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In recent years it has been made more and more clear that the critical issue in gradient methods is the
choice of the step length, whereas using the gradient as search direction may lead to very effective algo-
rithms, whose surprising behaviour has been only partially explained, mostly in terms of the spectrum of
the Hessian matrix. On the other hand, the convergence of the classical Cauchy steepest descent (CSD)
method has been extensively analysed and related to the spectral properties of the Hessian matrix, but
the connection with the spectrum of the Hessian has been little exploited to modify the method in order
to improve its behaviour. In this work we show how, for convex quadratic problems, moving from some
theoretical properties of the CSD method, second-order information provided by the step length can be
exploited to dramatically improve the usually poor practical behaviour of this method. This allows to
achieve computational results comparable with those of the Barzilai and Borwein algorithm, with the
further advantage of a monotonic behaviour.
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1. Introduction

The general steepest descent (SD) algorithm for the unconstrained minimization problem

min f (x)
x ∈ℜ

n (1.1)
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generates a sequence {xk} by the following rule:

xk+1 = xk−αkgk, (1.2)

where gk = ∇ f (xk) and the step length αk > 0 depends on the method used. In particular, in the classical
(optimal) steepest descent method proposed by Cauchy (1847) for the solution of nonlinear systems of
equations (henceforth named CSD), αk is chosen as

α
C
k = argmin

α
f (xk−αgk). (1.3)

Since the theoretical properties of the gradient methods derive from the minimization of a convex
quadratic function, in this paper we focus our attention on the model problem

min
x∈Rn

f (x) =
1
2

xT Ax−bT x, (1.4)

where A∈Rn×n is symmetric positive definite and b∈Rn. This is a simple setting suitable to analyse the
relevance of the eigenvalues of the Hessian of the objective function to the behaviour of the algorithms
we consider; furthermore, it allows to highlight the ability of the classical CSD method to automati-
cally reveal some second order information about the problem, which can be conveniently exploited to
dramatically improve the usually poor behaviour of the algorithm. For Problem (1.4) the Cauchy step
length αC

k can be computed exactly as the reciprocal of the Rayleigh quotient of A at gk, i.e.,

α
C
k =

gT
k gk

gT
k Agk

. (1.5)

The CSD method, despite of the minimal storage requirements and the very low computational
cost per iteration, which is O(n) floating-point operations besides a gradient evaluation, has long been
considered very bad and ineffective because of its slow convergence rate and its oscillatory behaviour.
However, in the last 20 years the interest for the steepest descent method has been renewed after the
innovative approach of the Barzilai and Borwein (BB) method (Barzilai & Borwein (1988)), which
stimulated novel choices for αk in (1.2), proved to be largely superior to the Cauchy step length. In the
BB approach the step length is computed through a secant condition by imposing either

min
α
‖sk−1−αyk−1‖, (1.6)

or

min
α

∥∥∥∥ 1
α

sk−1− yk−1

∥∥∥∥ , (1.7)

where ‖ · ‖ is the L2 vector norm, sk−1 = xk− xk−1, yk−1 = gk−gk−1, thus obtaining the following step
lengths, respectively:

α
B1
k =

‖sk−1‖2

sT
k−1yT

k−1
, (1.8)

α
B2
k =

sT
k−1yk−1

‖yk−1‖2 , (1.9)

for which the inequality αB1
k > αB2

k holds (see Lemma 2.1 in Raydan & Svaiter (2002)).
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The BB step length (1.8) is equal to αC
k−1, i.e., the Cauchy step length at the previous iteration, while

(1.9) is α
g
k−1, where

α
g
k =

gkAgk

gkA2gk
= argmin

α
‖∇ f (xk−αgk)‖= argmin

α
‖(I−αA)gk‖. (1.10)

