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Abstract: The theory of light collection in solar concentrators irradiated in the “direct” mode 
(from input aperture) is revisited and new concepts are introduced. Application of the theory is 
made mainly to nonimaging (CPC) concentrators. 
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1. Introduction  

 
A solar concentrator can be regarded as a generic optical element for which we can define a reflectance, an 
absorbance and a transmittance. These quantities can be calculated in relation to different types of irradiations, the 
most natural being the collimated beam and the isotropic irradiation associated with the direct and diffuse outdoor 
solar radiation components, respectively. In this paper we extensively use the term “direct” meaning that the 
concentrator is irradiated from the input aperture. In this sense, the term “direct” is by no means to be associated to 
the direct component of solar radiation. We will investigate mainly concentrators derived by the nonimaging optics, 
in particular the Compound Parabolic Concentrators (CPC) [1], with ideal and real properties. 

 
2. Theory of “direct” optical collection 

 
The fundamental quantity which summarizes the optical collection properties of a solar concentrator (SC) is the 
transmission efficiency ηdir(θin, ϕin), expressed as function of the direction, that is zenithal and azimuthal angles  (θin, 
ϕin), of a collimated beam, with uniform irradiance 

dirE at the wave front, and given by the ratio of output and input 

fluxes: 
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where Ain(θin, ϕin) is the projected area of input aperture (ia) of SC, of area Ain, equal to Ain · cos(θin) when the 
contour of (ia) is contained on a plane. Fig. 1a shows the scheme of measure of ηdir(θin, ϕin), called “direct method” 
(DM). In general we have: ηdir(θin, ϕin) = fraction of flux transmitted to output aperture (oa), αdir(θin, ϕin) = fraction 
of absorbed flux, and ρdir(θin, ϕin) = fraction of reflected flux, with: ηdir(θin, ϕin) + αdir(θin, ϕin) + ρdir(θin, ϕin) =1.  
 Let’s consider now the isotropic irradiation of SC as illustrated in Fig. 1b (integral direct method or IDM). We 
can imagine a hemispherical screen (hs) irradiating the SC at constant radiance Ldir. The total incident flux is: 
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Figure 1. Schematic principle of Direct Method (DM) (a) and Integral Direct Method (IDM) (b) of irradiation. 
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 In the following we will consider, for simplicity, only concentrators with cylindrical symmetry: ηdir(θ, ϕ) = ηdir(θ) 
= η(θ). The equations can be easily extended, if necessary, to the general case by reintroducing the dependence on 
the azimuthal angle. The flux “transmitted” to the output, becomes: 
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 The optical loss is represented by the “rejected” flux ρ

dirΦ and by the “absorbed” fluxα
dirΦ : 
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in such a way that: 1=Φ+Φ+Φ αρτ

dirdirdir
. 

 In absence of loss by absorbance, the integral direct irradiation leads to a significant result: on the output aperture 
the irradiation distribution is uniform and the angular distribution of intensity is lambertian (constant radiance). The 
integral direct irradiation of an ideal (non absorbing) concentrator, therefore, produces a uniform lambertian 
irradiation at output. This can be demonstrated by theoretical considerations and by optical simulations. The output 
radiance is given by: 
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where we have introduced the geometrical concentration ratio Cgeo. In the case of a non ideal SC, the output 
irradiation is no more uniform and lambertian and Eq. (6) gives only the average radiance at output, for a particular 
absorbance )(θα . 
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where Φdir

τ(α) is the output flux in presence of absorbance and ηα(θ)is the transmission efficiency in presence of 
absorbance. Naturally, the output radiance of a real SC is lower than the radiance of the corresponding ideal 
concentrator. We have simulated a 3D-CPC with Cgeo ≈ 130, θacc = 5°,  irradiating it in the integral “direct” mode 
(Fig. 2). The simulations confirm that the uniform spatial distribution of flux at output and the lambertian angular 
divergence is reached for the ideal case (wall reflectivity Rw = 1), not for the non ideal case (wall reflectivity Rw = 
0.8). The spatial distribution has been tested by putting a flat absorber on the output aperture, whereas the angular 
distribution has been tested by putting an hemispherical absorbing globe centered on the output aperture. We now 
introduce a new quantity, the ratio between output and input radiances. The ratio between output and input radiances 
in the general, non ideal, case becomes: 
 

a) b) c) d)  
 

Figure 2. Map of irradiance at output aperture for Rw=1 (a) and Rw=0.8 (b). Map of irradiance on an hemispherical globe centered on the output 
aperture for Rw=1 (c) and Rw =0.8 (d). The irradiation distribution on the globe is a function of cosθ  for a lambertian angular distribution at 

output of concentrator, but this distribution becomes uniform when it is projected on a plane for representation purposes, as it is done for c) and 
d) maps. 
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 We introduce also the following new optical quantities: “direct integral optical efficiency ηdir

int, “direct integral 
optical absorbance” αdir

int and “direct integral optical reflectance ρdir
int, given respectively by: 
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where: 1intintint =++ dirdirdir ραη . From Eqs. (8), (9) we find the relevant relationship: 
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 Eq. (12) has the same form of the relationship defining the optical concentration ratio of a SC under a collimated 
beam irradiation: 
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then the quantity λdir(α) can be defined as the optical concentration ratio under integral direct irradiation, and 
corresponds to the concentration ratio achievable outdoors by the irradiation of diffuse solar light. Some of the 
above defined quantities are evaluated for the special case of a 3D-CPC concentrator, characterized by the 
acceptance angle θacc and the on-axis optical efficiency ηdir(0)  [1]. The transmission efficiency function ηdir(θ) for a 
3D-CPC nonimaging concentrator can be approximated to a step function with ηdir(θ) ≈ηdir(0) for θ  = 0 ÷θacc, 
ηdir(θ) ≈ 0 for θ > θacc, with θacc acceptance angle measured at 50% of the 0° efficiency [1]. We obtain for the 
radiance ratio λdir(α), the direct integral transmission efficiency ηdir

int and the direct integral absorbance αdir
int, 

respectively: 
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 For a CPC with Cgeo ≈ 130, θacc ≈ 5° and ηdir(0) ≈ 0.9, for example, we obtain: λdir(α) = 130 ⋅ 0,9 ⋅ 0,0076 = 0,889; 
ηdir

int =  0,9 ⋅ 0,0076 = 0,00684 = 0,684%; αdir
int = 0,1 ⋅ 0,0076 = 0,00076 = 0,076%. This means that the 0.684% of 

the incident flux is transmitted to the receiver, the 0.076% is absorbed on the walls and the (100−0.684−0.076) = 
99.24% is reflected backwards. 
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