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Abstract. Variational models are a valid tool for edge–preserving image restoration

from data affected by Poisson noise. This paper deals with total variation and

hypersurface regularization in combination with the Kullbach Leibler divergence as

data fidelity function. We propose an iterative method, based on an alternating

extragradient scheme, which is able to solve in a numerically stable way the primal–

dual formulation of both total variation and hypersurface regularization problems.

In this method, tailored for general smooth saddle–point problems, the stepsize

parameter can be adaptively computed so that the convergence of the scheme is proved

under mild assumptions. In the numerical experience, we focus the attention on the

artificial smoothing parameter that makes different the total variation and hypersurface

regularization. A set of experiments on image denoising and deblurring problems

is performed in order to evaluate the influence of this smoothing parameter on the

stability of the proposed method and on the features of the restored images.

1. Introduction

The image restoration problems arising in many applications, such as fluorescence

microscopy, optical–infrared astronomy, digital radiography are characterized by data

affected by Poisson noise. In particular, the image formation can be modeled as a linear

process including deterministic and statistical aspects (see [1] for an overview). More

precisely, denoting by g ∈ Rm the detected data, each measured value gi is a realization

of a Poisson random variable with expected value (Hx+b)i, where x ∈ Rn is the original

object, the matrix H ∈ Rm×n represents the distortion due to the acquisition system

and b ∈ Rm is a positive constant background term.

From this point of view, the image restoration consists in the inverse problem of finding

an approximation of x, given g, H and b. When H = I we have a denoising problem

while, in the other cases, we deal with a deblurring problem.

In the Bayesian framework [2, 3], the restoration is obtained by solving the following

optimization problem

min
x≥η

f(x) ≡ f0(x) + βf1(x) (1)
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where f0(x) is a positive functional measuring the data discrepancy, f1(x) is a

regularization term and β is a positive parameter balancing the relative weight of the

two terms. The constraint x ≥ η, where η ∈ Rn, η ≥ 0, is also imposed, since solutions

with negative entries are not meaningful for the mentioned applications.

Under the hypothesis of Poisson noise, the following Kullback-Leibler (KL) divergence

expresses the data discrepancy:

f0(x) =
∑
k

{
gk ln

gk
(Hx+ b)k

+ (Hx+ b)k − gk
}

(2)

with gk ln gk = 0 if gk = 0. Usual hypotheses on the imaging matrix H are the

nonnegativity of its entries and a normalization condition
∑

iHij = 1, ∀j.
The choice of the regularization functional f1(x) strongly affects some features of the

solutions of (1), as for example the smoothness, the sparsity, the sharpness of the edges.

In this paper we focus on the edge–preserving regularization via the Total Variation

(TV) functional, which, in the discrete framework, is defined as

f1(x) =
n∑

k=1

∥(∇x)k∥ (3)

where (∇x)k denotes a discrete approximation of the gradient of x at the pixel k and

∥.∥ is the usual l2 norm of a vector (∥a∥ =
√∑

i a
2
i ).

The TV functional (3) introduces many difficulties from the analytical and numerical

point of view, since it is not everywhere differentiable. In order to overcome these

difficulties, several authors consider the following smoothed approximation

f1(x) =
n∑

k=1

∥∥∥∥∥
(

(∇x)k
δ

)∥∥∥∥∥ (4)

where δ is a nonzero parameter [4]. This variant has been considered also in a more

general edge–preserving regularization framework as Hypersurface (HS) potential [5].

Here and in the following, we will indicate the combination of (2) and (3) as KL-TV

and its smoothed version (2)-(4) as KL-HS.

A more classical approach to the edge–preserving regularization is the combination of

the quadratic term f0(x) =
1
2
∥Hx+ b− g∥2 and (3), which, in the denoising case, is the

well-known Rudin-Osher-Fatemi (ROF) model [6].

This model is extensively studied, and in the past years, a variety of algorithms have

been proposed to solve it or its smoothed version in the nonnegatively constrained or in

the unconstrained case: see for example [7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and reference

therein, while a survey of the available software can be found in [17].

For the smoothed ROF model, some authors discuss also the problem of estimating a

correct value of the artificial parameter δ with respect to the numerical stability of the

methods [7] and to its effects on the restored images [16].

At the best of our knowledge, the KL-TV model has been proposed first in [18] for

SPECT image reconstruction and it has been recently motivated as the more suited

for Poisson data for denoising and deblurring problems [19, 20]. Algorithms based
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on the Expectation Maximization (EM) method [18, 21] and on Bregman iterations

[22, 23, 24, 25, 26, 27] have been proposed. For the model KL-HS, we mention the

projected quasi–Newton method proposed in [28] and the very efficient Scaled Gradient

Projection (SGP) method, described in [29]. In [29, 30], the influence of the parameter

δ on the restored images and its relation with the regularization parameter β are

also investigated. However, the authors point out that for small values of δ the SGP

method suffers from a very slow convergence and the restored image presents undesired

oscillations.

The same degenerating behaviour has been observed also for others kinds of methods,

specialized for smooth optimization problems [31, 32], when applied to the KL-HS model

with small values of δ.

The aim of this paper is to propose a numerical method which is able to solve the

nondifferentiable KL-TV problem as well as its smoothed version KL-HS in a numerically

stable way, for all δ ≥ 0. Using this method we can compare the smoothed and

unsmoothed KL-HS and KL-TV models, by investigating the actual effect of the artificial

parameter δ ≥ 0 on denoising and deblurring problems. Furthermore we can use the

proposed method to apply the discrepancy criterion proposed in [29, 30] for finding the

regularization parameter.

The key point for introducing our method is the primal–dual (or saddle–point) equivalent

formulation of problem (1) described in Section 2, which has the form

min
x∈X

max
y∈Y

F (x, y) (5)

where X and Y are two appropriate constraint sets such that D = X × Y is a closed

and convex domain and F is a smooth convex-concave function.

We recall that a saddle–point problem is a monotone variational inequality problem

(VIP) [33]. As a consequence, any numerical method proposed for monotone VIPs

could be applied to solve (5).

One of the most effective approaches for the solution of a general monotone VIP is

the class of extragradient–type methods [34, 35, 36], whose iterative schemes consist in

projection steps with a suitable choice of the steplength parameter.

On the other side, a saddle–point problem has some specific features which could be

exploited in order to design more effective numerical methods: in particular, the domain

is a cartesian product of two sets.

With this in mind, in Section 3 we propose an extragradient scheme especially tailored

for general smooth saddle–point problems, where the iterates are updated in an

alternating, or Gauss-Seidel, way [37, 38] and the stepsize parameter can be adaptively

computed. The convergence analysis for the proposed method is developed and a

practical implementation of the method, suitable for KL-HS or KL-TV problems, is

presented.

The results of a numerical experience on image deblurring and denoising problems with

KL-HS and KL-TV models are reported in Section 4. In Section 5 we drawn some

conclusions.
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2. Primal–dual formulation

In this section we derive the primal–dual formulation of the KL-TV and KL-HS models.

