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Introduction

Interior Point (IP) methods are the core of the more robust packages for

solving large�scale, smooth nonlinear programming (NLP) problems (see, for

example, LOQO [26], BARNLP [4], IPOPT [27], MOSEK [1], KNITRO [6]).

The IP approach is used in a variety of algorithms with di�erent options and

heuristics; each variant o�ers bene�ts and troubles, often in dependence on the

class of the applications. Furthermore, for the same problem, the performance

of an IP algorithm can depend on the choices of the values of several parame-

ters.

The aim of this paper is to analyze the behavior of the IP approach for an image

processing application that requires to solve a large�scale nonlinear program-

ming problem, such as the denoising of an image corrupted by Poisson noise.

In the last years, �rst�order methods, as gradient and gradient�projection type

methods, have been largely exploited for solving the image denoising problem,

especially in case of Gaussian data. The interest for these methods is motivated

by their simplicity, the low memory requirement and the e�ciency in managing

nonnegativity constraints. In order to improve the low convergence rate of the

gradient methods, a variety of accelerating strategies, especially tailored for the

image processing problems have been proposed in the recent literature ([29]).

On the other hand, the IP methods have fast asymptotic convergence, but any

iteration is, in general, quite expensive to compute and the overall practical

behavior depends on several parameters.

Then, we are interested to evaluate the IP approach within the context of im-

age reconstruction, with particular attention to the choice of the parameters

for this problem. We devise two di�erent IP algorithms following the two well

known globalization strategies, line search and trust region, with the aim to

obtain an acceptable compromise between convergence rate and computational

cost per iteration. We show that the obtained algorithms can be useful for

computing high accuracy solutions.

The paper is organized as follows. In the �rst section we formulate the image

denoising problem in the case of Poisson noise as an NLP problem. In section

2 we give a brief outline of the IP methods, taking into account of the speci�c

structure of the considered problem. In sections 3 and 4 we describe two IP
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algorithms: the �rst one, named IP�LS algorithm, is based on the Newton's

method with a backtracking procedure to guarantee feasibility and global con-

vergence; the second one, denoted as IP�TR, follows a trust region strategy

to determine a feasible descent direction. In section 5 we report the results

of a numerical experimentation on a set of denoising problems, showing the

behavior of the two IP algorithms. Our main conclusions are drawn at the end

of section 5.

In the following, we denote a diagonal matrix with diagonal entries equal to

the elements of the vector a by the capital letter A.

1. The image denoising problem for Poisson data

When the main source of noise is the photon counting, as in emission tomog-

raphy, microscopy and astronomy, the detected image y ∈ RN can be assumed

to be the realization of a Poisson multi�valued random variable [15, 24] whose

mean is the true, unknown object x ∈ RN . A denoising problem consists in

�nding an approximation of the true object given the noisy data y and, in

the Bayesian framework, the following variational model based on the Total

Variation (TV) regularization has been proposed [8, 21, 30]

min f(x) ≡ f0(x) + βf1(x)

subject to x ≥ θ(1.1)

where f0(x) is the Kullback�Leibler divergence of the data y from x:

(1.2) f0(x) =
N∑

k=1

{
yk ln

yk
xk

+ xk − yk

}
with yk ln yk = 0 if yk = 0 and

(1.3) f1(x) =
N∑

k=1

√
D1(xk)2 +D2(xk)2 + δ2

where D1(xk) and D2(xk) represent the forward �nite di�erence operators in

the horizontal and vertical directions at the pixel xk and δ is a nonzero pa-

rameter. The regularization function f1(x) formally describes the HS potential
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proposed in [9] and, for small values of δ, it can be considered as a discrete

approximation of the TV functional.

The feasible region {x ∈ RN , x ≥ θ} is a closed convex subset of the non-

negative orthant of RN de�ned by the vector θ ∈ RN , whose components are

such that θk > 0 if yk > 0 and θk = 0 otherwise. Furthermore β is a positive

regularization parameter balancing the relative weight of f0(x) and f1(x).

