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Introduction

We consider the numerical solution on modern multicore architectures of large-
scale optimization problems arising in image restoration. An efficient solution
of these optimization problems is important in several areas, such as medical
imaging, microscopy and astronomy, where large-scale imaging is a basic task.

To face these challenging problems, a lot of effort has been put in design-
ing effective algorithms, that have largely improved the classical optimization
strategies usually applied in image processing. Nevertheless, in many large-
scale applications also these improved algorithms do not provide the expected
reconstruction in a reasonable time. In these cases, the modern multiprocessor
architectures represent an important resource for reducing the reconstruction
time. Actually, one can consider different possibilities for a parallel computa-
tional scenario. One is the use of Graphics Processing Units (GPUs): they were
originally designed to perform many simple operations on matrices and vectors
with high efficiency and low accuracy (single precision arithmetic), but they
have recently seen a huge development of both computational power and accu-
racy (double precision arithmetic), while still retaining compactness and low
price. Another possibility is the use of last-generation multi-core CPUs, where
general-purpose, very powerful computational cores are integrated inside the
same CPU and a bunch of CPUs can be hosted by the same motherboard,
sharing a central memory: they can perform completely different and asyn-
chronous tasks, as well as cooperate by suitably distributing the workload of a
complex task. Additional opportunities are offered by the more classical clus-
ters of nodes, usually connected in different distributed-memory topologies to
form large-scale high-performance machines with tens to hundred-thousands
of processors. Needless to say, various mix of these architectures (such as clus-
ters of GPUs) are also possible and sold, indeed. It should be noticed, however,
that all the mentioned scenarios can exist even in very small-sized and cheap
configurations. This is particularly relevant for GPUs: initially targeted at
3D graphics applications, they have been employed in many other scientific
computing areas, such as signal and image reconstruction [1,2]. Recent appli-
cations show that in many cases GPU performances are comparable to those
of a medium-sized cluster, at a fraction of its cost. Thus, also small labora-
tories, which cannot afford a cluster, can benefit from a substantial reduction
of computing time compared to a standard CPU system. Nevertheless, for
very large problems, as 3D imaging in confocal microscopy, the size of GPU’s
on-devices dedicated memory can become a limit to performance.

For this reason, the ability to exploit the scalability of clusters by means
of standard MPI implementations is still crucial for facing very large-scale
applications. Here, we deal with both the GPU and the MPI implementation of
an optimization algorithm, called Scaled Gradient Projection (SGP) method,
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that applies to several imaging problems [3,4]. GPU versions of this method
have been recently evaluated [2,5], while an MPI version is presented in this
work in the cases of both deblurring and denoising problems. A computational
study of the different implementations is reported, to show the enhancements
provided by these parallel approaches in solving both 2D and 3D imaging
problems.

1 The problem

We focus on the solution of the constrained minimization problem:

min f(x)

sub. to x ∈ Ω
(1)

where Ω ⊂ RNx is a closed convex set and f : Ω → R is a continuously
differentiable function. We are interested in the case where the feasible region
Ω is described by simple constraints. This situation arises, for example, in
many imaging problems where the constraints are related to the nonnegativity
of the solution,

Ω =
{
x ∈ RNx

∣∣∣ xi ≥ 0, ∀ i = 1, . . . , Nx

}
, (2)

or they can be used to force also the so-called flux conservation property,

Ω =

{
x ∈ RNx

∣∣∣∣ xi ≥ 0, ∀ i = 1, . . . , Nx,
Nx∑
i=1

xi = c

}
, (3)

where c is a prefixed positive constant. Another relevant example in which
the feasible region is described by simple constraints is provided by sparse
recovery applications in which the sparsity level of the minimizer is controlled
by an upper bound on the `1-norm:

Ω =
{
x ∈ RNx

∣∣∣ ||x||1 ≤ R
}
, R > 0 . (4)

