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ABSTRACT: Different models of light irradiation and collection in solar concentrators are here reported, together 
with a theoretical analysis that leads to new optical concepts and new optical quantities. For some of them a similarity 
with electrical quantities is suggested. In this paper we present a general theoretical approach to the study of solar 
concentrators, which are seen as generic optical components with reflectance, absorbance and transmittance 
properties expressed with respect to different irradiation conditions. In particular, they are studied under collimated or 
diffuse light, under local or integral irradiation, including the irradiation in which the direction of light is reversed, i.e. 
oriented from the exit towards the entrance aperture. The classical view of the concentrator fully irradiated on the 
front side by a collimated beam has been in this way upset, and a new way of looking to it has been introduced 
through the concept of “inverse” irradiation. By inverting the direction of irradiation and by using a Lambertian 
distribution of light at output, new and surprising results appear, which allow to reveal, among other things, the 
transmission properties of the solar concentrator under a direct and collimated beam. All the results have been 
obtained by applying two basic optical concepts: the reversibility principle and the transmission efficiency of an 
elemental beam. This theoretical investigation on the solar concentrators is aimed at improving the knowledge of 
their optical properties, expanding their application field and opening new perspectives to the methods of their 
characterization. 
Keywords: Concentrators, Optical Properties, Modelling 
 

 
1 INTRODUCTION 
 
 Terrestrial, photovoltaic (PV) solar concentrators (SC) 
are optical devices designed to efficiently collect the 
direct solar radiation, incident at a flux density of about 
800 W/m2 (at clear sky conditions) and to transfer it to a 
receiver (the solar cell or module) at a flux density 
increased by a factor equal to the optical concentration 
ratio, Copt , chosen according to the end use of solar 
energy and the specific technology used. The level of 
optical concentration can vary from only a few units, as 
for example in fixed concentrators applied to buildings, 
up to about 500x for the most sophisticated photovoltaic 
concentrators [1-8].  
 The class of SCs that has shown the most interesting 
results in terms of optical efficiency and maximum 
attainable concentration levels is that based on the 
"nonimaging optics" [9-11].   
 Solar concentrators are generally studied simulating 
or testing their behaviour under a collimated or quasi-
collimated beam, which simulates the direct component 
of solar radiation (half angular divergence dirθ  ~ 0.27°), 
as these are the real operating conditions of an SC [12-
15]. Less frequently SCs are studied under diffuse 
radiation, because the natural diffuse light is associated to 
a low radiance, and the collection of diffuse light requires 
a high angular aperture of the SC, more precisely a high 
acceptance angle accθ , which heavily influences the 
maximum level of concentration. We have in fact for the 
optical concentration ratio of a generic 3D solar 
concentrator: 
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where outθ
 

is the maximum angular divergence of output 

rays and outn
 

is the index of refraction of the medium 
embedding the receiver. When the SC is irradiated by the 
direct component of the sun, to collect all the direct 

irradiation it is necessary to have diracc θθ ≥ . The 
maximum optical concentration ratio is reached therefore 
when the divergence of rays at output is outθ = 90° and 
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By working with diffuse light, the maximum value of 
optC  will be given by: 
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where 
diffθ  is the angular aperture of the diffuse light 

source. If °= 90diffθ , an entire hemisphere, the 

maximum achievable value of 
optC is only 2

outn .  

 The study of the optical properties of an SC are here 
not limited to the conditions of irradiation in practical 
applications; there are in fact situations in which it is 
useful to know its optical properties under any type of 
irradiation, particularly when it is subjected to an optical 
characterization (simulated or experimental). We have, 
for example, developed new methods of characterization, 
which have been applied inverting the usual direction of 
transmission of light, introducing in this way the so-
called “inverse” methods of characterization [16-24]. We 
have demonstrated that the analysis of the output 
radiance of the SC when it is irradiated in a suitable way 
under diffuse and “reverse” light, allows to derive, in a 
very fast and easy way, its optical transmission properties 
under collimated and “direct” light, those which are 
directly related to its practical use.   
 In this paper, therefore, we go beyond the classical 
view of an SC irradiated by a “direct” and collimated 
beam, by proposing a new scenario in which the solar 
concentrator, regardless of its type (if 2-D or 3-D), if 
refractive or reflective, if imaging or nonimaging, is 
studied as a generic optical element, characterized by 
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specific reflection, absorption or transmission properties, 
defined respect to specific models of irradiation. We 
distinguish, for example, between “direct” and “inverse” 
irradiation depending on the direction of the incoming 
light, or between “local” and “integral” irradiation 
depending if the irradiation is limited to a small area or to 
the whole area of entry, respectively; we finally 
distinguish between a quasi-collimated irradiation by a 
far light source, in contrast to a “diffuse” irradiation by a 
lambertian source. In the last case we speak of 
“lambertian” irradiation, understood as irradiation with 
constant radiance from all directions within a maximum 
value of solid angle. 
    In this paper we analyse theoretical models of 
irradiation, as simplifications of the real irradiation 
conditions found outdoors. To each model we associate a 
specific method of characterization, which can be applied 
by optical simulations or by experimental measurements. 
The definition of each model of irradiation is the same of 
the corresponding characterization method. 
 