We mention that a similar model is proposed in [30] also for other choices of the

regularization functional in a more general context of edge�preserving removal

of Poisson noise (hypersurface (HS) regularization [9], Markov Random Field

(MRF) regularization [16]).

The objective function f(x) is strictly convex on the feasible region [5]. Other

features of the NPL problem (1.1) are the large number of variables, the very

simple constraints and a structured, sparse and ill-conditioned Hessian matrix.

Indeed the Hessian matrix of f0(x) is a diagonal matrix with entries yi/x
2
i while

∇2f1(x) = ATD(x)A, where D(x) is a nonsingular block diagonal matrix with

nonsingular diagonal blocks and A is the matrix of the �nite di�erence approx-

imations to the horizontal and vertical �rst order partial derivatives, including

the chosen boundary conditions (see [5] for details).

Recently, a number of very e�cient gradient methods have been developed and

analyzed for image denoising, especially for Gaussian noise. These methods

require only gradient computation and matrix-vector products (see, for exam-

ple, [3, 17, 29, 30] and references therein). In literature, a lot of second order

methods with superlinear or quadratic convergence have been proposed for

box constrained nonlinear programming problems. In the framework of the IP

methods, the a�ne�scaling algorithms developed by Coleman and Li [10, 11]

have been intensively investigated (see for example [2, 13, 19, 18, 31]). Their

main drawback is that they require the solution of a linear system of equations

at each iteration, as well as the evaluation of the Hessian matrix. Nevertheless,

in order to preserve computational performance on very large scale problems

such as (1.1), it is convenient to devise algorithms whose computational core

is given only by matrix-vector products. In the following we consider the IP

approach from this point of view, adapting the method to the special features

of the image denoising problem (1.1).
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2. Interior Point framework

The IP approach consists in solving the problem (1.1) by �nding (approx-

imate) solutions of the following barrier problems for a sequence of positive

barrier parameter {µk} converging to zero:

(2.1) min ϕµ(x) ≡ f(x)− µ
N∑
i=1

ln(xi − θi)

where µ > 0 and the domain of ϕµ(x) is given by x > θ. The problem (2.1) can

be treated as an unconstrained problem and its �rst�order optimality conditions

are

(2.2) ∇ϕµ(x) = ∇f(x)− µ(X −Θ)−1e = 0

where e = (1, ..., 1)T ∈ RN . By introducing the variable z = µ(X −Θ)−1e, we

can reformulate (2.2) as the following system

∇f(x)− z = 0

Z(x− θ) = µe(2.3)

with x− θ > 0 and z > 0. In order to understand the role of the variable z, we

observe that the nonlinear system (2.3) can be considered a perturbation of the

primal�dual system representing the Karush Khun Tucker (KKT) conditions

of the original problem (1.1). Indeed, introducing the vector z of the Lagrange

multipliers of the constraint x ≥ θ, the KKT conditions of problem (1.1) are

given by the following system

∇f(x)− z = 0

Z(x− θ) = 0(2.4)

x ≥ θ z ≥ 0

As observed in [14], if the system (2.4) is solved by an iterative method, we can

avoid stagnation when an iterate reaches the boundary of the feasible region,

by perturbing this primal�dual system in the last N equations as in (2.3).

Then, within the IP approach, starting from a strictly feasible vector x(0) and
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a positive vector z(0), we have to determine sequences of strictly feasible iterates

x(k) and positive z(k) that, under suitable hypotheses, from the interior of the

feasible region converge to a solution x∗ of (1.1) and to the related Lagrange

multiplier z∗.

In literature, there exist two main strategies to ensure the global convergence

of the sequences {x(k)} and {z(k)}, the line search (IP-LS) and trust region

(IP-TR) approaches (for a list of references see [7, 28]).