Any two dimensional image of N ×N pixels can be identified with a vector in Rn,

n = N2 obtained by stacking the pixels columnwise. For sake of simplicity we consider

a two dimensional square image x ∈ RN×N with periodic boundary conditions, but the

following remarks can be extended also to the 3D case and to rectangular images with

Neumann or reflective boundary conditions (see [39] for details).

First, we observe that the discrete gradient of x at the pixel k = (j − 1)N + i, for

i, j = 1, ..., N can be defined by the forward finite difference formula as follows

(∇x)k =

(
x(j−1)N+mod(i,N)+1 − xk
xmod(j,N)N+i − xk

)
= Akx (6)

where Ak ∈ R2×n is a matrix with only two nonzero entries on each row, equal to −1
and 1.
When we consider the discrete primal–dual version of the smoothed and unsmoothed
total variation functional [8], the KL-TV or KL-HS problem can be reformulated as

min
x∈X

max
y∈Y

F (x, y) ≡
∑
k

{
gk ln

gk
(Hx+ b)k

+ (Hx+ b)k − gk

}
+ βyT z(x) (7)

where X = {x ∈ Rn : x ≥ η} and z(x) and Y in the case (3) are given by

z(x) = Ax, A =


A1

A2

...

An

 , Y = {y ∈ R2n :
√
y22i−1 + y22i ≤ 1, i = 1, ..., n}(8)

while for (4) we have

z(x) =

(
Ax

δen

)
, en =


1

1
...

1

 ∈ Rn,

Y = {y ∈ R3n :
√
y22i−1 + y22i + y22n+i ≤ 1, i = 1, ..., n}.

(9)

The functional F in (7) is convex with respect to x and concave with respect to y.

In addition, under the assumption that en does not belong to the null space of H, the

objective function of (1) is coercive. Thus, we can restrict the variable x in a bounded

subset of X and invoke the min–max theorem [40, p.397] to ensure the existence of a

solution of (7). A similar analysis holds also for the least squares data fidelity term

[13, 14, 41].

A solution v∗ = (x∗, y∗) of (5) satisfies also the following VI problem

(v − v∗)TΦ(v∗) ≥ 0 ∀v ∈ D, (10)

where D = X × Y , Φ(v) ≡ Φ(x, y) = (∇xF (x, y)
T ,−∇yF (x, y)

T )T and the fixed point

equation

v∗ = PD(v
∗ − αΦ(v∗)) ∀α > 0,
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where P denotes the orthogonal projection operator. We observe that, thanks to the

separable structure of the domain D, the last equality holds if and only if

x∗ = PX(x
∗ − α∇xF (x

∗, y∗))

y∗ = PY (y
∗ + α∇yF (x

∗, y∗))
(11)

(see [33] for an overview on the VIPs).

From the computational point of view, the projections onto the sets X and Y are both

easy to compute: the first one is a simple thresholding, while the projection onto Y of

a vector y is defined as (PY (y))k = skyk, with

s2i−1 = s2i =
1

max(1,
√
y22i−1 + y22i)

, i = 1, ..., n

when Y is defined as in (8) , while for the case (9) we have

s2i−1 = s2i = s2n+i =
1

max(1,
√
y22i−1 + y22i + y22n+i)

, i = 1, ..., n

The simple structure of the constraints in (7) makes the projection methods attractive

and many variants are available in the literature for general monotone VIPs.

However, the effectiveness of a projection method is strictly related to the choice of

the steplength parameter. There are two main strategies to choose it: it can be held

fixed and usually its value depends on an a priori estimate of the Lipschitz constant of

the vector field Φ; otherwise it can be adaptively updated so that sufficient conditions

for the convergence of the method are satisfied. The Lipschitz condition is often a

sufficient condition for the convergence. In practice, the choice of the steplength from

the Lipschitz constant could yield very short steps and, in addition, estimating the

Lipschitz constant could be difficult. This motivates us to adopt the second strategy;

in particular, we consider the extragradient method [34, 35, 36], which is defined by the

following iteration

v̄(k) = PD(v
(k) − αkΦ(v

(k)))

v(k+1) = PD(v
(k) − αkΦ(v̄

(k)))
(12)

where the steplength αk satisfies

1− α2
k

∥Φ(v(k))− Φ(v̄(k))∥2

∥v(k) − v̄(k)∥2
> 0.

The previous condition is implementable and, in practice, the value of αk is determined

by a backtracking procedure, guaranteeing the convergence of the method under suitable

monotonicity and Lipschitz conditions on Φ (see [36] and reference therein).

However, as remarked also in [13], the above general form of the extragradient method

does not capture the special features of the problem (7). In the next section we propose

a variant of (12) where the computation of the iterate v(k) is split in two successive

updates of the component x(k) and y(k).
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3. An alternating extragradient method

The method we present in this section is a generalization of [37, 38], allowing an adaptive

choice of the steplength. Indeed we do not make explicit use of the Lipschitz constant

of the gradient, but we compute only a local approximation of it, as in the Khobotov’s

method [35, 36].

The method is very simple and it is described by the following iteration formulae

ȳ(k) = PY (y
(k) + αk∇yF (x

(k), y(k))) (13)

x(k+1) = PX(x
(k) − αk∇xF (x

(k), ȳ(k))) (14)

y(k+1) = PY (y
(k) + αk∇yF (x

(k+1), y(k))) (15)

In the following section we will prove the convergence of the previous scheme to a saddle

point of F , when the steplength αk is chosen in a bounded interval [αmin, αmax] with

0 < αmin < αmax and{
1− 2αkAk − 2α2

kB
2
k ≥ ϵ

1− 2αkCk ≥ ϵ
(16)

where 0 < ϵ < 1 is constant and

Ak =
∥∇xF (x

(k+1), ȳ(k))−∇xF (x
(k), ȳ(k))∥

∥x(k+1) − x(k)∥

Bk =
∥∇yF (x

(k+1), y(k))−∇yF (x
(k), y(k))∥

∥x(k+1) − x(k)∥

Ck =
∥∇yF (x

(k+1), y(k))−∇yF (x
(k+1), ȳ(k))∥

∥y(k) − ȳ(k)∥

(17)

A practical implementation of the method (13)–(15) is given in Algorithm AEM. We

remark that this scheme consists in successive gradient ascent (13) and descent (14)

steps followed by an extragradient step (15). We note that the method can also be

written by exchanging the role of the primal and dual variables x, y.

The saddle–point formulation of a TV regularization problem has been analyzed in the

recent literature for the ROF model, and numerical methods able to solve it have been

proposed for example in [13, 41, 42, 43]. At the best of our knowledge, this formulation

is not yet studied for KL-TV or KL-HS problems. Recent papers deal with primal or

dual formulation of these problems [18, 21, 22, 23, 24, 25, 26, 27, 29]. We believe that

the scheme (13)–(15) has two main advantages making it attractive for the solution of

the KL-TV and KL-HS problems. First, it is defined only by means of explicit steps.

Indeed, many of the mentioned methods require the solution of a minimum problem at

each iteration. Such solution has a closed form representation when the term f0(x) in

(1) is the least squares functional, but this may not be true for the KL discrepancy.