 
2 THEORETICAL MODELS OF IRRADIATION 
 

In what follows the generic SC is schematised as a 
device confined between an entrance aperture (ia) with 
area Ain and an exit aperture (oa) with area Aout, where 
Ain>Aout. A solar concentrator operates in practice under 
“direct” irradiation, i.e. under irradiation on the entrance 
aperture and with a receiver, the energy conversion 
device, at the exit aperture. In our models, however, we 
replace the receiver by any detector suitable to measure 
the desired optical quantity, i.e. the total output flux, or 
its spatial and angular distribution (these last quantities 
are of relevant importance in photovoltaic solar 
concentrators [25,26]); we also use the exit aperture to 
put there any source of light for inverse irradiation. The 
same considerations apply when considering the input 
aperture of the SC; we measure the total flux exiting from 
it in “reverse” direction, or its spatial and angular 
distribution, and we also use the entrance aperture to put 
there any source of light for “direct” irradiation. What is 
there between the two apertures is specific of the 
particular fabrication technology used and will not be 
considered here, because not relevant, in principle, for a 
discussion on its overall optical properties. 
 Most of the optical properties which will be disclosed 
by our methods are based on two fundamental concepts: 
i) the transmission efficiency of an elemental, 
unpolarized beam impinging on the input or output 
aperture at point P(x, y) from direction (θ, ϕ); ii) the 
principle of reversibility, applied in absence of diffusion 
or diffraction phenomena inside the SC, which 
establishes the same attenuation TAB for an elemental and 
unpolarized beam crossing the SC from point A at input 
to point B at output in “direct” direction, and TBA for an 
elemental and unpolarized beam crossing the SC from 
point B at output to point A at input in “reverse” direction 
[27].  
 The first and simplest irradiation method is the “Direct 
Local Collimated Method” (DLCM) [17,18], based on 
the transmission of an elemental beam from input to 
output with efficiency ),,( ϕθη Pdir , the local optical 
transmission efficiency, where P is a point on the input 
aperture. 

If the irradiation of the SC by a collimated beam is 
extended to the entire area of input aperture, we have the 
“Direct Collimated Method” (DCM) [19]. The 
application of DCM gives the curve of optical 
transmission efficiency, ),( ϕθηdir , obtained changing 

the polar angle of the collimated beam (see Fig. 1). The 
),( ϕθηdir  curve is characterized by the acceptance angle 

accθ = 50
accθ , corresponding to the 50% of the efficiency 

measured at 0°. 

 
Figure 1: Typical optical transmission curve of a 

nonimaging solar concentrator. 
 

The condition TAB = TBA is the basis of the “Inverse 
Lambertian Method” (ILM), which has been conceived 
for deriving the absolute transmission efficiency of DCM 
by analysing, instead of the flux collected at the receiver 
(the output aperture) under “direct” irradiation, the flux 
emitted by the input aperture under “inverse” irradiation 
[20-24]. To apply this concept, the rays analysed with the 
“direct” irradiation must overlap those analysed with the 
“inverse” irradiation, that is, the respective optical paths 
must be identical. This is valid when the reversibility 
principle can be applied.  