We note that (1.10) can be interpreted as the Cauchy step for the convex quadratic problem

min
x
‖Ax−b‖= min

x

1
2

xT A2x−AbT x, (1.11)

which is obviously equivalent to (1.4). Therefore, both the BB step lengths (1.8)-(1.9) can be seen
as Cauchy step lengths with one delay. The use of larger delays has been investigated in Friedlander
et al. (1998), extending the r-linear convergence results which hold for BB (Dai & Liao (2002)). A
deeper analysis of the asymptotic behaviour of BB and related methods is proposed in Dai & Fletcher
(2005). Fletcher (2005) makes some intuitive considerations about the relationship between the non-
monotonicity of such methods and their surprising computational performance; he also discusses about
the circumstances under which BB (and related) methods might be competitive with Conjugate Gradient
(CG) methods, and he argues that the former represent an effective alternative to the latter when moving
from (1.4) to constrained or non-quadratic problems (Birgin et al. (2000); Dai & Fletcher (2005, 2006);
Hager & Zhang (2006); Andretta et al. (2010)). Moreover, as observed in Friedlander et al. (1998), gra-
dient methods are very competitive with CG when low accuracy in the solution is required, for instance
in the context of inexact Newton methods. All of these interesting observations, illustrated through sev-
eral computational experiences in Friedlander et al. (1998); Raydan & Svaiter (2002); Fletcher (2005),
justify the interest in designing effective gradient methods and the need of better understanding their be-
haviour. In recent years it has been made more and more clear that the critical issue in gradient methods
is the choice of the step length, whereas using the gradient as search direction may lead to very effective
algorithms. The surprising behaviour of these algorithms has been only partially explained (Raydan
(1997); Fletcher (2005)), pointing out that the effectiveness of the approach is related to the eigenvalues
of the Hessian rather than to the decrease of the function value.

For the CSD method the convergence has been extensively analysed and related to the spectral
properties of the Hessian matrix A, for instance in the pioneeristic works of Akaike (1959) and Forsythe
(1968). However, the connection with the spectrum of A has been little exploited to modify the CSD
method in order to improve its behaviour. The recurrence

gk+1 = gk−αkAgk = αk

(
1

αk
gk−Agk

)
, (1.12)

which holds for any gradient method, suggests that, in order to make them converge faster, a greedy
approach like (1.5) might result unsatisfactory, whereas, for instance, fostering the search direction to
align with an eigendirection of A could speed up the convergence of the algorithm (Frassoldati et al.
(2008)).

We will show how, moving from some theoretical properties of the CSD method, second order
information provided by the step length (1.5) can be exploited in order to improve dramatically the
usually poor practical behaviour of the Cauchy method, achieving computational results comparable
with those of the BB algorithm, while preserving monotonicity.

This paper is organized as follows. In Section 2 some classical convergence results about the CSD
method are briefly reviewed, which are the theoretical basis of the analysis carried out in the sequel of
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the paper. In Section 3 we highlight that the sequence of Cauchy step lengths has the nice feature of
providing an approximation to the sum of the extreme eigenvalues of the Hessian. Based on that, we
propose a modification of the CSD method, called CSD1, aimed to align the search direction with the
eigendirection corresponding to the smallest eigenvalue, and then to eventually force the algorithm in the
one-dimensional subspace spanned by that eigenvector. In Section 4 we show that a gradient method
where the step length is twice the Cauchy step length (1.5) eventually ends up in a one-dimensional
subspace spanned by the eigenvector associated with the largest eigenvalue of A. This result gives a
further motivation for the relaxed Cauchy steepest descent (RCSD) method by Raydan & Svaiter (2002),
and actually suggests that it is worth fostering an over-relaxation. Finally, in Section 5 we provide some
numerical evidence about the performance of the algorithmic approaches presented in Sections 3 and 4,
compared to the standard BB algorithm.

In the rest of this paper we denote by {λ1,λ2, . . . ,λn} the eigenvalues of the matrix A and by
{d1,d2, . . . ,dn} a set of associated orthonormal eigenvectors. We make the following assumptions:

ASSUMPTION 1 The eigenvalues λ1,λ2, . . . ,λn are such that

λ1 > λ2 > λ3, . . . ,> λn > 0.

ASSUMPTION 2 For all the methods considered in this work, any starting point x0 is such that

gT
0 d1 6= 0, gT

0 dn 6= 0.

Finally, we denote by x∗ the solution of Problem (1.4) and by κ(A) the spectral condition number of A.