Secondly, the convergence of the whole scheme is guaranteed, without strict convexity

assumptions, by means of an appropriate selection of the steplength αk, which can be

done adaptively. In particular, as we will see more in detail in the following section, it
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Figure 1. F (x, y) = xy. (a) Trajectory of the iterates generated by

the alternating gradient ascent–descent method y(k+1) = PY (y
(k) + αkx

(k)),

x(k+1) = PX(x(k) − αky
(k+1)). (b) Iterates of the method (13)–(15) with

αk = (
√
1− ϵ)/2 which satisfies (16) (ϵ = 10−4; Ak = Ck = 0, Bk = 1 for

all k in this example).

is possible to implement a self-adjusting backtracking procedure to compute it.

Our approach is different from the one in [13, 41], where the steplengths in the ascent and

descent directions are chosen a priori as suitable sequences. Furthermore, we observe

that a strict convexity assumption is crucial for the convergence of several primal–dual

methods [16, 42, 44]. In our method this assumption is not required, thanks to the

extragradient step (15). Indeed, for general convex–concave functionals over bounded

domains the successive alternation of projected gradient ascent–descent steps (13)–(14),

with y(k+1) = ȳ(k) is not convergent. This fact could be easily verified on a simple

counterexample [37, 38] with F (x, y) = xy and D = [−10, 10]2 ⊂ R2: projected gradient

ascent–descent steps generate sequences which do not converge to the unique saddle

point (0, 0) and, for small values of αk, the iterates approximate a circular trajectory

around the origin (see Figure 1).

On the contrary, as explained in the following section, the method (13)–(15) equipped

with a suitable choice of αk has strong convergence properties for any convex–concave

functional F whose gradient satisfies some Lipschitz conditions.

As we show in Section 3.2 this allows the application of the method to the KL-TV or

KL-HS models in the formulation (7).

3.1. Convergence Analysis

In the subsequent analysis we will make use of the following two properties of the

projection operator.

Lemma 3.1 Let Ω ⊆ Rn be a nonempty, closed, convex set, w, z ∈ Rn, u ∈ Ω.
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i) [45] The projection operator is non-expansive

∥PΩ(w)− PΩ(z)∥ ≤ ∥w − z∥

ii) [36] The following inequality holds

∥PΩ(z)− u∥2 ≤ ∥z − u∥2 − ∥PΩ(z)− z∥2 (18)

Now we give the complete proof of our main result for the scheme (13)–(14). Our proof

generalizes the result in [38], and runs on less restrictive hypotheses on the parameter

αk, that in our approach can be adaptively chosen. Indeed we do not make explicit use

of the Lipschitz constant of the gradient, but we compute only a local approximation of

it, as in the Khobotov’s method [36].

Theorem 1 Assume that F (x, y) is convex with respect to x and concave with respect

to y in the domain D = X × Y , and that there exists a saddle point of F in D. Let

{(x(k), y(k))} be the sequence generated by the algorithm (13)–(15) where αk is chosen in

a bounded interval [αmin, αmax] such that (16) holds. Then, {(x(k), y(k))} converges to a

saddle point of F in D.

Proof. Let (x∗, y∗) ∈ D a saddle point of F . By applying Lemma 3.1 part ii) to (15),
setting z = y(k) + αk∇yF (x

(k+1), y(k)) and u = y∗ we obtain

∥y(k+1) − y∗∥2 ≤

≤ ∥y(k) + αk∇yF (x(k+1), y(k))− y∗∥2 − ∥y(k+1) − y(k) − αk∇yF (x(k+1), y(k))∥2

= ∥y(k) − y∗∥2 + 2αk⟨∇yF (x(k+1), y(k)), y(k) − y∗⟩+

−∥y(k+1) − y(k)∥2 + 2αk⟨∇yF (x(k+1), y(k)), y(k+1) − y(k)⟩

= ∥y(k) − y∗∥2 − ∥y(k+1) − y(k)∥2 + 2αk⟨∇yF (x(k+1), y(k)), y(k+1) − y∗⟩

(19)

Similarly, from (13) and (18) with z = y(k) + αk∇yF (x
(k), y(k)) and u = y(k+1) we have

∥ȳ(k) − y(k+1)∥2 ≤

≤ ∥y(k) + αk∇yF (x(k), y(k))− y(k+1)∥2 − ∥ȳ(k) − y(k) − αk∇yF (x(k), y(k))∥2

= ∥y(k) − y(k+1)∥2 + 2αk⟨∇yF (x(k), y(k)), y(k) − y(k+1)⟩+

−∥ȳ(k) − y(k)∥2 + 2αk⟨∇yF (x(k), y(k)), ȳ(k) − y(k)⟩

= ∥y(k) − y(k+1)∥2 − ∥ȳ(k) − y(k)∥2 + 2αk⟨∇yF (x(k), y(k)), ȳ(k) − y(k+1)⟩

(20)

Adding and subtracting 2αk⟨∇yF (x
(k+1), y(k)), ȳ(k) − y(k+1)⟩ to the right-hand side, one

obtains

∥ȳ(k) − y(k+1)∥2 ≤

≤ ∥y(k) − y(k+1)∥2 − ∥ȳ(k) − y(k)∥2 + 2αk⟨∇yF (x(k+1), y(k)), ȳ(k) − y(k+1)⟩

+2αk⟨∇yF (x(k), y(k))−∇yF (x(k+1), y(k)), ȳ(k) − y(k+1)⟩
(21)
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Summing (19) and (21) yields

∥y(k+1) − y∗∥2 ≤

≤ ∥y(k) − y∗∥2 − ∥ȳ(k) − y(k+1)∥2 − ∥ȳ(k) − y(k)∥2+

+2αk⟨∇yF (x(k+1), y(k)), ȳ(k) − y∗⟩+

+2αk⟨∇yF (x(k), y(k))−∇yF (x(k+1), y(k)), ȳ(k) − y(k+1)⟩

(22)

Since F is concave with respect to the variable y, we have

⟨∇yF (x
(k+1), y(k)), y∗ − y(k)⟩ ≥ F (x(k+1), y∗)− F (x(k+1), y(k))

Then, adding and subtracting 2αk⟨∇yF (x
(k+1), y(k)), y(k)⟩, we have

∥y(k+1) − y∗∥2 ≤

≤ ∥y(k) − y∗∥2 − ∥ȳ(k) − y(k+1)∥2 − ∥ȳ(k) − y(k)∥2+

+2αk⟨∇yF (x(k), y(k))−∇yF (x(k+1), y(k)), ȳ(k) − y(k+1)⟩+

+2αk⟨∇yF (x(k+1), y(k)), ȳ(k) − y(k)⟩+ 2αk{F (x(k+1), y(k))− F (x(k+1), y∗)}

(23)

Let now consider the definition of x(k+1) in (14). Invoking again (18) with z =
x(k) + αk∇yF (x

(k), ȳ(k)) and u = x∗ we can write

∥x(k+1) − x∗∥2 ≤

≤ ∥x(k) − αk∇xF (x(k), ȳ(k))− x∗∥2 − ∥x(k+1) − x(k) + αk∇xF (x(k), ȳ(k))∥2

= ∥x(k) − x∗∥2 − ∥x(k+1) − x(k)∥2+

+2αk⟨∇xF (x(k), ȳ(k)), x∗ − x(k)⟩ − 2αk⟨∇xF (x(k), ȳ(k)), x(k+1) − x(k)⟩

(24)