The source of the inverse rays is placed in 
correspondence of the receiver (the output aperture) in 
order to emit rays, from each point and in any direction 
inside the SC, at constant radiance, without 
discriminating any direction. In this way it is possible to 
produce, in the inverse mode, all the connecting paths 
which will overlap with those that can be produced in 
direct mode by a collimated beam inclined at different 
polar angles. In order to apply ILM in a correct way, 
therefore, it is needed to put a spatially uniform, 
lambertian and unpolarized light source at the output 
aperture, with invL  the constant radiance. As we will see 

in Section 3.3, from the inverse radiance ),( ϕθout
invL  we 

will be able to derive the collection efficiency under 
direct irradiation ),( ϕθηdir .   

The irradiation of the SC at the entrance aperture by 
a lambertian source introduces the “Direct Lambertian 
Method” (DLM) [17-19,24]. 

By irradiating the concentrator simultaneously in 
DLM and ILM modes, all the connecting paths will 
overlap and, if dirL = invL , also the elementary flux 
flowing through any connecting path will be the same 
along the two directions. Then, with dirL = invL , also the 
total flux flowing through the concentrator from one 
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aperture to the other will be the same in the two 
directions.  

The “inverse” method applied “locally” to small regions 
with area outAΔ  and centred on point P of the exit 
opening is called “Inverse Local Lambertian Method” 
(ILLM) [22]. The measured inverse radiance 

),,,( ϕθout
out
inv APL Δ  directly gives the corresponding 

collection efficiency under direct irradiation 
),,,( ϕθη outdir AP Δ .  The new situation is similar to 

that which would occur if the concentrator could be 
amended as follows: the new receiver is the selected area 
of the old receiver; the new concentrator is the old 
concentrator plus the excluded part of the receiver. This 
new way of looking at the receiver is very powerful. In 
this way, in fact, we can study the efficiency of collection 
of any portion of the optical receiver, and since the 
radiation on the receiver is generally not uniform when 
the concentrator is directly irradiated by a collimated 
beam, it happens often to be wonder about the direction 
of the input rays arriving in a certain area of the receiver. 
By means of the ILLM method, therefore, we can know 
from which direction the rays in excess in a certain area 
of the receiver arrive, or from which direction they are 
failing to arrive in a certain area of it.  
In the following Section, the irradiation models briefly 
outlined so far will be investigated in detail in terms of 
transmission, reflection and absorption efficiencies. 
 
3 THEORETICAL MODELS OF LIGHT 
COLLECTION 
 
3.1 Theory of the “direct collimated methods” 

In DLCM an elementary beam, incident on the point 
A of input aperture (ia) and flowing inside the SC in the 
direct mode, is transmitted to the output with an 
efficiency ),,( ϕθη Adir ≤1. By averaging ),,( ϕθη Pdir  
over a uniform distribution of points P on the input 
aperture, the transmission efficiency ),( ϕθηdir at 
collimated light is defined. This corresponds to DCM, 
simulating the behaviour of the SC under the direct solar 
irradiation. The “absolute” transmission efficiency 

),( ϕθηdir , expressed as function of polar and azimuthal 
angles of direction of the collimated beam, characterized 
by the constant irradiance Edir on the wave front, is 
defined as:   
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where ),( ϕθinA  is the area of input aperture projected 

along direction (θ, ϕ). The last term in Eq. (4) applies 
when the contour of input aperture is contained on a 
plane surface. 

The “absolute” transmission efficiency ),( ϕθηdir  
can be expressed also as:   

),()0(),( , ϕθηηϕθη normdirdirdir ⋅=                     (5) 

where ),(, ϕθη normdir  is the “normalized” transmission 

efficiency and )0(dirη  is the transmission efficiency at 

0° (see Fig. 1). It is clear that ),( ϕθηdir  is the average 

value of ),,( ϕθη Pdir  when ),,( ϕθη Pdir  is calculated 
for all the points of the entrance aperture. We have 
therefore for the output flux:  
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and for the transmission efficiency:  
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To explore the light collection properties of the SC, the 
collimated beam must be oriented respect to the optical 
(z) axis of concentrator varying θ in the 0°-90° interval 
and ϕ in the 0°-360° interval. If the SC has cylindrical 
(rotational) symmetry, it is sufficient to fix a ϕ  value and 
to vary only θ. If the SC, however, is an optical unit of a 
larger system, or module, it will have probably a squared 
or hexagonal aperture, as these geometries allow to pack 
them efficiently in the concentrating module, then the ϕ 
angle can be limited, in these cases, to the 0°-90° or the 
0°-60° interval, respectively. Despite this limitation, 
however, the number of measurements required  for the 
application of DCM is high for this type of SCs, both for 
simulations and for experimental measurements. This is 
indeed the very strong limit of DCM applied to the 
determination of ),( ϕθηdir . This limit is overcome by 
the application of the “Inverse Lambertian Method” 
(ILM), as will be demonstrated in Section 3.3.  