In the line search approach, we apply Newton's method to the system (2.3),

backtracking if necessary so that the iterates z(k) and x(k) remain strictly fea-

sible and a convenient merit function is su�ciently reduced.

In the trust region approach, we associate a quadratic program with (2.1) and

we de�ne the algorithm steps as approximate solutions of this quadratic sub-

problem.

In the following two sections, we give further details about the implementation

of the two approaches for solving the image denoising problem (1.1)-(1.3).

With regard to the sequence of barrier parameters {µk}, there exist many

procedures to choose the parameter µk. We mention the Fiacco�McCormick

monotone approach, where µk is held �xed for a series of iterations until the

KKT conditions are satis�ed to some accuracy or the adaptive strategy, in

which the parameter is updated at any iteration with di�erent rules (see [22]).

At the present, it is not known which one is the most e�ective in practice. In

the numerical experiments reported in the last section, we use the following

rule [26]:

(2.5) µk = min (0.1
(x(k) − θ)T z(k)

N
,µk−1)

that assures µk ≤ µk−1.

3. IP-Line Search approach

3.1. Algorithm description

The scheme of IP�LS is reported in Figure 1. The main task consists in
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Choose µ0 > 0, x(0) > θ, z(0) > 0.

For k = 0, 1, ...

• Compute dx, dz;

• Update the primal and dual variables

x(k+1) = x(k) + αxdx

z(k+1) = z(k) + αzdz

• where αx and αz are su�ciently small such that

- x(k+1) > θ, z(k+1) > 0

- an Armijo rule holds for ϕµk (x
(k+1))

• Update the barrier parameter µk+1 ≤ µk

Figure 1 � IP�LS algorithm

computing a line search step (dx, dz), applying the Newton's method to the

system (2.3):(
∇2f(x(k)) −I

−I −Z(k)−1
(X(k) −Θ)

) (
dx

dz

)
=

= −

(
∇f(x(k))− z(k)

−(x(k) − θ) + µkZ
(k)−1

e

)
(3.1)

As proved in [5], ∇2f(x) is positive de�nite and the coe�cient matrix of (3.1)

is nonsingular and quasi de�nite (N positive eigenvalues and N negative eigen-

values). We can determine an approximate solution of (3.1) by computing dx

�rst, approximately solving the following reduced system

(3.2) (∇2f(x(k)) + (X(k) −Θ)−1Z(k))dx = −∇f(x(k)) + µk(X
(k) −Θ)−1e

and then we compute dz:

(3.3) dz = −z(k) + (X(k) −Θ)−1(µke− Z(k)dx)
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Since the coe�cient matrix of the reduced system is a sparse structured sym-

metric positive de�nite matrix, we can inexactly solve (3.2) by a preconditioned

conjugate gradient (PCG) algorithm. In particular, we choose the diagonal

preconditioner diag(∇2f(x(k)) + (X(k) −Θ)−1Z(k)) in order to save in compu-

tational complexity. Thus every PCG iteration requires only a matrix�vector

product.

After computing (dx, dz) we update the iterates

x(k+1) = x(k) + αsdx

z(k+1) = z(k) + αzdz(3.4)

where αx and αz are chosen to assure strict feasibility and a su�cient decrease

of the merit function ϕµk
(x). In particular, in order have the strict feasibility

of the new iterates, we compute

αmax
x = max {α ∈ (0, 1] : x(k) − θ + αdx ≥ (1− τ)(x(k) − θ)}

αmax
z = max {α ∈ (0, 1] : z(k) + αdz ≥ (1− τ)z(k)}(3.5)

with τ = 0.9995; then we perform a backtracking procedure that computes the

smallest nonnegative integer n such that ᾱ = δn, δ ∈ (0, 1) and the following

condition is satis�ed:

(3.6)

