A. PARRETTA

CORSO DI OTTICA APPLICATA

A.A. 2011-2012

RIFLETTOMETRO PROM

MULTI-SOURCE PULSED REFLECTOMETER FOR

FAST OPTICAL MAPPING OF A PV MODULE

Antonio Parretta

ENEA Centro Ricerche "E. Clementel, Bologna, Italy & Università di Ferrara, Dip.to di Fisica, Ferrara, Italy

PURPOSE:

To study the optical properties of PV modules by measuring the optical losses by reflection

To evaluate the energetic loss (one of five) associated to these optical losses

To set up program codes which simulate the real operating conditions of PV modules (outdoors)

A. Parretta, A. Sarno and L. Vicari, Optics Communications, 153 (1998) 153-163.

"ENERGETIC LOSS" MECHANISMS

M. Armani, A. Parretta, A. Antonini, M. Butturi, M. Stefancich, this Conference (4AV.3.10).

"ROSE" REFLECTOMETER (<u>R</u>eflectometer for <u>O</u>ptical Measurements in <u>S</u>olar <u>E</u>nergy)

A. Parretta, A. Sarno and H. Yakubu, Optics Communications, 161 (1999) 297-309.

"ROSE" REFLECTOMETER

ROSE reflectometer applied to measurement of *R* vs. θ of *c*-Si modules.

A. Parretta, Italian Patent., Application N. RM 97 A 000676, 5 November 1997.

OPTICAL REFLECTANCE

OPTICAL REFLECTANCE AND TRANSMITTANCE

OPTICAL LOSSES

SIMULATED RELATIVE TRANSMITTANCE

EQUIVALENT REFRACTIVE INDEX

Category	Front structure	n _{eq}
А	Flat-glass; text-Si	3.0
В	Flat-glass; ARC; text-Si	2.5
С	Flat-glass; ARC; flat-Si	2.5
D	Text-glass; text-Si	3.0
E	Text-glass; ARC; flat-Si	3.0
F	Text-glass; ARC; text-Si	3.0

PROM APPARATUS
(Pulsed Reflectometer for Optical Mapping)

What is it for?

<u>Total and diffuse</u> reflectance measurements on <u>large-area</u> samples

Fast optical mapping of photovoltaic modules

Optical and electrical maps on integrated modules

A. Parretta, Modello di utilità It. N. BO 2006 U 000051, 31 maggio 2006.

General scheme

OPTICAL MEASUREMENTS

SPECIAL EUROSOLARE MODULES

A. Parretta, A. Sarno, A. Maccari, S. Pietruccioli, F. Ferrazza, It. Pat., Appl. N. RM 2000 A 000634, 1 Dec. 2000.

Single-Si blue grid-cells

Multi-Si violet grid-cells

Single-Si blue gridless-cells

Single-Si blue gridless-cells

Multi-Si azure gridless-cells

 $\theta_{\rm inc} = 50^{\circ}$ $\theta_{\rm inc} = 60^{\circ}$ $\theta_{\rm inc} = 70^{\circ}$

Multi-Si azure gridless-cells

OPTICAL DEGRADATION OF PV MODULES

Helios single-Si (text)

Pragma multi-Si (text)

Pragma single-Si (ARC)

Ansaldo multi-Si (ARC)

Long-term aging (~ 15 years)

Pragma multi-Si

Long-term aging (~ 15 years)

Pragma multi-Si

 60° incidence reflectance maps

Long-term aging (~ 15 years)

Pragma multi-Si

60° incidence reflectance Frequency distribution maps

HEMISPHERICAL / HEMISPHERICAL REFLECTANCE

A. Parretta, G. Graditi, R. Schioppo, M. Bombace, Solar Energy Materials and Solar Cells, 86 (2005) 349-364.

OPTICAL IMAGES

VS.

ELECTROLUMINESCENCE IMAGES

Optical and EL images

Pragma multi-Si modules

Unexposed module Exposed module Optical images EL images

Pragma multi-Si modules

Pragma multi-Si modules

CONCLUSIONS

We have presented a method and an apparatus (PROM) for the fast optical mapping of a PV module.

The features of the method are:

- the light source is pulsed, suitable for fast measurements (~1 s);
- a series of pulsed lamps are used in sequence, one for each incidence angle;
- quasi-simultaneous optical maps of the module at different incidence angles can be carried out;
- the use of pulsed lamps reduces the energetic budget and limits the heating of components, improving the reliability of measurement;
- with integrated modules (a-Si, CIS, etc.) the method allows to combine optical and electrical measurements;

Optical measurements are well correlated with EL measurements.