This is not a very strong argument, since the photon number 
is not the only extensive variable of the photon system. Others are momentum and spin. 
Their conservation requires reaction partners to carry them off. The photon number is 
therefore always restricted by reaction equations like (33) and (36) and from this 
argument pVcould have any value. In non-radiative transitions the final reaction partners 
are phonons and it is the coupling to this system and the equilibrium with it which result 
in ,uLv = Pr = 0 for thermal radiation. Consequently if this coupling is weak it is possible 
that pLv # 0. 

Phonon and photon generation and recombination reactions occur always in parallel 
and compete with each other. Whereas the phonon equilibrium requires pe + Ph = 0, 
the photon equilibrium can exist at any value p, + Ph S Acg, the band gap of the 
semiconductor and the smallest photon energy, with which the electron-hole system 
can interact. A chemical potential pv # 0 of the emitted photons therefore coincides 
with a deviation from equilibrium of the phonon reaction. How large this deviation is is 
determined by the resistance of the phonon and the photon reactions to generation or 
recombination currents imposed externally on the electron-hole-phonon-photon sys- 
tem. The processes with the smaller resistance dominate and determine the chemical 
potential of the electron-hole system. In small band-gap materials and in materials with 
many impurity levels the resistance of the phonon reaction is small. On the other hand, 
the resistance of the interband phonon reaction is large in large band-gap materials with 
little impurities which may therefore be good luminescent materials. 

7. Light-emitting diodes 

Figure 4 shows the energy diagram of a p-n junction biased in the forward direction. 
Holes and electrons are injected into the junction with the electrical current and recom- 
bine in phonon and in photon reactions. The radiative recombination processes lead to 
the emission of luminescent radiation. Since the electrical current feeds both the non- 
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Figure 4. Energy diagram of ideal light-emitting diode. The chemical potential of 
electron-hole pairs ,& + ,&h = evapp, is constant over light-emitting region. 

radiative and the radiative reactions, there is no clear relation between electrical current 
and photon current emitted. However, as was discussed before, there is a clear relation 
between photon current and chemical potential of the electron-hole pairs, as expressed 
by the generalised Kirchhoff law in (27). The light-emitting diode is ideal to check this 
relation, because in a good p n  junction, where the voltage drop outside the junction 
can be neglected, the chemical potential peh  of electron-hole pairs is given by the applied 
voltage Vas indicated in figure 4. 

eV = pe + ph = p y  (40) 

From (27) the emission intensity from a light-emitting diode with applied voltage Vthen 
is 

This expression contains two parameters which effect the emission spectrum differently. 
Whereas py affects mainly the intensity, the temperature T of the electron-hole gas 
affects the intensity and determines the shape of the spectrum. Equation (41) does not 
contain a free parameter. The temperature Tis that of the electron-hole gas, which is 
equal to the lattice temperature, and the chemical potential p y  is equal to that of the 
electron-hole pairs, which is determined by the voltage across the p-n junction. The 
prediction of equation (41) may therefore be checked experimentally provided a diode 
can be fabricated in which the junction extends right to the emitting surface with a 
constant value of the carrier concentration or of their chemical potential. If the recom- 
bination rate at the surface were larger than in the interior, part of the radiation which 
is emitted close to the surface would have a chemical potential much smaller than the 
applied voltage, resulting in a complicated spectrum of the emitted radiation. This 
complication is often said to arise from self-absorption or re-absorption (Bebb and 
Williams 1972). It is, however, not absorptivity by itself which is harmful, it is the 
absorption in a region with a different chemical potential of electron-hole pairs, which 
deteriorates the emission spectrum. 