By the convexity of F with respect to the variable x we have

⟨∇xF (x
(k), ȳ(k)), x∗ − x(k)⟩ ≤ F (x∗, ȳ(k))− F (x(k), ȳ(k))

thus we can write

∥x(k+1) − x∗∥2 ≤ ∥x(k) − x∗∥2 − ∥x(k+1) − x(k)∥2+

+2αk{F (x∗, ȳ(k))− F (x(k), ȳ(k))− ⟨∇xF (x(k), ȳ(k)), x(k+1) − x(k)⟩} (25)

Summing and subtracting 2αkF (x
(k+1), ȳ(k)) to the right hand side and observing that

the convexity implies also that

F (x(k+1), ȳ(k))− F (x(k), ȳ(k)) ≤ ⟨∇xF (x
(k+1), ȳ(k)), x(k+1) − x(k)⟩

we obtain

∥x(k+1) − x∗∥2 ≤ ∥x(k) − x∗∥2 − ∥x(k+1) − x(k)∥2+

+2αk{F (x∗, ȳ(k))− F (x(k+1), ȳ(k))+

⟨∇xF (x(k+1), ȳ(k))−∇xF (x(k), ȳ(k)), x(k+1) − x(k)⟩}
(26)

Now we recall that the saddle point (x∗, y∗) satisfies

F (x∗, ȳ(k)) ≤ F (x∗, y∗) ≤ F (x(k+1), y∗)
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which leads to the following inequality

∥x(k+1) − x∗∥2 ≤

≤ ∥x(k) − x∗∥2 − ∥x(k+1) − x(k)∥2 + 2αk{F (x(k+1), y∗)− F (x(k+1), ȳ(k))}+

+2αk⟨∇xF (x(k+1), ȳ(k))−∇xF (x(k), ȳ(k)), x(k+1) − x(k)⟩
(27)

Summing the inequalities (23) and (27) and adding and subtracting 2αk⟨∇yF (x
(k+1), ȳ(k)), ȳ(k)−

y(k)⟩ yields
∥x(k+1) − x∗∥2 + ∥y(k+1) − y∗∥2 ≤

≤ ∥x(k) − x∗∥2 + ∥y(k) − y∗∥2 − ∥x(k+1) − x(k)∥2 − ∥ȳ(k) − y(k+1)∥2+

−∥ȳ(k) − y(k)∥2+

+2αk⟨∇xF (x(k+1), ȳ(k))−∇xF (x(k), ȳ(k)), x(k+1) − x(k)⟩+

+2αk⟨∇yF (x(k), y(k))−∇yF (x(k+1), y(k)), ȳ(k) − y(k+1)⟩+

+2αk{F (x(k+1), y(k))− F (x(k+1), ȳ(k)) + ⟨∇yF (x(k+1), ȳ(k)), ȳ(k) − y(k)⟩}+

+2αk⟨∇yF (x(k+1), y(k))−∇yF (x(k+1), ȳ(k)), ȳ(k) − y(k)⟩

≤ ∥x(k) − x∗∥2 + ∥y(k) − y∗∥2 − ∥x(k+1) − x(k)∥2 − ∥ȳ(k) − y(k+1)∥2+

−∥ȳ(k) − y(k)∥2+

+2αk⟨∇xF (x(k+1), ȳ(k))−∇xF (x(k), ȳ(k)), x(k+1) − x(k)⟩+

+2αk⟨∇yF (x(k), y(k))−∇yF (x(k+1), y(k)), ȳ(k) − y(k+1)⟩+

+2αk⟨∇yF (x(k+1), y(k))−∇yF (x(k+1), ȳ(k)), ȳ(k) − y(k)⟩

(28)

where the last inequality follows from the concavity of F with respect to y. By the
Cauchy-Schwartz inequality, we obtain

∥x(k+1) − x∗∥2 + ∥y(k+1) − y∗∥2 ≤

≤ ∥x(k) − x∗∥2 + ∥y(k) − y∗∥2 − ∥x(k+1) − x(k)∥2 − ∥ȳ(k) − y(k+1)∥2+

−∥ȳ(k) − y(k)∥2+

+2αk∥∇xF (x(k+1), ȳ(k))−∇xF (x(k), ȳ(k))∥∥x(k+1) − x(k)∥+

+2αk∥∇yF (x(k), y(k))−∇yF (x(k+1), y(k))∥∥ȳ(k) − y(k+1)∥+

+2αk∥∇yF (x(k+1), y(k))−∇yF (x(k+1), ȳ(k))∥∥ȳ(k) − y(k)∥

(29)

Now we recall that, since the projection operator is non-expansive, we can write

∥y(k+1) − ȳ(k)∥ =

= ∥PY (y
(k) + αk∇yF (x(k+1), y(k)))− PY (y

(k) + αk∇yF (x(k), y(k)))∥

≤ αk∥∇yF (x(k+1), y(k))−∇yF (x(k), y(k))∥
(30)

Using the inequality (30) in (29) and recalling the definitions (17), we obtain

∥x(k+1) − x∗∥2 + ∥y(k+1) − y∗∥2

≤ ∥x(k) − x∗∥2 + ∥y(k) − y∗∥2 − ∥ȳ(k) − y(k+1)∥2+

−(1− 2αkCk)∥ȳ(k) − y(k)∥2+

−
(
1− 2αkAk − 2α2

kB
2
k

)
∥x(k+1) − x(k)∥2

(31)
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By the hypothesis (16), the coefficients (1−2αkAk−2α2
kB

2
k) and (1−2αkCk) are strictly

positive and bounded away from zero. Thus, we must have that

lim
k
∥ȳ(k) − y(k+1)∥ = 0

lim
k
∥ȳ(k) − y(k)∥ = 0

lim
k
∥x(k+1) − x(k)∥ = 0

Then there exists a point (x̄, ȳ) ∈ D such that x(k) converges to x̄ and y(k), ȳ(k) converge

to ȳ. Consider now a subsequence {αkj}j such that limj αkj = ᾱ > 0. Taking the

limit for j → ∞, by continuity of the projection operator and by the definition of the

sequences x(k), y(k), ȳ(k), we have

ȳ = PY (ȳ + ᾱ∇yF (x̄, ȳ))

x̄ = PX(x̄− ᾱ∇xF (x̄, ȳ))

Thus, we can conclude that (x̄, ȳ) is a saddle point of F . �

The previous theorem applies to every sequence defined as in (13)–(15), when condition

(16) holds.

In other words, the scheme (13)–(15) is well defined and the previous theorem applies

if a sequence {αk} bounded away from zero satisfying (16) exists. We remark that

the coefficients in the inequalities (16) can be regarded as a function of the steplength

parameter

Ak(α) =
∥∇xF (x

+
k (α), ȳ

+
k (α))−∇xF (x

(k), ȳ+k (α))∥
∥x+k (α)− x(k)∥

Bk(α) =
∥∇yF (x

+
k (α), y

(k))−∇yF (x
(k), y(k))∥

∥x+k (α)− x(k)∥

Ck(α) =
∥∇yF (x

+
k (α), y

(k))−∇yF (x
+
k (α), ȳ

+
k (α))∥

∥y(k) − ȳ+k (α)∥

(32)

where

ȳ+k (α) = PY (y
(k) + α∇yF (x

(k), y(k)))

x+k (α) = PX(x
(k) − α∇xF (x

(k), y+k (α)))
(33)

We devise the following sufficient conditions for the well posedness and convergence of

the scheme (13)–(15).