Dealing with “nonimaging” SCs [9-11], whose 
transmission curve has a step-like profile (see Fig. 1), 
their characterization by DCM can be simplified: it is 
sufficient to vary the input angle θ  from 0° to a little 
more than the acceptance angle at 50% of 0° efficiency, 

50
accθ . The rays incident at 50

accθθ > , in fact, will be 
rejected back by the SC before reaching the output 
aperture.  

The quantity ),( ϕθηdir  (see Fig. 1) represents the 

fraction of flux transferred to the output, and then it 
represents the “direct collimated transmittance” of the 
SC, when viewed as a generic optical element. We can 
speak, equivalently, of a “direct collimated reflectance” 

),( ϕθρdir  and of a “direct collimated absorptance” 

),( ϕθα dir  of the SC for the fraction of the input flux 

back reflected or absorbed, respectively:  
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We have for the conservation of energy: 
1),(),(),( =++ ϕθαϕθρϕθη dirdirdir         (10)  

The typical )(θηdir  curve for a 3-D CPC 

(Compound Parabolic Concentrator) is illustrated in Fig. 
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1 [9-11]; the ϕ angle is not represented, because the CPC 
has a cylindrical symmetry. We distinguish the 0° 
efficiency )0(dirη , the acceptance angle at 50% of 0° 

efficiency 50
accθ  and the normalized transmission curve 

),(, ϕθη normdir
, characterized by the same 50

accθ  angle. 

Respect to the CPCs, the “imaging” solar concentrators 
show a very different transmission curve, with a long tail 
and a short flat portion at small angles [10-11]. For these 
concentrators the DCM has to be applied by varying the 
polar angles from 0° to a limit θ angle, mθ , well higher 

than 50
accθ . 

 
3.2 Theory of the “direct lambertian methods” 

DLM [17-19,24] simulates the behaviour of the 
concentrator under diffused light, for example the diffuse 
solar radiation in a totally covered sky. If dirL  is the 
constant radiance of the diffused source, the total incident 
flux is: 

dirinindir
in
dir LAddAL ⋅⋅=⋅⋅⋅⋅⋅=Φ ∫ ∫ πθθθφ

π π2
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2
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cossin
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where inA⋅π  is the étendue. 

In the following, we will consider, for simplicity, 
only concentrators with cylindrical symmetry; we will 
skip therefore the dependence on angle ϕ. The flux 
“transmitted” to the output aperture becomes:  
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The “reflected” flux ρ

dirΦ  and the “absorbed” flux α
dirΦ  

are expressed respectively as: 
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in such a way that: 
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We define now the “direct lambertian transmittance” 
lamb
dirτ , as the ratio of output to input flux:  

)(cossin)0(2

...)(cossin2

,

2

0

2

0

θηθθθη

θηθθθτ

π

πτ

normdirdir

dirin
dir

dirlamb
dir

d

d

⋅⋅⋅⋅⋅=

=⋅⋅⋅⋅=
Φ
Φ

=

∫

∫
(16) 

We define, similarly, the “direct lambertian 
reflectance” lamb

dirρ  and the “direct lambertian 

absorptance” lamb
dirα : 
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where ),(, ϕθρ normdir  and ),(, ϕθα normdir  are the 

normalized efficiencies, whereas )0(dirρ  and )0(dirα  
are the efficiencies at 0° incidence. We have: 

1=++ lamb
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In contrast to the incoming radiance, the output 
radiance is not constant, so we speak about the average 
output radiance:  
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where geoC is the geometrical concentration ratio. We 

define the new quantity, lamb
optC , ratio between output and 

input radiance:  
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From Eq. (16), (21) we find:  
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Eq. (22) is similar to the relationship that defines 
the optical concentration ratio of an SC under collimated 
irradiation [9-11]: 
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We define therefore the quantity lamb
optC  as the “direct 

lambertian concentration ratio”.  
The direct lambertian model can be applied also 

reducing the angular extension of the lambertian source 
from π/2 to a limit polar angle mθ . The corresponding 