Gradient projection type methods seem appealing approaches for these prob-
lems for two main reasons. Firstly, the special structure of the constraints
makes the projection of a vector on the feasible region a not expensive op-
eration. In the case of the constraints (2) the simplicity of the projection is
obvious, but it is possible to prove that also the projection on the feasible
region (3) and (4) can be performed by simple linear–time algorithms [6,7].
Secondly, the recent advances on the steplength selection in gradient meth-
ods [6,8–10] allow to largely improve the convergence rate of these schemes,
without introducing significant additional costs. Thus, new gradient projection
methods can nowadays be designed that, thanks to the low computational cost
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per iteration and the good convergence rate, may represent a valid alternative
to other gradient-based iterative approaches widely used in image restoration
[11–15]. The main feature of the gradient projection method introduced in
this chapter consists in the combination of non-expensive diagonally scaled
gradient directions with steplength selection rules specially designed for these
directions. Moreover, global convergence properties are ensured by exploit-
ing a nonmonotone line-search strategy along the feasible direction [16,17].
Scaled gradient directions are also used by other popular algorithms for im-
age restoration; see, for example, the projected Newton methods described
in [18–21]. However, these schemes are substantially different from our ap-
proach since they require inner linear solvers to compute the non-diagonally
scaled gradient direction, do not consider steplength selection strategies and
use line-search along the projection arc instead of along the feasible direction
[22, p. 226]. Other scaled-gradient-based methods are presented in [23,24]:
these approaches don’t need a projection step: in fact, thanks to the careful
choice of the scaling matrix, each iterate lies in the interior of the feasible set.

It is also worth to mention that first order methods well known in imaging
applications, such as the expectation minimization (EM) method (also called
Richardson-Lucy method) [14,13,15], the iterative space reconstruction algo-
rithm (ISRA) [11,25] and the split gradient method introduced in [12], are spe-
cial cases of the scaled gradient-projection method treated here, corresponding
to suitable choices of the scaled gradient direction and of the steplength pa-
rameter.

2 The connection with digital image restoration

Since this work is focused on digital image reconstruction, it is useful to ex-
plicitly mention the link to the kind of first-order optimization algorithms we
consider here. For a much more detailed overview of the several aspects re-
lated to the image reconstruction problem, we refer the reader to [26] and the
references therein.

Using standard naming and notation, we call “object” the unknown entity x
we want to reconstruct, whose observations are the known data y, and, af-
ter discretization, we always suppose to have reordered both the object and
the data arrays so that x and y be column vectors. As it is well known, the
image reconstruction is an ill-posed inverse problem, where usually the main
difficulty is the lack of continuous dependency of the solution x∗ on the data.
After discretization, the ill-posedness implies that a discrete ill-conditioned
problem has to be solved. The most widely used approaches to the solution of
the reconstruction problem are based on the well known Tikhonov’s regular-
ization theory. However, despite the huge amount of available literature and
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the deep results known in this theory, the statistical approaches are recently
receiving increasing attention. They are related to the idea of modelling the
data acquisition as a random process, so that the measured data y are realiza-
tion of a random variable Y ∈ RNy . This viewpoint has a number of relevant
benefits: the noise affecting the recorded data as well as a possible background
radiation are included in a natural way, different kind of noise can be easily
modelled and, very important, it naturally allows the inclusion in the problem
of a priori information on its solution. As it is well known, the latter is the
key point to remove ill-posedness and to obtain meaningful results, whatever
is the chosen approach to the problem.

Hence, one can look at statistical methods to obtain a reasonable estimate of
the unknown object x to be reconstructed. In this context, the two main classes
are the maximum likelihood (ML) and the maximum a posteriori (MAP) esti-
mation techniques. The former is connected to the parameter estimation idea,
while the latter is based on the Bayes formula.