Lemma 3.2 Assume that there exists a saddle point (x∗, y∗) ∈ D of the convex-concave

functional F (x, y). If for every compact subset K ⊂ D there exists a positive constant

LK such that

(A1) ∥∇xF (x, y)−∇xF (x̄, y)∥ ≤ LK∥x− x̄∥
(A2) ∥∇yF (x, y)−∇yF (x̄, y)∥ ≤ LK∥x− x̄∥
(A3) ∥∇yF (x, y)−∇yF (x, ȳ)∥ ≤ LK∥y − ȳ∥
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for all (x, y), (x̄, y), (x, ȳ) ∈ K, then for any fixed ϵ ∈ (0, 1) there exists a positive number

ᾱϵ > 0 such that

1− 2αAk(α)− 2α2Bk(α)
2 ≥ ϵ

1− 2αCk(α) ≥ ϵ
∀α ∈ [0, ᾱϵ] (34)

for all k.

Proof. Let (x(0), y(0)) ∈ D be the starting point of the algorithm. We define the following

functionals for (x, y) ∈ D and α ∈ R

ϕ(x, y, α) = PY (y + α∇yF (x, y))

ψ(x, y, α) = PX(x− α∇xF (x, ϕ(x, y, α))

Let ρ20 = ∥x∗ − x(0)∥2 + ∥y∗ − y(0)∥2 and B∗
ρ0

the ball with radius ρ0 and center (x∗, y∗).

Since ϕ and ψ are continuous with respect to their arguments, the following quantity is

well defined

ρ2 = max ∥x∗ − ψ(x, y, α)∥2 + ∥y∗ − ϕ(x, y, α)∥2
(x, y) ∈ B∗

ρ0
∩ D

α ∈ [0, αmax]

and ρ ≥ ρ0.

At the first iterate of the algorithm, we have that all the points ȳ+0 (α) and x
+
0 (α) defined

in (33) for α ∈ [0, αmax] belong to the compact set Bρ(x
∗, y∗) ∩ D.

By the assumption A1–A3, we can denote by L ≡ LK the Lipschitz constant in the set

K.

Then, from (32) we have A0(α) ≤ L, B0(α) ≤ L and C0(α) ≤ L for all α ∈ [0, αmax].

Since 1− 2αA0(α)− 2α2B0(α)
2 ≥ 1− 2αL− 2α2L2 ≥ ϵ and 1− 2αC0(α) ≥ 1− 2αL > ϵ

when

α < ᾱϵ ≡ min

(√
3− 2ϵ− 1

2L
,
1− ϵ
2L

)
the first step of the scheme (13)–(15) is well posed.

We observe now that, from (31) we have that (x(1), y(1)) ∈ B∗
ρ1
∩ D ⊂ K, with ρ1 < ρ0.

Using the same arguments as before, by induction it follows that for all k conditions

(16) are fulfilled for any αk ∈ [0, ᾱϵ]. �

As a consequence of the previous lemma, there exists a sequence of parameters αk

satisfying (16) and such that αk ≥ αmin (for example we may choose αmin = 1
2
ᾱϵ as

lower bound). When αk is bounded away from zero, Theorem 1 applies and the sequence

generated by (13)–(15) converges to a saddle point of F (x, y).

Algorithm AEM gives a practical realization of the alternating extragradient method

(13)–(15).
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Algorithm AEM Alternating Extragradient Method (AEM)

Choose the starting point (x(0), y(0)) ∈ D, set the parameters θ, ϵ ∈ (0, 1), αmax > 0.

For k = 0, 1, 2, ... do the following steps:

Step 1. Choose α ≤ αmax;

Step 2. Compute tentative points

ȳ+ ← PY (y
(k) + α∇yF (x

(k), y(k)))

x+ ← PX(x
(k) − α∇xF (x

(k), ȳ+))

A ← ∥∇xF (x
+, ȳ+)−∇xF (x

(k), ȳ+)∥
∥x+ − x(k)∥

B ← ∥∇yF (x
+, y(k))−∇yF (x

(k), y(k))∥
∥x+ − x(k)∥

C ← ∥∇yF (x
+, y(k))−∇yF (x

+, ȳ+)∥
∥y(k) − ȳ+∥

ᾱ ←



min{
√

A2+2B2(1−ϵ)−A

2B2 , 1−ϵ
2C
} if B > 0, C > 0

min{1−ϵ
2A
, 1−ϵ

2C
} if A > 0, C > 0, B = 0√

A2+2B2(1−ϵ)−A

2B2 if B > 0, C = 0
1−ϵ
2C

if A = 0, C > 0, B = 0
1−ϵ
2A

if A > 0, C = 0, B = 0

α otherwise

Step 3. Check convergence condition:

If α ≤ ᾱ then

αk = α;

ȳ(k) = ȳ+;

x(k+1) = x+;

Else

α← min(ᾱ, θα);

go to Step 2;

Endif

Step 4. Set y(k+1) = PY (y
(k) + αk∇yF (x

(k+1), y(k))).

End

The convergence condition α ≤ ᾱ at Step 3 is algorithmically equivalent to (16). The

convergence properties of Algorithm AEM are stated in the following Corollary.

Corollary 1 Assume that F (x, y) is a convex-concave functional such that there exists

a saddle point of F in D. Furthermore, assume that the hypotheses (A1)–(A3) hold.

Then, Algorithm AEM is well defined, and it generates a sequence converging to a saddle

point of F (x, y).
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Proof. In order to prove the well posedness of Algorithm AEM, we show that the loop

between Step 2 and Step 3 terminates in a finite number of trials. Indeed, since α is

reduced each time at least by a fixed amount θ, after a finite number of steps its value

will be smaller than ᾱϵ defined in Lemma 3.2 and, thus, the convergence condition is

fulfilled.

This also yields that the sequence {αk} generated by Algorithm AEM is bounded away

from zero with αmin ≥ θᾱϵ, thus the convergence result in Theorem 1 applies. �

In our practical experience, we observed that the sequence {αk} generated by Algorithm

AEM tends to stick around a fixed value. For this reason, at the Step 1 we propose to

adopt a quite conservative choice for the tentative value of α at the iterate k ≥ 1, as

the mean of the last M values

α← min

 1

min(k,M)

min(k,M)∑
j=1

αk−j, αmax

 (35)

where M is a fixed integer. With this choice, we observed that a reduction of the

steplength to fulfill the convergence condition is required a very few times.

In the next section we adapt Algorithm AEM to the special cases of the KL-TV or

KL-HS models.