> 1 eV and which are far from 
lasing the Kirchhoff relation (41) can be approximated by 

For light-emitting diodes which have a band gap 

a(hw) (f iw)? 
Z(hw) = exp(eV/kir) - 4n'h3c2 exp(hwik9 '  
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This approximation holds as long as exp[ (A% - p&)/kT] S 1, i.e. as long as the electrons 
and holes are ideal gases. If this condition is met, (42) means that the spectrum of 
luminescent radiation is identical to the spectrum of thermal radiation, when emitted by 
the same system. The intensity of luminescent radiation, however, is larger by a factor 

Almost ideal diodes have been prepared by Sarace et a1 (1965). Their observed 
luminescent intensity spectrum Z(ho) is reproduced as the full curve in figure 5. In their 
paper Sarace et a1 (1965) fitted it to the thermal emission rate per volume (py  = 0) 
characterised by the absorption coefficient a(ho). This inappropriate comparison of an 
observed emitted photon current with the theoretical photon generation rate per volume 
is common practice (Lasher and Stern 1964, Pankove 1971). Differences which then 
must occur between experiment and theory are explained by ‘self-absorption’. Attempts 
are made to correct the observed emission for self-absorption to obtain the ‘true’ 
emission spectrum. From the preceeding paragraphs it is clear that according to the 
generalised Kirchhoff relation the experimental spectrum must correctly be compared 
with the generation rate per surface area in (51) characterised by the absorptivity a(ho) .  
‘Self-absorption’ serves to establish the equilibrium between photons and electron-hole 
pairs. 

eXP(kh/kT) = exp(pJkT). 

1.35 I r ,  1 6 5  1 5  
no l e v )  

Figure 5. Spectrum of luminescence intensity Z(ho) of GaAs light-emitting diode. Experi- 
mental curve (full curve) is according to Sarace eta1 (1965). Theoretical curve (broken curve) 
is calculated from equation (42) with the absorptivity a(hw) of the light-emitting region as 
shown in the upper part of the figure. 
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Using the absorption data for GaAs by Sturge (1962) corrected for the proper doping 
concentration according to Casey er aZ(l975) we have determined the absorptivity a(hw) 
from (24) and with it the theoretical emission spectrum from (42) which are both shown 
in figure 5. For a good fit to the experimental curve a depth of the emitting region of 
3 pm had to be implied. This depth is the minority carrier diffusion length and a fit of 
experimental spectra could well serve to determine i t .  The agreement between theory 
and experiment in figure 5 is very good. A quantitative check of equations (41) or (42), 
however, is not possible, since Sarace er a1 (1965) have not measured the luminescence 
intensity absolutely and they only give the current, but do not specify the appliedvoltage. 

The relation between emission intensity I and applied voltage Vas predicted by the 
emission formulae (41) or (42) may be inferred from the data of Dousmanis eta1 (1964). 
They give the electrical current iel = 5 mA and applied voltage V = 1.335 V. At 
T = 78 K the emission peak occurs at hw, = 1.38 eV with a half-width of w = 0.045 eV. 
The voltage drop due to series resistance is 0.003 V. The chemical potential of the 
electron-hole pairs in the junction is expected to be p e h  = 1.332 eV. With the same 
assumptions of quantum efficiency q = 0.01 and emitting area A = cm2 which 
Landsberg and Evans (1963) made in analysing Dousmanis data in terms of effective 
temperatures, the spectral intensity Z(ho,) at the emission peak is estimated to be 

i e h o p q  - I(fiwp) = - - 15.4 W eV-'cm-*. 
e A  w 

The chemical potential p7 is found from (42) 

with a typical value for the absorptivity of a(hw,) = 0.5. With the assumptions about 
quantum yield and emitting area the chemical potential pu of the emitted photons and 
the applied voltage V agree very well. 

Our analysis of luminescent radiation states that its chemical potential pv is smaller 
than the photon energy and smaller than or in good junctions at most equal to the applied 
voltage. In most experiments the applied voltage is larger than the observed photon 
energies. Their analysis would therefore automatically give the chemical potential of 
the photons smaller than the applied voltage. In the experiment by Dousmanis er a1 
(1964) the photon energy is larger than the electrical energy per electron-hole pair 
supplied by an external source. Energy conservation requires that heat is removed from 
the diode with the emitted photon current. This Peltier effect of luminescent radiation 
is the most interesting aspect of the observations by Dousmanis et a1 (1964). 