In the ML case, it is assumed that the data probability density function
pY (y;x) is known: this function is then used as a measure of the closeness
to y of a given x, that is, of their likelihood. Hence, one looks for a point x∗

maximizing the likelihood to y, that is a solution of

max
x∈RNx

LY,y(x) with LY,y(x) = pY (y;x) . (5)

In the digital image reconstruction context, reasonable assumptions allows
to consider the loglikelihood function f0(x;y) = −γ1 ln

(
LY,y(x)

)
+ γ2 (with

γ1, γ2 ∈ R, γ1 6= 0), that makes (5) equivalent to

min
x∈RN

f0(x;y) . (6)

The actual form of f0 depends on the density pY (y;x): it usually models the
kind of noise affecting the data and results in a (possibly heavily) nonlinear
f0. Well known examples are the least squares function for Gaussian noise,
the Kullback-Leibler (KL) divergence for Poisson noise and a sum of heavily
nonlinear functions for the combination of the two. Usually, one looks for
nonnegatively constrained solutions of (6), since pixel intensity is within a
nonnegative range.

The MAP estimate is based on the Bayesian approach, which considers also the
object x as a realization of a random variable X ∈ RNx . This means, in turn,
that pY (y;x) becomes the conditional probability density function of the data
y given the object x. It is usually written as pY (y|x). In this context, inverting
the acquisition process means to determine the a posteriori probability density
function pX(x|y), that is the density of X given the observed data y. One
can then naturally include known additional information on the solution via
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the probability density pX(x), also said the prior. From the Bayes formula
pX(x|y)pY (y) = pY (y|x)pX(x), given the marginal probability density pY (y)
as a function of the recorded data y, one can finally get an estimate of the
unknown object by maximizing the a posteriori probability for the given data,
that is by solving

max
x∈RNx

PX,y(x) with PX,y(x) = LY,y(x)pX(x)/pY (y) . (7)

It is clear that the actual form of PX,y(x) depends on the form of pX(x). If one
can assume that such a function can be written as pX(x) = γ exp(−µh(x)),
γ, µ > 0, then by applying to the objective function the same logarithmic
transformation as for ML one gets the equivalent problem

min
x∈RNx

f(x;y) with f(x;y) = f0(x;y) + µfR(x) (8)

where fR(x) = γ1h(x) and in the objective function we have neglected the

constant term r = γ1

(
ln
(
pY (y)

)
−ln(γ)

)
. The function fR is called regularizer

and the parameter µ is the regularization parameter.

Thus, the image restoration problem can be formulated as an optimization
problem of the form (1)–(2) in which the objective function is as (6) or
(8). It is important to remark that in the case of the objective function (6),
which doesn’t include any prior information, regularized solutions of the ill-
conditioned reconstruction problem are usually obtained by early stopping
suited iterative minimization methods. In this computational study, we will
face deblurring problems by early stopping a SGP method applied to the
minimization of the function (6) subject to nonnegativity constraints, while
we will solve denoising problems by minimizing the function (8) with the
edge-preserving regularization term described in [4], once again subject to
nonnegativity constraints.

Remark 1 Since it is often the case in imaging applications that f(x;y) is
convex, the problem (1)–(2) becomes convex, so all its solutions are global
minimizers.

Given that it is of particular interest for this paper, we briefly recall here one
particular, well known iterative algorithm belonging to the ML family: the ex-
pectation maximization (EM) algorithm [21]. It is used to solve reconstruction
problems originated by linear transformations with Poisson-noised data. Af-
ter discretization, by calling A ∈ Rm×n the matrix which models the forward
transformation of the object x and b ∈ Rm the possible background affecting
the data acquisition, we can write the EM iteration as

x(k+1) =
x(k)

a
AT y

Ax(k) + b
(9)
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where a ∈ RNx is a normalization vector such that aj =
∑m

i=1Ai,j, j =
1, . . . , Nx, and all the vector quotients and products (except for scalar prod-
ucts) are intended as Hadarmard operations, that is componentwise opera-
tions. Here it is assumed that A has only nonnegative elements and that all
its rows and all its columns have at least one nonzero element. The EM algo-
rithm can be also viewed as a special scaled gradient method for minimizing
the KL divergence between Ax + b and y [21].