2. The Steepest Descent Algorithm

The most general steepest descent (SD) method iterates according to the following algorithmic frame-
work:

ALGORITHM 1 (SD)
choose x0 ∈ℜn;
g0← Ax0−b; k← 0
while (not stop condition)

choose a suitable step length αk > 0
xk+1← xk−αkgk; gk+1← gk−αkAgk

k← k+1
endwhile

For the optimal choice (1.5) of the step length it is well known that the algorithm has q-linear rate of
convergence which depends on the spectral radius of the Hessian matrix; more precisely, the following
result holds.

PROPOSITION 2.1 [Akaike (1959)] The sequence {xk} generated by the CSD algorithm converges q-
linearly to x∗ with rate of convergence

ρ =
λ1−λn

λ1 +λn
. (2.1)
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The convergence of the SD algorithm holds for a choice of the step length much more general than
(1.5). If we consider 2αC

k as step length, then

f (xk−2α
C
k gk) = f (xk),

and the following decrease condition holds:

f (xk−αgk)< f (xk), for all α ∈ (0,2α
C
k ). (2.2)

The next proposition states the condition under which Algorithm 1, with a step condition inspired by
(2.2), converges to the solution of (1.4).

PROPOSITION 2.2 [Raydan & Svaiter (2002)] The sequence {xk} generated by Algorithm 1, with αk =
ρkαC

k , ρk ∈ [0,2], converges to x∗ provided {ρk} has an accumulation point in (0,2).

We now present some known formulas which hold for the gradients of the sequence generated by
Algorithm 1, for any choice of αk. First, we observe that

gk+1 = gk−αkAgk =
k

∏
j=1

(I−α jA)g0. (2.3)

Furthermore, if

g0 =
n

∑
i=1

µidi,

then, by (2.3), we have:

gk+1 =
n

∑
i=1

µ
k
i di, (2.4)

where

µ
k
i = µi

k

∏
j=1

(1−α jλi). (2.5)

Formulas (2.4)-(2.5) have a very high relevance in the analysis of SD methods, since they allow to study
the convergence in terms of the spectrum of the matrix A. If at the k-th iteration µk

i = 0 for some i, it
follows from (2.4) that for h > k it will be µh

i = 0, and therefore the component of the gradient along di
will be zero at all subsequent iterations. We notice that the condition µk

i = 0 holds if at the k-th iteration
αk = 1/λi. Furthermore, from (2.3) il follows that the CSD method has finite termination if and only if
at some iteration the gradient is an eigenvector of A.

The next proposition gives the asymptotic rate of convergence of {µk
1} for a quite general choice of

the step length in the SD method.

PROPOSITION 2.3 [Friedlander et al. (1998)] In Algorithm 1, if the step length αk is chosen as the
reciprocal of the Rayleigh quotient of A at any nonzero vector, then the sequence {µk

1} converges q-
linearly to zero with convergence factor 1−λn/λ1.

Friedlander et al. (1998) present a large collection of possible choices of αk (including some well known
methods) for which {µk

i } vanishes for all i. The next result extends and summarizes previous results of
Akaike (1959).
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PROPOSITION 2.4 [Nocedal et al. (2002)] Let us consider the sequence {xk} generated by the CSD
method, and suppose that Assumptions 1-2 hold. Then

lim
k

(µk
1)

2

∑
n
j=1(µ

k
j )

2
=


c2

1+ c2 for k odd,

1
1+ c2 for k even,

(2.6)

lim
k

(µk
n)

2

∑
n
j=1(µ

k
j )

2
=


1

1+ c2 for k odd,

c2

1+ c2 for k even,
(2.7)

lim
k

(µk
i )

2

∑
n
j=1(µ

k
j )

2
= 0 for 1 < i < n, (2.8)

where c is a constant satisfying

c = lim
k

µ2k
n

µ2k
1

=− lim
k

µ
2k+1
1

µ
2k+1
n

.