3.2. Application to the KL-TV or KL-HS models

As observed in subsection 2, for the functional F (x, y) in (7) the hypotheses of Theorem

1 hold. The functional F is convex with respect to x and concave with respect to y. The

domain Y is a compact set. Furthermore, under the assumption that en does not belong

to the null space of H, the objective function of (1) is coercive and we can restrict the

variable x in a bounded subset of X. Then, the min–max theorem in [40, p.397] ensures

the existence of a solution of (7).

When F (x, y) is defined as in (7), then we have

∇xF (x, y) = e−HTZ(x)−1g + βAT ỹ

∇yF (x, y) = βz(x)

where ỹ ≡ y in the TV model and ỹ represents the first 2n entries of the dual variable

y in the HS model; furthermore, Z(x) is a diagonal matrix whose diagonal entries are

given by (Hx+ b)i.

Since ∇yF (x, y)−∇yF (x, ȳ) = 0 for all x ∈ X, y, ȳ ∈ Y , we have Ck = 0 for all k. The

Lipschitz constant of ∇yF (·, y) is the l2 norm ∥A∥ of matrix A, while Assumption A1

holds in every compact subset of the domain of the KL divergence. Then, Lemma 3.2

applies.

In order to define the set X, for the denoising case (H = I) we give a lower and an

upper bound on some components of the solution, as stated in the following Lemma,

which is a generalization of [32, Lemma 4.10].
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Lemma 3.3 Let x∗ be a minimum point of f(x) = f0(x) + βf1(x), β > 0, where f0(x)

is the KL divergence with H = I and f1(x) is defined in (3) or (4). Then, for all i such

that gi > 0 we have

gmin ≡ min
j
{gj : gj > 0} ≤ x∗i ≤ gmax ≡ max

j
gj

Proof. Assume that there exists at least a component x∗i such that x∗i > gmax or

x∗i < gmin when gi > 0 and define the vector v ∈ Rn such that

vj =


gmax if x∗j > gmax

gmin if x∗j < gmin and gj > 0

x∗j otherwise

Let us denote by I the set of indices such that x∗j = vj. Since the interval containing the

components of v is included in that of x∗, then f1(v) ≤ f1(x
∗). Indeed, the functionals

(3) and (4) can be written also as

f1(x) =
∑
k

√∑
i∈Nk

(xi − xk)2 + δ2, δ ≥ 0

where Nk contains the indices of the horizontal and vertical neighbours of the pixel xk.

By the assumption on x∗, there exists at least an index k /∈ I. Then, for i ∈ Nk we

have the following possibilities,

x∗k < gmin ≤ x∗i ≤ gmax x∗k < gmin < gmax ≤ x∗i
gmin ≤ x∗i ≤ gmax < x∗k x∗i ≤ gmin, x

∗
k < gmin

x∗i ≤ gmin < gmax < x∗k x∗k > gmax, x
∗
i ≥ gmax

which, by the definition of v, always imply |vi−vk| ≤ |x∗i −x∗k| and, thus, f1(v) ≤ f1(x
∗).

The last part of the proof consists in showing that f0(v) < f0(x
∗). When H = I,

the KL divergence is separable and it can be written as f0(x) =
∑

i f
i
0(xi), with

f i
0(xi) = gi log

gi
xi

+ xi − gi. For i ∈ I we have f i
0(x

∗
i ) = f i

0(vi). When i /∈ I, then
we have two cases:

x∗i < gmin = vi ⇒ f i
0(vi) < f i

0(x
∗
i )

x∗i > gmax = vi ⇒ f i
0(vi) < f i

0(x
∗
i )

Then, we showed that f(v) < f(x∗), which contradicts the minimum property of x∗. �
The previous result can be employed to find the lower bound defining the constraint set

X and the associated projection operator PX in the denoising case:

η ∈ Rn, ηi = gmin, if gi > 0, ηi = 0, if gi = 0, i = 1, ..., n.

For deblurring problems η = 0. About the computational complexity of AEM, we

observe that any iteration requires the following computations:

• evaluation of the gradient of the KL function;
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• discrete approximation of the gradient operator (Ax(k+1));

• discrete approximation of the opposite of the divergence operator (AT ỹ(k));

• one projection on the set X;

• two projections on the set Y ;

when a backtracking procedure is started, each step requires one additional evaluation

of the gradient of the KL function, the computations of Ax(k+1) and AT ỹ(k) and two

further projections on X and Y respectively.

Furthermore, we observe that for the saddle point (x∗, y∗), the following equalities hold

x∗ = PX(x
∗ − α∇xF (x

∗, y∗))

y∗ = PX(y
∗ + α∇yF (x

∗, y∗))

Thus, a significant stopping criterion for Algorithm AEM could be based on the relative

difference between two successive iterates∥∥∥∥∥
(
x(k+1) − x(k)
y(k+1) − y(k)

)∥∥∥∥∥ /
∥∥∥∥∥
(
x(k+1)

y(k+1)

)∥∥∥∥∥ < τ (36)

where τ is a prefixed tolerance. Other stopping criteria could be defined upon the values

of the primal objective function f(x) and the primal–dual function F (x, y). We adopt

the criterion (36) since it can be also interpreted as a measure of the violation of the

optimality conditions (11) at the current iteration.

4. Numerical Experience

4.1. Test Problems

This section is devoted to numerically evaluate the influence of the artificial parameter

δ on the stability of some methods and on the features of the restored images. To this

end we perform a set of numerical experiments in MATLAB environment, on a server

with a dual Intel Xeon QuadCore E5620 processor at 2,40 GHz, 12 Mb cache and 18 Gb

of RAM. In the experiments we consider a set of test-problems, where the Poisson noise

has been simulated by the imnoise function in the Matlab Image Processing Toolbox.

The considered test problems are described in the following.

Denoising problems

• LCR phantom: the original image is the phantom described in [20]; it is an array

256 × 256, consisting in concentric circles of intensities 70, 135 and 200, enclosed

by a square frame of intensity 10, all on a background of intensity 5 (LCR-1).

We can simulate a different noise level by multiplying the LCR phantom by a

factor 10 (LCR-10) and 0.2 (LCR-0.2) and generating the corresponding noisy

images. For each case, we generate 25 different realizations of noise: the mean

of relative difference in l2 norm between the noisy and the original images over the

25 realizations is 0.095318, 0.0300744, 0.212723 respectively.
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• dental radiography (DR): the original image [29] is an array 512×512, with values in

the range [0, 255]; for this test-problem, simulating a radiographic image obtained

by a lower dose, the relative difference in l2 norm between the noisy and the noise–

free images is 0.179.

Deblurring problems

• micro: the original image is the confocal microscopy phantom of size 128 × 128

described in [46]; its values are in the range [0, 70] and the total flux is 2.9461 105;

the background term b in (2) is set to zero.

• cameraman: following [26], the simulated data are obtained by convolving the image

256×256 with a Gaussian psf with standard deviation σ = 1.3, then adding Poisson

noise; the values of the original image are in the range [0, 1000];the background term

b in (2) is set to zero.

4.2. Stability of the numerical methods

In the first set of experiments we compare the numerical behavior of a method for smooth

optimization, the SGP method in [29], with AEM on three denoising test problems LCR-

1, LCR-10 and LCR-0.2, using the KL-HS model with values of δ of different order of

magnitude.