3 The algorithm

As we mentioned at the beginning, for the solution of problem (1) we con-
sider the first-order iterative method SGP. This gradient-related method has
recently seen an increased attention, thanks to its acceleration techniques.
They make it competitive with other largely used methods for NLPs when
the constraints are simple, in the sense that projecting onto the feasible re-
gion is a non-expensive operation. As a projection algorithm, the SGP method
involves three standard elements: the choice of a search direction, the projec-
tion onto the feasible region and a linesearch along the projected direction.
For the latter, a general nonmonotone linesearch technique is considered. Even
if trust-region approaches could surely be considered as a valid alternative to
linesearch, they are essentially related to second-order information (possibly
approximated, for instance in a quasi-Newton sense) on the function: this can
easily become a computationally too heavy task for large-scale applications,
such as those we deal with in this paper.

On the other side, the SGP acceleration techniques are essentially clever ways
to choose a suitable step before the projection. Once again, seeking simplicity
and low computational costs per iteration, the effective strategy we consider
here is that of modify the gradient direction by a symmetric positive definite
scaling matrix Dk (in practice we use diagonal scaling matrices) and then tak-
ing a meaningful step αk along the scaled direction. In particular, the choice
of the parameter αk is usually inspired by quasi-Newton and other considera-
tions [6,8,9], but without the need to compute any second-order information:
it shows to be crucial for efficiency. In our implementations we use an adaptive
alternation strategy based on the Barzilai-Borwein values:

αBB1
k =

s(k−1)TD−2
k s(k−1)

s(k−1)D−1
k w(k−1)

and αBB2
k =

s(k−1)TDkw
(k−1)

w(k−1)D2
kw

(k−1)
(10)

where s(k−1) = x(k) − x(k−1) and w(k−1) = ∇f
(
x(k)

)
−∇f

(
x(k−1)

)
[9].

Looking at the general form of SGP, shown in Alg. 1, it is worth stressing
that every choice of the steplength αk in the closed interval [αmin, αmax] and
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Algorithm 1 Scaled Gradient Projection (SGP) method

Initialization.
Choose the starting point x(0) ∈ Ω, set the parameters β, θ ∈ (0, 1), 0 <
αmin < αmax and fix a positive integer M .
Main loop.
For k = 0, 1, 2, . . . do the following steps:

1 Choose the parameter αk ∈ [αmin, αmax] and the scaling matrix Dk ∈ C;
2 Projection: z(k) = PΩ,D−1

k

(
x(k) − αkDk∇f(x(k))

)
;

If z(k) = x(k) then stop: x(k) is a stationary point; Endif
3 Descent direction: d(k) = z(k) − x(k);
4 Set λk = 1 and fmax = max0≤j≤min(k,M−1) f(x(k−j));
5 Backtracking loop:

If f
(
x(k) + λkd

(k)
)
≤ fmax + βλk∇f(x(k))Td(k) Then

go to Step 6;
Else

set λk = θλk and go to Step 5;
Endif

6 Set x(k+1) = x(k) + λkd
(k).

End

of the scaling matrix Dk in the compact set C ⊂ RNx×Nx of the symmetric
positive definite matrices D such that ‖D‖ ≤ L and ‖D−1‖ ≤ L, for a given
constant L > 1, is allowed. This is very important from a practical point of
view, since it allows to make the updating rules of αk and Dk problem-related
and oriented at optimizing the performance. The choice of the scaling matrix
takes into account the special form of the function f we are minimizing, as
well as some additional properties of the optimization problem that has to be
solved. For this reason, some hints on how to choose the matrix Dk have to
be suggested when special minimization problems are taken into consideration
[3,4].

Before discussing the convergence properties of the method, we underline some
relevant aspects of its main steps. We recall two useful results from [3].

Lemma 1 A vector x∗ ∈ Ω is a stationary point of the problem (1) if and

only if x∗ = PΩ,D−1

(
x∗ − αD∇f(x∗)

)
for any positive scalar α and for any

symmetric positive definite matrix D.