Proposition 2.4 shows that the Cauchy method eventually performs its search in the two-dimensional
subspace generated by d1 and dn, zigzagging between two directions, very slowly if the ratio λ1/λn
is large, without being able to eliminate from the basis of the current search direction any of the two
components d1 and dn, and hence to align the gradient with an eigendirection of the Hessian matrix.
Conversely, the nice behaviour of the BB methods is often explained saying that the non-monotonicity
of such algorithms produces an erratic path of αk in the interior of the spectrum of A which fosters all
sequences {µk

i } to go to zero (Fletcher (2005)) in spite of the non-monotonicity of the overall approach
in regard to both the sequences {‖gk‖} and { f (xk)}.

3. A modified CSD method

In this section we suggest a simple way to modify the CSD method to force the gradients in a one-
dimensional subspace as the iterations progress, to avoid the classical zig-zag pattern of the CSD which
is the main responsible for the slow convergence of the method.

We first show that the sequence of step lengths {αC
k } in the CSD method gives asymptotically some

meaningful information about the spectrum of the Hessian matrix.

PROPOSITION 3.1 Let us consider the sequence {xk} generated by the CSD method applied to Prob-
lem (1.4), and suppose that Assumptions 1-2 hold. Then, the two sequences {αC

2k} and {αC
2k+1} are

converging and

lim
k

(
1

αC
2k

+
1

αC
2k+1

)
= λ1 +λn . (3.1)
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Proof. By Lemma 3.3 in Nocedal et al. (2002), it is

lim
k

α
C
2k =

1+ c2

λn(1+ c2γ)
,

lim
k

α
C
2k+1 =

1+ c2

λn(γ + c2)
,

where c is the same constant as in Proposition 2.4 and γ = κ(A); then (3.1) trivially follows. 2

PROPOSITION 3.2 Under Assumptions 1-2, the sequence {xk} generated by Algorithm 1, with constant
step length

α̂ =
1

λ1 +λn
, (3.2)

converges to x∗. Moreover, if
g0 = µ1d1 +µndn, (3.3)

then

lim
k

µk
1

µk
n
=

µ1

µn
lim

k

(
λn

λ1

)k

= 0, (3.4)

where µk
1 and µk

n are defined in (2.5).

Proof. Since αC
k > 1/λ1 for any k, then αC

k > α̂; therefore, Proposition 2.2 applies and limk xk = x∗.
From (2.5) we have that

µ
k
1 = µ1

(
λn

λn +λ1

)k

, µ
k
n = µn

(
λ1

λn +λ1

)k

and (3.4) clearly holds. 2

Relation (3.4) indicates that, if the hypotheses of Proposition 3.2 hold, then the sequence {µk
1} goes

to zero faster than {µk
n}, the more so if κ(A) is large. Therefore, in this case, a gradient method with

step length (3.2) tends to align the search direction with the eigendirection of A corresponding to the
minimum eigenvalue λn. Note that the constant step length (3.2) is half of the theoretically “optimal”
constant step (see Elman & Golub (1994); Yuan (2008))

α
OPT =

2
λ1 +λn

. (3.5)

Propositons 3.1 and 3.2 suggest a way to force the search direction to align with an eigendirection
of the Hessian matrix A, to speed up the convergence of the algorithm. Proposition 2.4 shows that the
condition (3.3) is going to be asymptotically satisfied, and therefore the step length (3.2) might be worth
to be eventually adopted. Of course, computing the exact value of (3.2) is unrealistic, but Proposition
3.1 suggests that, for k sufficiently large,

α̃k =

(
1

αC
k
+

1
αC

k+1

)−1

=
αC

k αC
k+1

αC
k +αC

k+1
, (3.6)
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FIG. 1. Behaviour of the sequences
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λ1+λn

∣∣∣} and {‖gk‖} for the CSD method.

can be used as an approximate value for (3.2). We observe that the step length (3.6) is related to the step
length

α
Y
k = 2

(√
1

αC
k
− 1

αC
k+1

+4
‖gk‖

‖xk+1− xk‖
+

1
αC

k
+

1
αC

k+1

)−1

, (3.7)

determined by Yuan (2008) by imposing finite termination for two-dimensional quadratic problems, and
that

α̃k < α
Y
k < min{αC

k ,α
C
k+1}, (3.8)