With the above relations the chemical potential of the emitted photons can be 
determined experimentally. For a good luminescent diode it is simply given by the 
voltage across the p n  junction. This makes the chemical potential a much more mean- 
ingful quantity than effective radiation temperatures used previously in the thermodyn- 
amics of luminescent radiation (Landsberg and Evans 1966,1968, Landsberg and Tonge 
1980). 

Our analysis of the radiation from light-emitting diodes shows that for a given 
material the intensity is only a function of the applied voltage. If there were only radiative 
recombination processes, then for a given voltage the electrical current would also be 
fixed. That this is not found experimentally reflects that non-radiative recombination 
processes are also present and mostly predominant. It is fortunate for our analysis that 
non-radiative processes occur parallel to radiative processes. Therefore only the elec- 
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trical current is affected by this additional channel, but the relationship between lumi- 
nescence intensity and voltage still holds. 

8. Entropy of radiation 

The entropy of isotropic radiation with chemical potential py f 0 contained in a reflecting 
cavity is found from Gibbs’s fundamental relation 

dE(S, V, N,) = T dS - p dV + p, W, ( 5 )  
The entropy S, the volume V and the particle number N, are the independent variables. 
Since the particles of radiation do not react with each other, they are determined by the 
way they are produced. Except at very high densities the recombination of electron- 
hole pairs produces single photons and we therefore take them as the particles of 
radiation. From ( 5 )  we have 

dS(E, V, N,) = (l/T)(dE + p  dV - pvdNy).  (43) 

In the following we restrict ourselves to an interval de in the spectrum of photon 
energies (by using a proper filter when filling the reflecting cavity). All photons then 
have the energy E and 

dE = EdN, (44) 

dS(V, Ny) = ( ~ / T ) [ ( E  - P,) my + p dV]. (45) 

This removes one variable from (43) and we have 

For processes with V = VO = const as imposed by the cavity it is 

From our radiation formula (16) 

and equation (46) can be integrated and yields 

The entropy S does not depend on the volume explicitly, and we finally have for the 
entropy per photon in a cavity U = SIN 

0 = E-’ T - k [  exp(%) - 11 In[ 1 - exp( - 911 
This entropy per photon is for E - S kT ,  

U=- E - P , +  kz- E -  P, 
T T 

which is the relation for an ideal gas. 

(49) 
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In the other limit E - p, 6 kT,  

the photons do not form an ideal gas and the entropy per photon tends to zero. That this 
has some connection to laser radiation will be discussed later. Here we note that for 
thermal radiation with p, = 0 Planck’s expression (4) is obtained from (49). 

The entropy is an important quantity for the determination of the ‘thermodynamic’ 
temperature as used by Landsberg and Tonge (1980) and references therein. By not 
considering p, dN, as a separate form of energy of a photon gas in Gibbs’s equation ( 5 )  
the ‘thermodynamic’ temperature is defined as l / T  = ( 8 S i 8 E ) ~ .  This definition treats 
luminescent radiation as if it were black-body radiation. Having shown that the chemical 
potential py is a non-vanishing variable of photons in luminescent radiation, the tem- 
perature must be defined as 1/T = ( ~ S / C ~ E ) ~ , ~ ,  which keeps the otherwise undetermined 
variable N constant. 