Lemma 2 Assume that d(k) 6= 0 in step 3 of the SGP algorithm. Then, d(k)

is a descent direction for the function f at x(k), that is
(
d(k)

)T
∇f

(
x(k)

)
< 0.

If the projection performed in step 2 returns a vector z(k) equal to x(k), then
Lemma 1 implies that x(k) is a stationary point and the algorithm stops.
Otherwise, if z(k) 6= x(k), then by Lemma 2 the vector d(k) defined in step 3 is
a descent direction for f at x(k) and the backtracking loop in step 5 terminates
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within a finite number of runs. Thus the algorithm is proved to be well defined.

The nonmonotone line-search strategy implemented in step 5 ensures that
f(x(k+1)) is lower than the maximum of the objective function on the last M
iterations [17]; obviously, if M = 1 then the strategy reduces to the standard
monotone Armijo rule [22].

Under a very mild hypothesis, the following convergence result holds true.

Theorem 1 Assume that the level set Ω0 =
{
x ∈ Ω : f(x) ≤ f

(
x(0)

)}
is

bounded. Then every accumulation point of the sequence
{
x(k)

}
generated by

the SGP algorithm is a stationary point of (1).

The convergence theory for SGP method is fully treated in [3] and we refer
the reader to this paper for additional insights.

4 GPU and MPI implementations

We base our GPU computational study on the Nvidia Graphics adapters, in
particular within the manufacturer-provided framework called CUDA (Com-
pute Unified Device Architecture). For further information see http://www.

nvidia.com/cuda. By means of CUDA, it is possible to program a GPU using
a C-like programming language. In this paradigm the CPU controls the in-
struction flow, the communications with the peripherals and starts the single
computing tasks on the GPU. The GPU, composed by a number of stream-
ing multiprocessors, performs the raw computation tasks, using the problem
data stored into the graphics memory. The GPU core is highly parallel: each
streaming multiprocessor is composed by 32 cores, a high-speed RAM block
shared among the 32 cores and a cache. All the streaming multiprocessors
can access the main global memory where, typically, the problem data are
stored. For our numerical experiments we used CUDA 3.1 and a Nvidia Tesla
C2050 graphics card, which has 14 streaming multiprocessors (448 total cores)
running at 1.15 GHz. The total amount of global memory is 3 GB and the
connection bus with the cores has a bandwidth of 148 GB/sec. The peak com-
puting performance is 1.03 Tflops/sec for single precision and 515 Gflops/sec
for double precision arithmetic. The GPU is connected to the CPU with a
PCI-Express bus, which grants a 8 GB/sec transfer rate. It should be noted
that the transfer speed is much slower than the GPU-to-GPU transfer so, for
maximizing the GPU benefits, it is very important to reduce the CPU-to-GPU
memory communications and keep all the problem data on the GPU memory.
Besides, the full GPU-to-GPU bandwidth can be obtained only if a coalesced
memory access scheme is used (see the Nvidia documentation [27]); so, all
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our GPU computation kernels are implemented using that memory pattern.
For our implementation of EM and SGP, two CUDA kernel libraries are very
important: CUFFT and CUBLAS. The CUBLAS library is a GPU implemen-
tation of the well known BLAS library, where principal subroutines for levels 1,
2 and 3 are implemented. By the CUFFT library we can compute 1D, 2D and
3D FFTs: complex-to-complex, real-to-complex and complex-to-real versions
are available. The use of these libraries is highly recommended for maximally
exploiting the GPU performances.

The second implementation is based on MPI, a language-independent com-
munication protocol well suited for high-performance computing due to its
scalability and portability. Typically, for maximum performance, each CPU
(or core in a multi-core machine) will be assigned just a single process. Here
the FFT is obtained exploiting another well known library, FFTW, which
is a C library for computing the discrete Fourier transform (DFT) of mul-
tidimensional real or complex data of arbitrary size. In the MPI paradigm,
performance is increased by splitting the problem domain among the com-
putational elements. Hence, the data used by the MPI FFTW routines are
distributed accordingly: a distinct portion of them is locally available to each
process involved in the transform. This allows the FFT to be parallelized, for
instance, across a workstations cluster, each one being equipped with its own
separate memory, so that one can take advantage of the total memory of all
the involved processors.