(see (2.22) in Yuan (2008)). By (3.1), eventually α̃k < αOPT and therefore, for k sufficiently large,
the constant step length (3.2) ensures a reduction in the objective function and the convergence of the
SD algorithm, because of Proposition 2.2. In Figure 1 we show the values of the sequence {|α̃k−α|}
computed by using the Cauchy step lengths resulting from the application of the CSD method to Problem
(1.4), where n = 10, A is a randomly generated matrix with κ(A) = 100, b = (1, . . . ,1)T and x0 =
(0, . . . ,0)T ; the stop condition ‖gk‖< 10−5‖g0‖ has been considered. We notice that the sequence goes
to zero very fast, although CSD performs very poorly and needs more than 500 iterations to find a
solution with the required accuracy.

Motivated by the above results, we consider a modified version of the CSD method, named CSD1,
where step lengths of the form (3.6) are chosen at some selected iterations.
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ALGORITHM 2 (CSD1)
choose x0 ∈ℜn, ε > 0, h integer
g0← Ax0−b

αC
0 ←

gT
0 g0

gT
0 Ag0

; x1← x0−αC
0 g0; g1← Ax1−b

αC
1 ←

gT
1 g1

gT
1 Ag1

; x2← x1−αC
1 g1; g2← Ax2−b

α̃1←
αC

1 αC
0

αC
1 +αC

0

k← 1; s← 1
while (not stop condition)

repeat
p← s; k← k+1

αC
k ←

gT
k gk

gT
k Agk

; xk+1← xk−αC
k gk; gk+1← gk−αC

k Agk

α̃k←
αC

k αC
p

αC
k +αC

p

s← k
until ( |α̃k− α̃p|< ε ) switch condition
α̃ ← α̃k

for i = 1,h
k← k+1
ᾱ ←min{α̃,2αC

k }
xk← xk− ᾱgk gk← gk− ᾱAgk

endfor
endwhile

More precisely, when the sequence {α̃k} settles down (see the switch condition in Algorithm 2), CSD1
performs h consecutive steps using as step length the last computed α̃k, provided it produces a decrease
in the objective function (otherwise, CSD1 adopts the double Cauchy step).

In Figure 2 we report the behaviour of the gradient norm in CSD1 for the above problem, with
ε = 10−4, for h = 1 and h = 5. We observe that CSD1 largely outperforms CSD; furthermore, the ᾱ

steps (big dots in the graph) have a rather negligible effect in terms of reduction of the gradient, but a
very strong effect in reducing the overall number of iterations. This is because, as expected, such steps
have an important role in aligning the search direction with the eigendirection dn, as shown in Figure 3.
We also note that a value of h larger than 1 tends to further speed up this alignment effect.

4. Relaxed Cauchy method

In this section we discuss a choice of the step length that fosters the SD algorithm to make its search in
the one-dimensional space spanned by d1. The approach was suggested by the recent work of Raydan &
Svaiter (2002). They proposed a relaxation of the optimal step length (1.5) in the SD method, in order
to accelerate the convergence of the classical Cauchy method. They suggest to adopt in Algorithm 1 a
step length αk chosen at random in [0,2αC

k ], in order to escape from the zigzagging behaviour of the
CSD method, as shown next.
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ALGORITHM 3 (Relaxed CSD (RCSD))
choose x0 ∈ℜn

g0← Ax0−b; k = 0
while (not stop condition)

randomly choose αk ∈ [0,2αC
k ]

xk+1← xk−αkgk; gk+1← gk−αkAgk

k← k+1
endwhile

Proposition 2.2 guarantees that the RCSD method converges monotonically to x∗. Numerical exper-
iments in Raydan & Svaiter (2002) show that this method largely outperforms CSD, although the BB
method and its Cauchy Barzilai Borwein (CBB) variant, which are non-monotone, are the fastest and
most effective ones. From their numerical experiments the authors observe the tendency of the BB and
CBB methods to force gradient directions to approximate eigenvectors of the Hessian matrix A; this
explains, to some extent, the good behaviour of these methods.

The next proposition actually shows why and in which sense an over-relaxation of the Cauchy step
fosters a similar tendency, and suggests a slightly different form of relaxation that produces better effects
than a simple random choice of the step length in [0,2αC

k ].