It must be emphasised that the above expression for the entropy (49) is valid for 
radiation contained in a cavity. It may not be valid for a current of radiation as is seen 
from the following arguments. For pLv = 0 the integration of the entropy per photon U 

over all photons in the cavity leads to the well known relation (Planck 1906) 

Entropy currents are commonly written in analogy to energy currents, which are 
jE(hw) = hwjdho), asjs(hw) = 9(,(hw) (Landsberg and Evans 1966,1968, Press 1976, 
Henry 1980, deVos and Pauwels 1981). An integration over all photon energies then 
yields for the total black-body thermal entropy current a relation in analogy to (50) 

If this relation were valid, it would have the consequence that heat radiation could only 
be converted into electricity with an efficiency smaller than the Carnot efficiency (Press 
1976). This is remarkable since the conversion of heat into electricity then depends on 
the way in which the heat is transported from the source to the receiver, since the Carnot 
efficiency is obtained for heat conduction. Henry (1980) argues that this is due to 
irreversibilities in emission and absorption processes. If that were true, a body could not 
be heated by radiation up to the temperature of the radiation source, which is possible, 
however, if both are in a cavity, as was shown by Kirchhoff (1860). 

Moreover? if the relation (50) were valid for radiation currents, a violation of the 
second principle of thermodynamics can be devised in a process where the heat engine 
receives heat via conduction and gives off heat via radiation. With an energy current 
j E 1  this heat engine would take up an entropy current j s  = jE,/T. In an isentropic process 
the engine emits this same entropy current j s  via radiation which is therefore 
accompanied by an energy current j E 2  =PTjs. Although the engine operates between 
identical temperatures Ti t  would nevertheless produce work at a rate j E ,  - jE2 =$Tis 
i.e. with an efficiency of 2.5%. This is a violation of the second principle? and we can 
conclude that a proper expression for entropy currents associated with radiation does 
not yet exist. The discrepancy between entropy in a cavity and entropy currents is most 
pronounced for small photon energies and vanishes for photons with E - p, %= kT.  
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9. Laser radiation 

A laser amplifies radiation and a necessary condition is that the rate of stimulated 
emission is larger than the rate of absorption. From (18) we see that this implies a 
negative absorption coefficient, Nhw)  < 0. Under which condition this occurs is most 
easily seen for a two-level system with energies per electron and E,, which differ by 
hw. The absorption coefficient in (25) is for the two-level system 

4 f i w ,  Peh) = (K/c)MN(&v)N(&c)Cf(&v) - f (&c) )  (52) 

There are always as many electrons with energy 
For this intrinsic system using (6) we obtain 

as there are holes with energy (-E~).  

where p& is the chemical potential of the electron-hole pairs. The absorption coefficient 
Nhw,  p&) of the two-level system is shown in figure 6. It is negative if Ah > hw. In this 
state which is usually called inversion, the two-level system amplifies radiation, incident 
or spontaneously emitted. In a reflecting cavity the energy density of radiation would 
increase beyond all limits. Therefore, there cannot be equilibrium between the photons 
and the electron-hole pairs, if their chemical potential is ,&h > ho. Equilibrium can exist 
only for a(zio, p&) > 0 with Ah = py < ziw. p,, = hw represents the limiting case, in 
which the entropy per photon is zero, and the density of photons is infinite. 

As long as Peh < !io the intensity of the emitted radiation depends only on the state 
in which the emitter is, i.e. on the temperature and chemical potential of its electron- 
hole system, provided the emitter is thicker than lla. If, however, p& > hwthe intensity 
of the emitted radiation not only depends on the state of the emitter, but also on the 
photon density inside the emitter, which triggers stimulated emission processes. 

If we consider the slab in figure 2 to contain the two-level system in a state with 
Ah > hw, with no photons incident from the left, the photon current emitted to the right 
is from (27) and (24) for R = 0 

Figure 6. Absorption coefficient (Y of a two-level system with energies 
function of the chemical potential p& of electron-hole pairs. 

- E, = hw as a 
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The photon current increases exponentially with the thickness d of the slab because the 
absorption coefficient is a((hw, &h) < 0. The above expression for the emitted photon 
current describes what is called superfluorescence. 

The previous discussion was limited to a two-level system, because for this system 
there is a simple analytical expression for the influence of the chemical potential of 
electron-hole pairs on the absorption coefficient. The results are, however, valid in 
general. To show this, we eliminate the matrix elements from the emission and absorp- 
tion rates in (8), (9), (10) by the absorption coefficient (25). The rate of spontaneous 
emission per photon energy interval in a semiconductor with a chemical potential p& of 
its electron-hole system is then given by (26). 