As already observed, considering the deblurring problem, the main computa-
tional cost in both the EM and SGP iterations consists in a pair of forward
and backward FFTs for computing the image convolutions. We face these op-
erations by means of the CUFFT and FFTW subroutines: after computing a
2D real-to-complex transform, the spectral multiplication between the trans-
formed iterate and the PSF is carried out and then the 2D inverse complex-
to-real transform is computed. Furthermore, both the algorithms need a com-
ponentwise division for each pixel in the image, while the computation of the
objective function in SGP requires also a logarithm for each pixel. These tasks
are particularly suited for both the GPU and the MPI implementation: in fact,
they do not involve any dependency among the pixels and the computations
can be easily distributed on all the available processors.

Concerning the denoising problem, the computation of the objective func-
tion and of its gradient are dominated by simple pixel-by-pixel operations (no
image convolutions are required) that are well suited for an effective imple-
mentation on the graphics hardware [5].

For both the imaging problems, componentwise divisions and logarithms re-
quire a number of clock cycles larger than a simple floating point operation,
thus the GPU memory bandwidth is not a limitation for these operations. Fi-
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nally, we must discuss a critical part of the SGP algorithm: the scalar products
for updating the steplength αk from (10). The needed “reduction” operations
for a scalar product imply a large number of communications among the pro-
cessors and there are dependencies that prevent a straight parallelization. In
our experiments, the reduce function provided by the Thrust library generally
achieves remarkable performances while retaining sufficient stability, even in
single precision: we then exploit the kernel libraries provided by Thrust, which
is currently a separated library, but that will be available in the upcoming 4.0
CUDA release. In the MPI implementation, the scalar product is obtained by
using the MPI reduction subroutine.

5 Numerical results for parallel implementations

To evaluate the effectiveness of the proposed parallel implementations, we
consider two sets of experiments: one for 2D images and one for a 3D object.
In all these tests the SGP algorithm operates in monotone mode, that is
M = 1.

In the 2D cases we use some deblurring problems on astronomical images and
denoising problems on synthetic data. The former have pixel values in the
range

[
6.3 · 10−9, 1.2 · 10−8

]
, being photon counters normalized by 1012. The

latter have integer values in the range [0, 263]. In both cases the images are
corrupted by Poisson noise.

For the deblurring case, we look for a regularized solution of (1)–(2) by early
stopping the SGP method applied to the minimization of the KL divergence

f0(x;y) =
Ny∑
j=1

{
yj ln

(
yj

(Ax)j + bj

)
+ (Ax)j + bj − yj

}
. (11)

In the astronomical images we take a constant background bj = b = 6.76 ·10−9

∀j = 1, . . . , Ny.

For the denoising problem no background is considered and we solve (1)–(2)
with the objective function (8), where f0 has the form (11) with A = In and the
regularizer fR(x) is given by the approximated total variation (TV) functional
described in [4]. Here the SGP method is used as a standard minimization
algorithm and it is stopped when the relative difference on function values
crosses a given tolerance.

In the 3D case we use a set of real-world data arising from a microscopy
application, to give an idea of what actually happens.
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Our test platform consists of a workstation equipped with 2 Intel Xeon E5620
QuadCore CPUs at 2.4GHz, 18GB of RAM and 1 GPUs Nvidia Tesla C2050
described in the previous section. We consider two CPU implementations of
SGP: one in Matlab v. 7.11.0 and another one in C++. The GPU implementa-
tions are developed in mixed C and CUDA languages, within Microsoft Visual
Studio 2005. Finally, we run the MPI implementation on the IBM SP6 cluster
at CINECA (http://www.cineca.it/it/node/776).