PROPOSITION 4.1 Let us consider the sequences {xk} and {gk} generated by the SD Algorithm 1,
where

αk = 2α
C
k ; (4.1)

then
lim

k

gk

∏
k
j=1(1−α jλ1)

= µ1d1, (4.2)

lim
k

αk =
2
λ1

, (4.3)

lim
k

∇ f
(
xk−α

C
k gk
)
= 0. (4.4)

Proof. It is

gk = µ1

(
k

∏
j=1

(1−α jλ1)

)
d1 +

n

∑
i=2

µi

(
k

∏
j=1

(1−α jλi)

)
di

and hence
gk

∏
k
j=1(1−α jλ1)

= µ1d1 +
n

∑
i=2

µi

k

∏
j=1

(1−α jλi)

(1−α jλ1)
di. (4.5)

Furthermore,
λn

2
6

1
α j

6
λ1

2
(4.6)

and then
1−α jλn >−1, 1−α jλ1 6−1. (4.7)

If we set θ = λ1−λ2, then λ1 > λi +θ , and it follows that

1−α jλi > 1−α j (λ1−θ)



ON SPECTRAL PROPERTIES OF STEEPEST DESCENT METHODS 13 of 20

and hence, by (4.7),
1−α jλi

1−α jλ1
6 1+

θα j

1−α jλ1
. (4.8)

By using (4.6) we get
θα j

1−α jλ1
=

θ

1
α j
−λ1

6
θ

λn
2 −λ1

and thus
1−α jλi

1−α jλ1
6 1−ρ, (4.9)

with
ρ =

2θ

2λ1−λn
. (4.10)

Since
1−α jλi

1−α jλ1
=−1+

2−α j(λ1 +λi)

1−α jλ1
(4.11)

and, by (4.6),

2−α j(λ1 +λi)

1−α jλ1
>

2− 2
λn
(λ1 +λi)

1−α jλ1
=

2λn−2λ1−2λi

λn(1−α jλ1)
=

2λ1−2λn +2λi

α jλ1λn−λn
>

2θ +2λi

2λ1−λn
> ρ,

we get

−1+ρ 6
1−α jλi

1−α jλ1
6 1−ρ.

Therefore, by (4.5), we have (4.2).
Because of (4.2)

lim
k

αk = 2
µ2

1 dT
1 d1

µ2
1 dT

1 Ad1
,

and, since Ad1 = λ1d1, we have

lim
k

αk = 2
µ2

1 dT
1 d1

µ2
1 λ1dT

1 d1
=

2
λ1

.

Thus (4.3) holds.
Finally, in order to prove (4.4) we first note that the sequence {‖gk‖}, is bounded above, and so is

{∏k
j=1(1−α jλ1)} because of (4.2). Then

lim
k

∇ f
(

xk−
αk

2
gk

)
= lim

k

(
gk−1−

αk

2
Agk−1

)
=

lim
k

k−1

∏
j=1

(1−α jλ1)

(
gk−1

∏
k−1
j=1(1−α jλ1)

− αk

2
A

gk−1

∏
k−1
j=1(1−α jλ1)

)
=

lim
k

k−1

∏
j=1

(1−α jλ1)

(
µ1d1−

1
λ1

µ1Ad1

)
= lim

k

k−1

∏
j=1

(1−α jλ1)(µ1d1−µ1d1) = 0,
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FIG. 4. Behaviour of the the (normalized) component of the gradient along the eigendirection d1 in 15 consecutive double Cauchy
steps.

hence (4.4) holds and the proof is complete. 2
Proposition 4.1 suggests that the double Cauchy step, although meaningless in terms of function reduc-
tion, might have a significant impact in terms of alignment of the gradient with the eigenvector d1, and
this might be of some support in a general steepest descent framework.To verify such “alignment effect”
we iteratively applied 15 consecutive double Cauchy steps to the problem described in Section 3. As
predicted by Proposition 4.1, the component of the gradient along the eigendirection corresponding to
the maximum eigenvalue of A becomes soon dominant, as shown in Figure 4.