For a two-level system with a((hw, &h) given by (53) and shown in figure 6 this 
spontaneous emission rate rsp is shown as a function of peh in figure 7 .  

The rate of stimulated emission per photon energy interval depends also on the 
density of photons characterised by their chemical potential puy and is 

The absorption rate finally is 

ra = rsp(hw) exp ( hWkipEhj [ exp(-) - I]-'. 

We again see that in equilibrium of the electron-hole paidphoton reaction, where 

= O  (57) 
the chemical potentials of photons and electron-hole pairs are equal (pu = p&). 

For a laser two conditions must be met: 

(i) It must amplify radiation, i.e. 

> 1  

-15 -10 - 5  0 5 10 1 5  
ifiw-y,) IkT 

Figure 7. Spontaneous emission rate rsp of a two-level system with an absorption coefficient 
a as shown in figure 6. rsp rises with increasing chemical potential p& of electron-hole pairs 
and saturates at four times the rate at the lasing threshold (peh  = hw) ,  where achanges its 
sign. 
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which requires peh > hw. By comparing (58) with (18) we recognise that this condition 
implies in any system 

alhw, p e h )  < 0 simultaneous with peh  > hw. 

The above condition ensures superfluorescence. For a laser, which is to emit coherent 
radiation, the rate of stimulated emission at hw must exceed the rate of spontaneous 
emission. This gives the second condition 

(ii) (59) 

which requires pu > hw - kT In 2. 

The large photon density necessary to fulfil this condition is achieved by inserting 
the laser material into a resonator, an almost perfect reflecting cavity for photons 
belonging to the mode, which is consistent with the standing wave between the mirrors. 
The mirrors accomplish a feedback by reflecting the emitted photons back into the laser 
material and thus achieve a selective amplification in the mode for which the quality of 
the resonator is highest. Due to this selective feedback photons in different modes are 
not in equilibrium with each other and have different chemical potentials. In the mode 
which is amplified selectively, the emitted radiation is well approximated by a plane 
wave, which is known to carry no entropy. In this mode, pyis very close to hw. Although 
it appears that the expression for the entropy per photon in a cavity (58) is not valid for 
photon currents, its tendency towards zero for pV+ hw is as expected for the emission 
of laser radiation. 

10. Conclusion 

By introducing the chemical potential ,uLu of photons the thermodynamic treatment 
developed by Planck (1906) for thermal radiation is extended to radiation of any kind. 
As a result equation (16) gives the photon density per photon energy interval in equilib- 
rium with a luminescing material and equation (27)  gives the photon current density per 
photon energy interval emitted by a luminescing material. For the derivation of the 
thermodynamic relations a semiconductor was used as a model substance. A gap in the 
distribution of states in energy is recognised as a necessity for non-thermal radiation to 
occur. The results for the semiconductor model with its gap between conduction and 
valence bands may therefore easily be transferred to other systems with energy gaps as 
for example atoms and molecules in gas discharges and deep levels in metals involved 
in x-ray emission. The concept of a chemical potential pV as the only thermodynamic 
quantity of relevance besides the real temperature makes use of internal thermal and 
chemical equilibria within subsystems like the electrons and the holes of a semiconduc- 
tor. In systems where more than one electron subsystem and more than one hole 
subsystem are involved in emission processes more than one chemical potential might 
be necessary for the description of the emission spectrum, if there is insufficient entropy 
and particle exchange between the electron subsystems or the hole subsystems. 

The theory presented is most powerful in describing the interaction of radiation with 
semiconductors. In this paper we have applied the formalism to the conversion of 
electrical energy, as the free energy of electron-hole pairs, into light emitted by lumi- 
nescent diodes. The reverse process, the conversion of light into free energy of 
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electron-hole pairs and subsequently into electricity by solar cells has already been 
discussed (Ruppel and Wurfell980). 
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