To get an approximate solution x∗β,δ of (7), we run AEM (with M = 10 in formula

(35) and ϵ = 10−4) until the criterion (36) is satisfied with tolerance τ = 5 10−7 for

denoising and 5 10−6 for deblurring problems or a maximum number of 5000 iterations

is exceeded. The SGP parameters are M = 1 (monotone line–search), αmin = 10−5 and

αmax = 105 (see [29] for further implementation details). Following a strategy similar

to that used in [29], the SGP iterations are stopped when the objective function value

becomes smaller than the value f(x∗β,δ) obtained with AEM or after 5000 iterations.

Both the algorithms have been initialized with x(0) = max{η, g}, where the maximum

is intended componentwise and η is chosen as described in section 3.2. The initial guess

for the dual variable y(0) in AEM has been set to zero.

We point out that, for δ = 10−8, the value of the objective function f(x∗β,δ) obtained by

AEM with the stopping condition (36) is less than that related to the results shown for

LCR–1 in Table 1 of [29]. This explains the difference between the value reported in

our Table 1 and those in Table 1 of [29].

In Figures 2, 3, 4, we show the superpositions of the line–outs from row number 128

corresponding to the reconstructions related to the 25 different realizations of noise

provided by SGP and AEM, using the values of (β, δ) employed in [29]. In Figure 5, we

report the results obtained by applying AEM to the model KL-TV (δ = 0).

In order to quantify the accuracy of the results and the effectiveness of the methods, in

Table 1 we report the arithmetic mean over the 25 cases of some significant indices: the

l2 relative error (mean-err) defined as ∥x̄−x∥
∥x∥ , where x is the original image and x̄ is the

reconstruction provided by the two methods; the mean elapsed time (time) in seconds
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and the mean iterations number (iter) needed to satisfy the stopping criterion.

Furthermore, in order to compare the convergence rate of SGP and AEM, we compute

the ideal solution x̂ of the considered KL-HS minimization problem, by running 100000

iterations of AEM. Then, we evaluate the progress toward the ideal solution at each

iteration in terms of l2 relative error ∥x(k)−x̂∥
∥x̂∥ . It is noticed that computing the ideal

solution with AEM makes a small bias in favour of AEM itself. However the obtained

results reported in Figure 6 are sufficiently convincing to forget this bias. We observe

that the behavior of the two methods is similar for a moderate value of δ, while for very

small δ the iterates generated of the SGP method remain trapped near nonstationary

points and the rate of convergence slows down. The value of the KL discrepancy

at the computed solution for (β, δ) = (0.25, 10−1) is f0(x
∗
β,δ) = 2.7806 · 104 while

f(x∗β,δ) = 55566.4 for both the methods SGP and AEM. For (β, δ) = (0.25, 10−8),

we have f0(x
∗
β,δ) = 2.6426 · 104, f(x∗β,δ) = 57581.1 for SGP, while f0(x

∗
β,δ) = 2.8169 · 104,

f(x∗β,δ) = 54849.0 for AEM.

The same experiment is performed also on the deblurring test problem micro. Figure

7 shows the superposition of line–outs of row number 64 corresponding to the

reconstruction related to the 25 different realizations of noise provided by SGP and

AEM, with (β, δ) = (10−8, 0.56). Further results about this experiment are summarized

in Table 1.

From this first set of experiments we can drawn the following considerations:

• the accuracy of the reconstructions provided by SGP and AEM applied to the

KL-HS model are similar for moderately small value of δ;

• for very small values of δ, the reconstructions obtained by SGP exhibit a lot of slight

oscillations, that however do not significantly affect the relative reconstruction error;

this effect does not arise for AEM, that provides reconstructions of very similar

accuracy for any value of δ, also for δ = 0; the reconstruction errors of the results

obtained by AEM are equal for δ = 10−8 and δ = 0 on the first 13 significant digits;

• the AEM seems unaffected by the stagnation of the iterates that we can observe

for the SGP method when we have to minimize KL-HS functional with δ close to

0.

4.3. Numerical evaluation of the model KL-HS

In the second set of experiments, we investigate the dependence of the l2 relative

reconstruction error on the pair (β, δ) for both denoising and deblurring problems. In

particular, we evaluate the function

E(β, δ) =
∥x− x∗β,δ∥
∥x∥

where x∗β,δ is the solution of the KL-HS model computed by AEM, on a grid of values in

the (β, δ)–plane. We plot the level curves of E(β, δ) in Figure 8 and we report the pair

(β, δ) corresponding to the minimum reconstruction error over the grid points in Table
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2. For a comparison in Table 2 also the values E(β, 0) are reported. In all cases, we

observe that when δ is less than about 0.1% of the maximum value of the image, the l2
relative reconstruction error does not significantly change. In Table 2 we show also the

performance results of the AEM and SGP method in term of computational time (in

seconds) and iterations number for the best tuning of (β, δ). The same information is

reported in the case (β, 0) for AEM. The stopping criteria are the same used for Table

1.

For smaller values of δ, the level curves become almost parallel to the δ axis, which means

that the accuracy of the results depends only on the choice of β. These observations

apply on both denoising and deblurring problems.

On the other hand, we can detect a difference about the effect of the regularization on

the features of the solution. To focus this point, in Figure 9 we consider the deblurring

test problem micro and we compare the plots of the row number 64 of the reconstructed

images obtained by minimizing with AEM the KL-TV model with β = 0.09 and the KL-

HS model with (β, δ) = (0.09, 0.1), which both give a reconstruction error of 9%. The

optimal reconstruction is obtained with (β, δ) = (0.09, 0.56), with a reconstruction error

of 8.8% (see Table 2). The complete images are shown in the lower panels of Figure 10.

The TV regularization better emphasizes the edges, although a slight staircasing effect

may occur, while the KL-HS model has the feature of being a smooth regularization

without eroding too much the edges of the image.

When a smoothed edge–preserving regularization is convenient, the above analysis

enables us to affirm that a value for δ slightly less than about the 1% of the maximum

value of the image produces an high accuracy image; on the other hand, in this case,

we can apply efficient methods for smooth optimization, as SGP, without undesired

oscillating effects. Similar observations can be made for all the considered test problems.

In particular, for the denoising test problem DR in Figure 11 we report the results

obtained with (β, δ) = (0.27, 0.31), corresponding to the minimum reconstruction error,

and (β, δ) = (0.27, 0).

For the LCR image, where different levels of Poisson noise are considered, from Figure

8 and Table 2 we point out that the values of β related to the minimum reconstruction

error increase for growing levels of noise. On the contrary, the values of δ related to the

minimum of E(β, δ) decrease for growing levels of noise, suggesting that, for very high

noise, methods whose convergence behaviour is independent of δ must be used.

5. Conclusions

We have proposed an alternating extragradient method, which is able to solve in a

numerically stable way the primal–dual formulation of the non differentiable image

restoration problem involving the total variation (KL-TV) as well as its smoothed

version (KL-HS) for data affected by Poisson noise. The method, tailored for general

smooth saddle–point problems, consists in successive projected ascent and descent steps

followed by an extragradient step with an adaptive choice of the stepsize parameter that
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Figure 2. LCR-1: superposition of the line–outs from row number 128 for the

reconstructions corresponding to 25 different realizations of noise. Left: AEM.

