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ABSTRACT
Theoretical models of light collection in solar concentrators (SC) are presented together with new advancements of the theoretical analysis which leads to the introduction of new optical concepts and the definition of new 
optical quantities. Solar concentrators are viewed as generic optical elements whose reflectance, absorbance and transmittance properties are expressed with respect to different irradiation conditions. They are studied under 
collimated or diffuse light, under local or integral irradiation, including that in which light direction is reversed. All the results were obtained applying two basic concepts: the reversibility principle and the efficiency of 
transmission of an elemental beam. In this paper we discuss theoretical models of irradiation, which are simplifications of the outdoor irradiation conditions. For each model we derive a specific method of characterization of 
the SC, that can be applied by optical simulations at a computer or by experimental measurements. A generic solar concentrator is schematised as a device confined between an entrance aperture (ia) with area Ain and an exit 
aperture (oa) with area Aout, where Ain > Aout, as required by definition of solar concentrator. A solar concentrator operates in practice under “direct” irradiation, that is under irradiation on the entrance aperture and with a 
receiver, the energy conversion device, at the exit aperture [1].
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The “direct lambertian method” (DLM) has been introduced to study the transmission efficiency of a 
concentrator integrated over all directions at input. The figure shows the scheme of DLM applied to a 3D-CPC 
concentrator, with Ldir constant radiance of an isotropic diffuse light source. From DLM we obtain the direct 
lambertian transmission efficiency, ηdir

lamb, defined as the ratio of output to input flux.  
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Similar expressions are used to define the direct lambertian absorptance, αdir
lamb, and the direct lambertian 

reflectance, ρdir
lamb. The output radiance, in general, is not constant like the input radiance, so we speak about 

an average output radiance:  
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CONCLUSIONS
We have presented a general theoretical approach to the study of a solar concentrator looked at as a generic 
optical element. Irrespective of its practical use, we have considered different types of irradiation and, for each 
of them, reflection, absorption and transmission properties have been defined. The classical view of the 
concentrator fully irradiated on the front side by a collimated beam has been upset and a new way of looking 
to it has been introduced through the new concept of “inverse” irradiation. By inverting the irradiation on the 
concentrator and using a lambertian source at output, in fact, new and surprising results appear, which allow to 
disclose the full direct optical transmission properties of the solar concentrator by a very simple approach. 
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The optical collection properties under direct and collimated beam of a solar concentrator, with rotational 
symmetry, are summarized by the angle-resolved transmission efficiency:

Basic scheme of the Direct Collimated 
Method (DCM)

In general we have:
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where:

Transmission efficiency of a 
3D-CPC nonimaging solar 
concentrator. They are shown 
the absolute and normalized 
transmission curves.
The acceptance angle θacc is the 
angle at which the efficiency 
drops to 50%. Both curves have 
the same θacc (5°).

For the reversibility principle, the optical loss reported by a direct ray is the same as that shown by an inverse 
ray if the optical path is the same and if both starting rays are unpolarized. The attenuation factor for the 
radiance of the direct beam incident at point A in direction (θ,ϕ) represents the local direct transmission 
efficiency ηdir(A,θ,ϕ), while the attenuation factor for the radiance of the ray emitted by the SC from point A 
in the reverse direction (θ,ϕ) represents the local inverse transmission efficiency ηinv(A,θ,ϕ). 
We extend now these concepts to all points of Ain. If the inverse radiance Linv at output aperture is constant for 
all directions, that is, a Lambertian source is applied to the output aperture, then the average inverse output 
radiance, Linv

out(θ,ϕ), has the same angular distribution of the average inverse transmission efficiency
ηinv(θ,ϕ). But the average inverse transmission efficiency must have the same angular distribution of the 
average direct transmission efficiencyηdir(θ,ϕ). As a consequence, the inverse radiance of the concentrator
L inv

out(θ,ϕ), when irradiated on the output aperture with a uniform and unpolarized Lambertian source, is 
proportional to the efficiency of the direct transmissionηdir(θ,ϕ), of an unpolarized collimated beam, that is 
the two corresponding normalized quantities coincide:

THE “DIRECT COLLIMATED METHOD” (DCM)

THE “DIRECT LAMBERTIAN METHOD” (DLM)
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A perfect parallel beam is impossible to realize in practice, then, if Ldir(θ,ϕ) is the radiance of the light source 
from (θ,ϕ) direction, and dΩ is the solid angle within which light is collected, the angle-resolved transmission 
efficiencycan be defined as: 
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Conservation of energy

Similar expressions are used to obtain the absorption and reflection efficiencies.
The number of measurements required to apply the DCM is very high, both for simulations and for experimental 
measurements. This is indeed the strong limit of DCM applied to the determination of ηdir(θ). This limit can be 
overcome by the use of the “Inverse Lambertian Method” (ILM) of irradiation, as it will be demonstrated in the 
corresponding section. 

Basic scheme of the Direct Lambertian 
Method (DLM)
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Now we define a new quantity,  Copt
lamb, the ratio between average output and input radiance, as the direct 

lambertian concentration ratio: 
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The direct lambertian model can be applied also reducing the angular extension of the lambertian source from 
π/2 to a limit polar angle θm . We have for the input and output flux, respectively:
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THE “INVERSE LAMBERTIAN METHOD” (ILM)
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The above discussion establishes therefore the suitability of the inverse lambertian method (ILM) to provide 
all information concerning the normalized efficiency of transmission of the concentrator under direct and 
collimated irradiation ηdir,norm(θ,ϕ). To perform the measurements of normalized inverse radiance, it is 
sufficient to project the inverse light towards a far planar screen and to record the image produced there; a 
simple elaboration of the image gives Linv,norm

out(θ,ϕ). 
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Basic scheme of the Inverse Lambertian 
Method (ILM)

ILM provides also the quantity ηdir (0), and so the “absolute”
transmission efficiency ηdir(θ,ϕ), without recourse to any 
direct measure by DCM, as it is demonstrated by the 
forthcoming considerations.
When a 3D-CPC SC is inversely irradiated, the exit aperture 
(oa) becomes a Lambertian source with constant and uniform 
radiance Linv. The total flux injected into the SC becomes:
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The inverse flux transmitted to output, the input aperture of 
the SC, is given by:
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We now define a new optical quantity, the inverse lambertian transmittance, τinv
lamb, as the ratio of output to 

input flux:
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We obtain for the ratio between inverse and direct lambertian transmittances:
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This ratio is just a property of the SC and cannot depend on radiance. If we apply the condition Ldir=Linv, we 
obtain that the total lambertian flux transmitted in “direct” and “inverse” directions is the same:
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The last equation allows us to calculate ηdir(0) by ILM measuring Linv
out(0), the average 

on-axis inverse radiance, and Linv, the radiance of the inverse lambertian source. We 
obtain that the ratio between inverse and direct lambertian transmittance is independent 
on radiance, as foreseen, and equal to Cgeo: The “input direct lambertian flux”needed to
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sustain an equal transmitted flux in the opposite direction is Cgeo times the “input inverse lambertian flux”.
This is a direct consequence of the geometrical asymmetry of the concentrator. Let us imagine now to irradiate 
both apertures of the SC by two different lambertian sources with Ldir≠L inv. If ∆L= Ldir–Linv is the difference of 
incidence radiance between input and output, then we have for the net flux through SC, in the direct direction:
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The equation for ∆Φ is similar to the Ohm’s law: I = G · ∆∆∆∆V, where Φdir
net(W) has the role of current, ∆L 

(W/sr·m2) the role of potential difference and (π·Ain·τdir
lamb) (sr·m2) the role of conductance: By inverting the 

sign of ∆L we obtain:
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We define the “ direct lambertian conductance”: lamb
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The optical asymmetry of the SC disappears as long as the conductance of the SC is considered. The 
“lambertian optical conductance”can be put in the form: 
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Finally we define the density of the net flux through the input aperture in direct wayand the density of  net flux 
through the output aperture in inverse way: 
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