For this problem, we also considered a modified version of the CSD method (CSDM), in which 5
consecutive double Cauchy steps are performed every 10 Cauchy steps; the results in Figure 5 shows
that this simple modification of the Cauchy algorithm produces a rather meaningful speedup of the
convergence.

About the RCSD method, Proposition 4.1 seems to suggest an over-relaxation rather than an under-
relaxation of the Cauchy step, and therefore we considered a modified version of RCSD, called RCSD1,
where

αk ∈ [0.8α
C
k ,2α

C
k ]; (4.12)

Figure 6 shows the results of RCSD1 applied to the same problem considered above; of course, because
of the randomness in (4.12), a careful and deeper analysis is needed in order to evaluate the effectiveness
of the method, especially to check the validity of our claim about the advantage in using RCSD1 rather
than RCSD. Extensive numerical tests will be considered in the next section to get a clear picture of the
numerical behaviour of the algorithmic approaches we proposed in the last two sections.
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5. Numerical experiments

In this section we report some numerical results comparing CSD1 and RCSD1 with the BB algorithm
using the step length (1.8). A more extensive comparison with other gradient methods would be inter-
esting, but out of the scope of this paper, that is mainly to show how powerful, and probably underesti-
mated, although well known, is the Cauchy method in revealing the spectral properties of Problem (1.4).
These properties can easily be plugged into the algorithm with rather surprising results. On the other
hand, the BB method is considered a quite efficient strategy, well representative of the so-called gradi-
ent methods with retard, even competitive with CG methods when low accuracy is required (Friedlander
et al. (1998), Fletcher (2005)); therefore, it is a valid benchmark for testing the effectiveness of the CSD1
and RCSD1 algorithms. We also report the performance of the algorithm RCSD, mainly to verify if the
conjecture in Section 4 about the advisability of using (4.12) in the randomly relaxed Cauchy method,
as suggested by Theorem 4.1. We considered two sets of test problems of type (1.4). The problems
of the first set were randomly generated, by using Matlab functions, with dimensions ranging from 100
to 1000. The Hessian A was generated by sprandsym, using density = 0.8, kind=1, and condi-
tion number κ(A) = 102,103,104,105. For each of the four instances, x∗ was generated by rand with
entries in [−10,10] and the linear term was built as b = Ax∗. Furthermore, for each instance, 5 starting
points were generated by rand with entries in [−10,10]. As stopping criterion we used

‖gk‖6 10−6‖g0‖.

All algorithms were implemented in Matlab. In CSD1, h and ε were set to 5 and 10−2, respectively.
In Figures 7-8 we report the number of iterations of the four algorithms, fixing the condition number

and varying the matrix dimension. The number of iterations is the mean of the results obtained with the
five different starting points. We first notice that the poorest results were obtained by the two random
Cauchy algorithms RCSD and RCSD1. This is not surprising at all (Friedlander et al. (1998)); however,
it is worth noting the clear superiority of RCSD1 over RCSD. The other two methods give the best
results, and actually CSD1 improves a little with respect to BB (5% less iterations on the average).
As expected, the performance of both the algorithms deteriorates on the most ill conditioned problems
(Figures 8), while the problem size appears to be a much less critical issue.

In Figure 9 we compare the complete convergence history (norm of the gradient and function value)
of the CSD1 and BB algorithms for a specific instance of the test problems (n=300, κ(A) = 103). The
difference in the behaviour of the two algorithms clearly emerges. The CSD1 iterates with step length ᾱ

are highlighted in the picture, making clear their role in accelerating the decrease of the objective func-
tion; for instance, around iteration 110, a reduction of about two orders of magnitude can be observed
after a sequence of ᾱ steps. A noticeable feature of CSD1 is that it adopted the double Cauchy step only
once in order to preserve the algorithm monotonicity, and actually, in the overall set of 400 random test
problems, it took this step only 20 times.