Since we consider different implementations, in different languages, on different
machines, it is hard to give meaningful comparisons other than the absolute
total computational time. Nevertheless, we checked the computational power
of the single CPU of the IBM SP6 and that of the workstation. We ran the
same C++ code, compiled with the same settings on both machines, up to
100 SGP iterations on the same test problem: we got 1.45 seconds and 1.40
seconds, respectively, for the 256× 256 test, while for a test sized 1024× 1024
we got 29.37 and 28.65 seconds, respectively. Hence, the computational power
of the two CPUs is essentially the same and the times reported in the following
tables are consistent.

The deblurring test problems are generated as follows (see [3] for more details):
we convolve the original 256× 256 image in Fig. 1A with an ideal PSF, then
we add a constant background term and we perturb the resulting image with
Poisson noise to simulate real observed data (Fig. 1C). To obtain larger test
problems, we expand the original images and the PSF by means of a zero-
padding technique on their FFTs. The expansion is made by preserving the
medium value of the pixels and by using the same value of the background; as
a consequence, the noise levels of the new larger images are comparable with
those of the corresponding blurred noisy images sized 256× 256. In this way,
from the test problem 1A, we derive other test problems with sizes 512× 512,
1024× 1024, 2048× 2048 and 4096× 4096, on which the scaling properties of
the iterative reconstruction algorithms can be evaluated.

For the denoising tests the original image is the LCR-phantom in Fig. 1B,
consisting of square-enclosed circles with different intensities. This image is
then perturbed by Poisson noise to give the synthetic data of Fig. 1D (see
[28] and [4] for additional insights). We underline that, when we solve the de-
blurring problems, in all the implementations we use the number of iterations
that minimizes the reconstruction error. Both EM and SGP get to the same
error level, but SGP gets its minimum reconstruction error with much less
iterations.

For denoising problems we empirically determine the optimal value of the
regularization parameter µ, giving the minimal reconstruction error. We then
run all the SGP implementations until the same stopping rule is satisfied. We
do not report here the details of these error evaluations.
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(A) Original: a galaxy. (B) Original: the LCR phantom.

(C) Blurred noisy galaxy. (D) Noisy LCR phantom.

Fig. 1. 2D test data. Upper panels: original images. Lower panels: artificially per-
turbed images.

N. proc. 1 4 8 16 32 64 Matlab GPU

SGP (sec) 4.2 1.9 1.0 0.5 0.3 0.2 15.9 0.3

EM (sec) 40.4 16.2 9.8 5.4 3.2 2.4 336.3 6.3

Table 1
Computing times for test problem 1C, sized 1024× 1024.

In Table 1 we observe the reconstruction time for the 1024× 1024 deblurring
test image. The computational speedup is obtained in terms of both language
implementation (C++ versus Matlab) and parallelization (CUDA versus MPI).
In the case of the MPI code, we can notice a saturation effect: between 32
and 64 processors, the speedup decreases because communications dominate
computations.

Table 2 reports the times for the 4096 × 4096 denoising test. Looking at the
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N. proc. 1 4 8 16 32 64 128 256 GPU

SGP (sec) 384.5 132.2 64.9 31.8 15.9 8.1 4.2 2.4 12.2

Table 2
Computing times for test image 1D, sized 4096× 4096.

N. proc. 1 4 8 16 32 GPU

SGP (sec) 46.1 12.5 6.4 3.5 1.7 7.3

EM (sec) 146.2 39.7 19.0 11.7 6.0 36.5

Table 3
Deblurring times for 3D test. Object size: 256× 256× 52.

MPI experiments, we can see that the saturation does not occur even up to
256 processors, while in the GPU code the increased number of pixels gives the
opportunity to fully exploit all the cores and minimize the memory latency.

Last, we want to face a huge-size problem: a blurred multi-dimensional mi-
croscopy image sized 256×256×52, showing a trait of β-tubulin protein. The
data values are integers in the range [0, 167] with no background. Here we
do not have the original image to compare with: so, we use the classical EM
algorithm to obtain a suitable degree of visual enhancement. This is obtained
after about 300 iterations. Hence we let EM perform exactly this amount of
iterations, then we run SGP until a very similar reconstruction is obtained.
We found that the SGP reconstruction having the minimum relative Euclidean
distance to the EM reconstruction is obtained after only 50 iterations (up to
a relative tolerance of 5% on the Euclidean norm of the difference 2 ).