method, DLM )( mθ , is particularly useful when we 
analyse the behaviour of nonimaging SCs. Because of the 
step-like profile of their optical efficiency ( )(θηdir ≈ 0 

for 50
accθθ ≥ ), in fact (see Fig. 1), the characterization of 

these SCs under direct lambertian irradiation can be 
limited to angles 50

accm θθθ ≈≤ , reducing in this way 
the time of computer elaboration or simplifying the 
experimental measurements. We have for the input and 
output flux:  
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and for the direct transmission efficiency: 
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The average output radiance becomes: 
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and the optical concentration ratio lamb
moptC θ,  becomes:  
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3.3 Theory of the “inverse lambertian methods” 
We have seen that, for the reversibility principle, the 
optical loss reported by a direct ray is the same as that 
shown by an inverse ray if the optical path is the same 
and if both starting rays are unpolarized. The attenuation 
factor for the radiance of the direct beam incident at point 
A in direction ),( ϕθ  represents the local direct 
transmission efficiency ),,( ϕθη Adir , while the 

attenuation factor for the radiance of the ray emitted by 
the SC from point A in the reverse direction ),( ϕθ  

represents the local inverse transmission efficiency 
),,( ϕθη Ainv . We extend now these concepts to all 

points of inA  directly irradiated in direction ),( ϕθ  

(DCM) and to the same points of inA  that emit light in 

the reverse direction ),( ϕθ  (ILM). If the inverse 
radiance at output aperture invL  is constant for all 

directions, that is, a Lambertian source is applied at the 
output aperture, then the inverse output radiance, 

),( ϕθout
invL , averaged over all points of inA , has the 

same angular distribution of the inverse transmission 
efficiency ),( ϕθη inv , averaged over all points of inA . 

But the average inverse transmission efficiency 
),( ϕθη inv must have the same angular distribution of 

the average direct transmission efficiency ),( ϕθηdir , 

because the transmission of the single connecting paths is 
invariant respect to the direction of travel of light. As a 
consequence, we deduce that the inverse radiance of the 
concentrator ),( ϕθout

invL , irradiated on the output 

aperture with a uniform and unpolarized Lambertian 
source, is proportional to the efficiency of the direct 
transmission ),( ϕθηdir  of an unpolarized collimated 

beam, that is the two corresponding normalized quantities 
coincide. We have therefore:  

),(),( ,, ϕθηϕθ normdir
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norminvL =                           (29) 

where:                 
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out
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norminv L
LL ϕθ
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and ),(, ϕθη normdir   is given by Eq. (5). 

Eq. (29) establishes the equivalence between the 
“normalized” inverse radiance and the “normalized” 
direct transmittance. The above discussion establishes 
therefore the suitability of ILM in providing all 
information concerning the normalized efficiency of 
transmission of the concentrator under direct and 
collimated irradiation, ),(, ϕθη normdir  (see Fig. 1). 

The simulated and experimental measurements of 
the normalized inverse radiance ),(, ϕθout

norminvL  are 

discussed elsewhere [20-24]. They can be performed 
projecting the inverse light of concentrator towards a far 
planar screen, and recording the image produced there; a 
simple elaboration of the image gives ),(, ϕθout

norminvL , 

and so ),(, ϕθη normdir .  

Here we emphasize another fundamental aspect of 
ILM, that is the fact that it provides also the quantity 

)0(dirη , and so the “absolute” transmission efficiency 

),( ϕθηdir  (see Eq. (5)), without recourse to any direct 
measure by DCM [23,24], as it will be demonstrated by 
the forthcoming considerations. 

When the SC is irradiated in the reverse way, the 
exit aperture (oa) of area outA  becomes a Lambertian 

source with constant and uniform radiance invL . The 

total flux, injected into the SC, becomes: 
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The inverse flux transmitted to output, the input 

aperture (ia) of area inA , is given by: 

)(cossin2
2

0

θθθθπ
π

τ out
invininv

out
inv LdA ⋅⋅⋅⋅⋅=Φ=Φ ∫ (32) 

where θ is the direction and )(θout
invL  is the radiance of 

light inversely emitted. We now define a new optical 
quantity, the “inverse lambertian transmittance”, lamb

invτ , 

as the ratio of output to input flux: 

...)(cossin
2

...