Right: SGP. Top: (β, δ) = (0.25, 10−1). Bottom: (β, δ) = (0.25, 10−8).
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Figure 3. LCR-10: superposition of the line–outs from row number 128 for the

reconstructions corresponding to 25 different realizations of noise. Left: AEM.

Right: SGP. Top: (β, δ) = (0.05, 10−2). Bottom: (β, δ) = (0.05, 10−8).
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Table 1. Mean values over 25 different noise realization of ℓ2 reconstruction error,

computational time and iterations number. The asterisk indicates that SGP fails to

satisfy the stopping criterion within 5000 iterations, for all the 25 cases.

AEM SGP

Problem β δ mean err. time iter mean err. time iter

0.25 10−1 0.0254501 34.2 631.8 0.0254598 14.0 323.7

0.2 10−2 0.0236812 41.1 785.2 0.0236811 71.8 1716.5

LCR-1 0.25 10−8 0.0246004 50.8 972.2 0.027646∗ 195.4∗ 5000∗

0.25 0 0.0246004 50.9 972.2

0.05 10−1 0.0084788 49.0 802.8 0.0084879 24.4 508.4

0.05 10−2 0.0084521 57.4 833.5 0.0084697 130.8 3030.4

LCR-10 0.05 10−8 0.0084537 50.2 871.0 0.0095699∗ 204.0∗ 5000∗

0.05 0 0.0084537 53.4 871.0

0.575 10−1 0.0500644 24.9 400.0 0.0500754 38.8 740.2

0.625 10−2 0.0455512 79.8 1171.3 0.0455511 100.8 2381.5

LCR-0.2 0.575 10−8 0.0446964 280.4 4293.3 0.0543569∗ 302.9∗ 5000∗

0.575 0 0.0446964 272.3 4293.3

0.09 0.56 0.0873963 73.0 2249.2 0.0877281 5.2 202.4

0.09 10−2 0.089910 90.0 2815.4 0.0907422 12.2 548.0

micro 0.09 10−8 0.090006 91.2 2831.2 0.913585∗ 142.1∗ 5000∗

0.09 0 0.090006 93.4 2831.2

Table 2. Position of the minimum of E(β, δ) for KL-HS model over the grid points

and E(β, 0) for KL-TV and performance of the methods AEM and SGP. The asterisk

indicates that the method fails to satisfy the stopping criterion within 5000 iterations.

β δ err AEM SGP

time iter time iter

LCR-1 0.172 10−3.75 0.0238555 113.28 1970 255.68 5000∗

0.172 0 0.0238557 49.81 889

LCR-10 0.041 10−2 0.00824262 39.99 712 133.24 2935

0.041 0 0.00824303 41.06 741

LCR-0.2 0.55 10−4.5 0.0447176 283.08 5000∗ 258.7 5000∗

0.55 0 0.0447178 228.27 4148

DR 0.27 10−0.5 0.0276958 50.92 210 20.7 112

0.27 0 0.0296606 516.8 2206

micro 0.09 10−0.25 0.0880993 58.61 1846 5.99 209

0.09 0 0.0912806 78.78 2492

cameraman 0.0045 100.25 0.0869088 132.65 1495 6.1 81

0.0045 0 0.087225 141.57 1587
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Figure 4. LCR-0.2: superposition of the row number 128 for the reconstructions

corresponding to 25 different realizations of noise. Left: AEM. Right: SGP.

Top: (β, δ) = (0.625, 10−2). Bottom: (β, δ) = (0.575, 10−8).
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Figure 5. AEM reconstructions on the KL-TV model: superposition of row

number 128 of the reconstructions corresponding to 25 different realizations of

noise. Left: LCR-1, β = 0.25. Middle: LCR-10, β = 0.05. Right: LCR-0.2,

β = 0.575.

can be computed by a self–adjusting backtracking procedure. The convergence of the

scheme is proved under mild assumptions and a practical implementation is given. Then,

the application of the method is discussed for the KL-TV and KL-HS models, where

the simple structure of the constraints allows an easy implementation the projection

steps. Furthermore, for denoising problems, we give a lower and upper bound on the

components of the solution. By a set of numerical experiments concerning denoising and

deblurring problems, we compare the stability of the proposed method with a method

for smooth optimization as SGP and the features of the restored images, with respect

to different choices of the smoothing parameter δ. We observe that the AEM seems
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Figure 6. LCR-1: l2 relative distance of each iteration from to the ideal

solution on the KL-HS model with (β, δ) = (0.25, 0.1) (left panel) and (β, δ) =

(0.25, 10−8) (right panel).
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Figure 7. micro: superposition of the row number 64 for the reconstructions

corresponding to 25 different realizations of noise. Left: AEM. Right: SGP.

Top: (β, δ) = (0.09, 0.56). Bottom: (β, δ) = (0.09, 10−8).

unaffected by the stagnation of the iterates arising when we apply SGP to the KL-

HS functional with δ close to 0. Then, we employ AEM to evaluate the accuracy of

the restored images, in terms of relative reconstruction error, with respect to the pair of

parameters (β, δ). When δ is less than 0.1% of the maximum image value, the l2 relative

reconstruction error does not significantly change and the accuracy depends only from

the choice of β. Nevertheless, the aspect of the restored images is different, since the TV
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Figure 8. Level curves of E(β, δ), obtained using AEM to compute x∗β,δ. Top

left: LCR-1. Top right: LCR-10. Middle left: LCR-0.2. Middle right: DR.

Bottom left: micro. Bottom right: cameraman. The asterisk indicates the

position where E(β, δ) takes a minimum over the grid points.
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Figure 9. micro; the solid black lines plot the row number 64 of the solution

of the KL-TV model (top left) with β = 0.09 and of the KL-HS model with

(β, δ) = (0.09, 10−1) (top right) and (β, δ) = (0.09, 0.56) (bottom). The thin

black line is the profile of row number 64 of the original image.

Figure 10. Test-problem micro. Top left: original image. Top right: blurred

noisy image. Bottom left: solution of the KL-TV problem with β = 0.09.

Bottom right: solution of the KL-HS model with (β, δ) = (0.09, 0.56).
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Figure 11. Test-problem DR. Top left: original image. Top right: blurred

noisy image. Bottom left: solution of the KL-TV problem with β = 0.28.

Bottom right: solution of the KL-HS model with (β, δ) = (0.28, 0.31) (minimum

reconstruction error).

regularization realizes cartoon reconstructions with sharp edges where some staircasing

effect can occur, while the KL–HS model has the feature of being a smooth regularization

without eroding too much the edges. When a smoothed edge–preserving regularization

is convenient, efficient methods for smooth optimization, as SGP, can be successfully

applied, using values of δ that produce accurate results without encountering oscillating

effects due to the stagnation of the iterations.

Since the practical convergence of AEM has been shown on both smooth and nonsmooth

models, our future work will concern with the comparison in terms of accuracy and

computational efficiency between AEM and other methods, especially tailored for each

model.
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