The visual results on some slices parallel to the cartesian planes are shown
in Figures 3 and 4, where the reference system for the observed volume is
supposed to be oriented as in Figure 2. The computational times are in Table
3: it can be clearly seen how in this larger case the MPI-based cluster imple-
mentation outperforms the GPU implementation very soon (between 6 and 8
processors). This is because with such large-scale data the GPU runs out of
local memory and heavy data transfer are needed from/to the main memory.

6 Conclusions and future developments

In this paper we presented a computational comparison of different parallel
implementations of the very effective first-order minimization algorithm SGP,
on various types of HPC parallel architectures. The algorithm is particularly

2 We also checked the relative uniform norm of the difference: this is larger than
the 5% threshold in only a very small part (0.007%) of all the 3.4 Mvoxels of the
problem.
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Fig. 2. Cartesian reference system for the 3D object test problem. The volume
consists of 256 × 256 × 52 voxels. One can see the actual positions of the slices
shown in Figures 3 and 4.

Measured Image EM 300 it. SGP 50 it.

XY planes

Fig. 3. 3D object and reconstructions: slices along the transverse plane (XY), taken
at the center of the volume (slices number 26 along the Z direction). Each image is
sized 256× 256.

suited to solve nonlinear optimization problems characterized by simple con-
straints, since the projection step is not too heavy. The considered implemen-
tations follows the general scheme of SGP algorithm, but they are equipped
with the most recent strategies for choosing the descent direction and selecting
the steplength αk, which allow a meaningful improvement of the convergence
rate. The class of problems we used to test algorithm efficiency is the im-
age restoration class. We followed a Bayesian-based probabilistic approach to

15



Meas. Im. EM 300 it. SGP 50 it. Meas. Im. EM 300 it. SGP 50 it.

XZ planes YZ planes

Fig. 4. 3D object and reconstructions: slices along the frontal (XZ) and sagittal
(YZ) planes, but rotated 90 degrees counterclockwise for easier picturing purpose.
The slices are taken at the center of the volume (slices number 128 along the Y and
the X direction, respectively). Each image is sized 256× 52.

model the image formation process, where different kind of noise affecting
the recorded data can be naturally considered. We finally end up with NLPs
having nonnegativity constraints. Hence, we show how a careful MPI-based
parallel implementation of the SGP method for very recent concurrent archi-
tectures allows to efficiently face large- and huge-scale image reconstruction
problems in reasonable time. Moreover, we compare these results against a
CUDA-based parallel implementation for GPU architectures: even if it has
been shown how effective can be the SGP-based approach on these machines,
we show that for large-scale imaging problems the MPI-based version allows
to overcome the memory limitations of GPUs, thus providing a very powerful
tool to solve real-world multidimensional problems.

Motivated by the good results we got, it’s easy to think that further devel-
opments can be considered in the way of hybrid programming, that is by
mixing inter-node distributed-memory computations (the MPI-related part)
with intra-node shared-memory multithreaded computations (the OpenMP-
related part). Here the computing nodes are thought to be multicore CPUs.
This is an higher level of parallelization, which in recent years has shown to be
very effective in catching the benefits of both the programming paradigms. A
second line of research is represented by the integration of GPUs and multicore
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CPUs: these configurations are increasingly appealing for their reduced costs
and good performances. Servers equipped with a bunch of multicore CPUs
and a limited number of last-generation GPUs devices are affordable HPC
architectures, able to reach Gflops-level performances. The implementation of
the SGP approach within such a mixed environment is surely possible, but has
a number of nontrivial issues to face. Nevertheless, it would make possible to
solve huge image restoration problems in a very limited time, thus opening the
way of HPC optimization to a lot of meaningful applications in many fields.
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