...
)(cossin2

2

0

2

0

=⋅⋅⋅⋅
⋅

=

=
⋅⋅

⋅⋅⋅⋅⋅
=

Φ
Φ

=

∫

∫

θθθθ

π

θθθθπ
τ

π

π

out
inv

inv

geo

invout

out
invin

in
inv

out
invlamb

inv

Ld
L
C

LA

LdA

)(cossin)0(
2

... ,

2

0

θθθθ
π

out
norminv

out
inv

inv

geo LdL
L
C

⋅⋅⋅⋅⋅
⋅

= ∫  
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(33) 
By comparing the inverse lambertian transmittance 

lamb
invτ  of Eq. (33) with the direct lambertian transmittance 
lamb
dirτ  of Eq. (16), we obtain for their ratio, after having 

applied Eq. (29): 

...
)(cossin)0(2

)(cossin)0(
2

,

2

0

,

2

0 =

⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅

=

∫

∫

θηθθθη

θθθθ

τ
τ

π

π

normdirdir

out
norminv

out
inv

inv

geo

lamb
dir

lamb
inv

d

LdL
L
C

invdir

out
inv

geo L
L

C
⋅

⋅=
)0(

)0(
...

η
          (34) 

This ratio is just a property of the SC and cannot depend 
on radiance quantities as it appears in Eq. (34). To 
demonstrate this, we calculate the ratio lamb

dir
lamb
inv ττ  by 

applying the simple condition dirL = invL , when the total 
integral flux transmitted in the “direct” and the “inverse” 
directions does not change: out

dirΦ  = out
invΦ , because such 

is the flux transmitted through the elementary connecting 
paths in the two directions. By putting out

dirΦ  = out
invΦ  and 

using Eq. (12) and (32) we find: 

)(cossin2...

...)(cossin2

2

0

2

0

θθθθπ

θηθθθπ

π

π

out
invin

dirindir

LdA

dAL

⋅⋅⋅⋅⋅=

=⋅⋅⋅⋅⋅⋅

∫

∫
  (35a) 

Putting dirL = invL  and applying Eq. (30), (5), we have:  

 ...)(cossin)0( ,

2

0

=⋅⋅⋅⋅⋅ ∫ θηθθθη
π

normdirdirinv dL  

)(cossin)0(... ,

2

0

θθθθ
π

out
norminv

out
inv LdL ⋅⋅⋅⋅= ∫   (35b) 

We finally find:         

inv

out
inv

dir L
L )0()0( =η                    (35c) 

Eq. (35c) allows us to calculate )0(dirη  by ILM 

measuring the ratio between )0(out
invL , the average on-

axis inverse radiance of SC, and invL , the radiance of the 
inverse lambertian source [23,24]. This ratio can be 
measured by recording a single image of the input 
aperture of the SC taken by a CCD camera oriented on 
the optical axis of the concentrator [16-19,24,28].   

From Eq. (34), (35c) we find moreover that the ratio 
between the inverse and direct lambertian transmittances 
is equal to geoC , and so is independent on radiance, as 

foreseen. This could be also deduced by considering that, 
when out

dirΦ = out
invΦ , we have: 

...=
⋅⋅
⋅⋅

=
Φ
Φ

=
Φ
Φ

⋅
Φ
Φ

=
outinv

indir
in
inv

in
dir

out
dir

in
dir

in
inv

out
inv

lamb
dir

lamb
inv

AL
AL

π
π

τ
τ

geo
out

in C
A
A

==...            (36) 

that is: the “inverse lambertian transmittance” of an SC 
is geoC  times its “direct lambertian transmittance”, or 

equivalently: the “input direct lambertian flux” needed to 
sustain an equal transmitted flux in the opposite direction 
is geoC  times the “input inverse lambertian flux”. This 

result is not surprising; it is a direct consequence of the 
geometrical asymmetry of the concentrator and 
disappears when geoC = 1, that is inA = outA . It is 

interesting to note that this result does not require any 
information about the internal features of the SC, but is 
only dependent on the sizes of the lateral apertures. Eq. 
(36) tells us that the optical “transparency” of the SC to 
lambertian light is not symmetric.  

Let us imagine now irradiating both apertures of the 
SC by two different lambertian sources with dirL ≠ invL . 

If 0>−=Δ invdir LLL  is the difference of incidence 
radiance between input and output, then we have for the 
net flux through SC, in the direct direction: 

[ ]
[ ] ......