Similar results were obtained with the second set of test problems, consisting of the Laplace1(a) and
Laplace1(b) problems described in Fletcher (2005), which arise from a uniform 7-point finite-difference
discretization of the 3D Poisson equation on a box, with homogeneous Dirichlet boundary conditions.
These problems have 106 variables and a highly sparse Hessian matrix with condition number 103.61.
For each problem, the linear term b and the starting point x0 were generated as in Fletcher (2005);
the iteration was terminated when ‖gk‖ < η‖g0‖, with η = 10−2,10−4,10−6, to check the effects of
different accuracy requirements. The algorithms were also compared with the CG method implemented
in the Matlab pcg function.

The results in Table 3 show that, when high accuracy is required, CG outperforms the other gradient
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FIG. 7. Iterations for the randomly generated test problems, with κ(A) = 102 (left) and κ(A) = 103 (right).

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

Problem size

Ite
ra

tio
ns

 

 

BB

RCSD1

RCSD

CSD1

100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

Problem size

Ite
ra

tio
ns

 

 

BB

RCSD1

RCSD

CSD1

FIG. 8. Iterations for the randomly generated test problems, with κ(A) = 104 (left) and κ(A) = 105 (right).



18 of 20 R. DE ASMUNDIS ET AL.

0 50 100 150 200
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Iterations

()

 

 

BB

CSD1

̄

2

0 50 100 150 200
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Iterations

kk

 

 

BB

CSD1

̄

2

FIG. 9. Convergence history for algorithms BB and CSD1.



ON SPECTRAL PROPERTIES OF STEEPEST DESCENT METHODS 19 of 20

Problem CG BB CSD1 RCSD RCSD1
Laplace1 (a) 99 112 68 151 112
Laplace1 (b) 32 38 32 50 47

Table 1. Iterations for the Laplace problems, with stop condition ‖gk‖< 10−2‖g0‖.

Problem CG BB CSD1 RCSD RCSD1
Laplace1(a) 152 392 300 745 459
Laplace1(b) 179 188 174 366 251

Table 2. Iterations for the Laplace problems, with stop condition ‖gk‖< 10−4‖g0‖.

Problem CG BB CSD1 RCSD RCSD1
Laplace1(a) 189 561 562 1251 777
Laplace1(b) 274 383 386 791 561

Table 3. Iterations for the Laplace problems, with stop condition ‖gk‖< 10−6‖g0‖.

methods. RCSD1 and RCSD achieve the poorest results, with RCSD1 showing a significant improve-
ment over RCSD; BB and CSD1 take a smaller number of iterations than the previous methods, but are
still much slower than CG. Very interesting are the results in Tables 1 and 2, which suggest that, for low
accuracy requirements, gradient methods, and especially CSD1, are reasonable alternatives to CG, for
instance in the computational contexts outlined in Fletcher (2005). A possible explanation of the nice
behaviour of CSD1 shown in Tables 1 and 2 is that a rather inaccurate alignment of the search direction
with an eigendirection of A (which, in our experience, is usually achieved in very few iterations) can be
sufficient to get a low-accuracy solution. When high accuracy is required, we guess that the effective-
ness of the approach deteriorates because of the roundoff errors, that limit the extent to which α̂ can
actually be estimated through α̃k.

In conclusion, about CSD1 and BB, we do not feel fair to state the superiority of one method with
respect to the other. We just believe that our numerical experiences support the approach motivated by
the theoretical results in Sections 3 and 4, which highlight some potentialities of the CSD algorithm,
related to the spectral properties of A revealed by the method. The main drawback of CSD1 lies in the
arbitrariness in the choice of the parameter h; however, numerical tests were carried out with different
values of h, showing that, unless very small values are taken (say 1 or 2), the performance of CSD1
depends very little on h (varying its values between 3 and 10 was almost uninfluential on the algorithm
performance).

Motivated by the encouraging numerical results, we hope the analysis in this paper can be further
refined in order to design effective gradient methods for non-quadratic functions, for which the mono-
tonicity property of CSD1 might represent a remarkable advantage over BB-like algorithms. Finally, we
believe that using step lengths able to force the algorithm search in low-dimensional subspaces should
keep its benefits also in the more general framework of constrained optimization; therefore, a possi-
ble further development of this research might be to incorporate the ideas outlined here in a projected
gradient framework, to deal with bound constrained problems.
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