...

...

=⋅⋅⋅−⋅⋅⋅=

=Φ⋅−Φ⋅

=Φ⋅−Φ⋅=Φ−Φ=Φ=ΔΦ

outinvgeoindir
lamb
dir

in
invgeo

in
dir

lamb
dir

in
inv

lamb
inv

in
dir

lamb
dir

out
inv

out
dir

net
dir

ALCAL

C

ππτ

τ

ττ

           )(... LA lamb
dirin Δ⋅⋅⋅= τπ          (37) 

Eq. (37) has a strong similarity with the Ohm’s law: 
VGI Δ⋅= , where net

dirΦ (W) has the role of current, 

LΔ (W/sr·m2) the role of potential difference and 
)( lamb

dirinA τπ ⋅⋅ (sr·m2) the role of conductance. From 
Eq. (37) we define the new optical quantity: “direct 
lambertian optical conductance” lamb

dirG : 

)( lamb
dirin

lamb
dir AG τπ ⋅⋅=              (38) 

 If we reverse the SC keeping fix the radiance gradient, 
now the flux flows in the inverse direction with the same 
conductance. We have in fact, changing the sign to both 
members of Eq. (37) and using Eq. (36): 

[ ] .../...

......

...

=⋅⋅−⋅⋅⋅=

=Φ⋅−Φ⋅=

=Φ−Φ=Φ=ΔΦ

geoindiroutinv
lamb
inv

in
dir

lamb
dir

in
inv

lamb
inv

out
dir

out
inv

net
inv

CALAL ππτ

ττ

                            )(... LA lamb
invout Δ⋅⋅⋅= τπ    (39) 

with 0>−=Δ dirinv LLL .  
From Eq. (39) we define the “inverse lambertian optical 
conductance” lamb

invG :  

)( lamb
invout

lamb
inv AG τπ ⋅⋅=              (40) 

From Eq. (36), (38) we conclude that the two lambertian 
optical conductances are equal: 

lamb
inv

lamb
dir GG =               (41) 

The result of Eq. (41) tells that the optical asymmetry of 
the SC disappears as long as the conductance of the SC is 
considered. Eq. (38) and (40) show that the “optical 
conductance” can be put in the form:  

lamblamb AG τπ ⋅⋅= )(              (42) 

that is: “conductance” = “étendue” x “transmittance”. 
Now the equivalence between the two opposite 
conductances is direct consequence of the fact that the 
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“direct” étendue is geoC  times the “inverse” étendue and 

that the “direct” transmittance is geoC/1  times the 

“inverse” transmittance. 
From Eq. (37) we derive the density of the net flux 

through the input aperture net
dirJ  (the average net flux 

flowing through the unit area of the input aperture inside 
the SC in direct way):  

 L
A

J lamb
dir

in

net
dirnet

dir Δ⋅⋅=
Φ

= )( τπ          (43) 

where 0>−=Δ invdir LLL , and the density of the net 

flux through the output aperture net
invJ  (the average net 

flux flowing through the unit area of the output aperture 
inside the SC in the reverse way) becomes: 

L
A

J lamb
inv

out

net
invnet

inv Δ⋅⋅=
Φ

= )( τπ          (44) 

where 0>−=Δ dirinv LLL . 
 
 
8 CONCLUSIONS 
 
 In conclusion, we have presented in this work a 
general theoretical approach to the study of a solar 
concentrator looked at as a generic optical element. 
Irrespective of its practical way of use, we have 
considered different types of irradiation, and, for some of 
them, its reflection, absorption and transmission 
properties have been defined, both locally and on the 
entire surface of its apertures. But, most importantly, the 
classical view of the concentrator fully irradiated on the 
front side by a collimated beam has been upset and a new 
way of looking to it has been introduced through the new 
concept of “inverse” irradiation. By inverting the 
irradiation of the concentrator and by using a lambertian 
distribution of light at the output, new and surprising 
results appear, which allow us, besides other things, to 
disclose the full direct optical transmission properties of 
the solar concentrator by a very simple approach. Besides 
this, we have been able to introduce new optical concepts 
and to define new optical quantities making similarities 
with electrical concepts. All the results have been 
obtained applying two optical concepts: the reversibility 
principle and the efficiency of transmission through the 
solar concentrator of an elemental beam. 
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