ϕµk
(x(k) + ᾱαmaxx dx) ≤ ϕµk

(x(k)) + γᾱαmaxx (∇f(x(k))− µk(X
(k) −Θ)−1e)dx

with γ ∈ (0, 1) (typically γ = 10−4). Then the steplengths in (3.4) are given

by

αx = ᾱαmaxx

αz = ᾱαmaxz

3.2. Starting points

A crucial choice of IP-LS algorithm is the set of starting values. Given an

initial feasible vector x(0) and an initial value for µ0 = 1, the initial multiplier

z(0) is computed as

(3.7) z(0) = min (z̄, µ0(X − θ)−1e)
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where the minimum is computed componentwise and z̄ is the least�squares

solution of the system (2.3):

min z≥0∥z −∇f(x(0))∥2 + ∥(X(0) −Θ)z − µ0e∥2

Consequently, the initial settings depend only on the choice of x(0) and µ0.

4. IP-Trust Region approach

4.1. Algorithm description

The IP-TR approach di�ers from the IP-LS presented in the previous section

mainly in the way to compute the step dx in (3.4). Here the direction dx is

computed by minimizing a quadratic model of the barrier function within a

suitable trust region, ensuring in this way global convergence and feasibility. In

practice, we can apply the sequential quadratic programming method, tailored

for the barrier problem (2.1) with the constraint x − θ > 0. Then, given a

barrier parameter µk and an estimate of the Lagrange multiplier estimate z(k),

we compute a step dx that (approximately) solves the following subproblem:

min ψk(dx) ≡=
1

2
dx

T∇2ϕµk
(x(k))dx +∇ϕµk

(x(k))T dx

∥(X(k) −Θ)−1dx∥2 ≤ ∆k(4.1)

dx ≥ −τ(x(k) − θ)

where

∇2ϕµk
(x(k)) = ∇2f(x(k)) + Z(k)(X(k) −Θ)−1

∇ϕµk
(x(k)) = ∇f(x(k))− µk(X

(k) −Θ)−1e

with τ = 0.9995 as in (3.5). The solution of (2.1) is strictly related to the

solution of the system (3.2). Indeed, since z = µ(X−Θ)−1e, the unconstrained

minimum of the quadratic function in (4.1) actually is the solution of the linear

system (3.2).

In order to approximately solve the subproblem (4.1), we can use the PCG

Steihaug method ([25]) combined with the preconditioner :

(4.2) Ck = (X(k) −Θ)−2
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It is worth to stress that the previous choice of the preconditioner is related

to the elliptical trust region constraint in (4.1), which is well suited for bound

constrained problems since it discourages moves toward the boundary of the

feasible region [2, 10, 11].

As in IP�LS, the computational complexity of the PCG algorithm is equal to

a matrix-vector product per iteration. At any PCG iteration, we check if the

trust region constraint is satis�ed and we stop if the boundary of the region

is crossed. Finally we truncate the step dx if necessary in order to satisfy the

constraint dx ≥ −τ(x(k) − θ).

Then, following the standard trust region technique [23], the computed step dx

is accepted if the actual reduction of the merit function satis�es the following

classical condition:

(4.3) ared(dx) ≥ ρ pred(dx)

where ared(dx) = ϕµk
(x(k))−ϕµk

(x(k)+dx) and pred(dx) = ψµk
(0)−ψµk

(dx);

usually ρ = 0.25. Otherwise, the computed step dx is discarded.

Finally the new trust region radius ∆k+1 is computed. Many strategies have

been proposed in the literature for updating the trust region radius: in general,

the existing approaches suggest to update it according to the ratio between the

actual and predicted reduction, which indicates whether the quadratic model

is a good approximation of the barrier function. In particular, if the ratio is

su�ciently large it could be convenient to allow a larger step in the next iterate

and the radius is increased, while it is reduced otherwise.

In particular, given an initial value for ∆0 (for example ∆Max = 215), we use

the following updating rule:

if
ared(dx)

pred(dx)
< 0.5

∆k+1 =
∆k

γ0
;

end

if
ared(dx)

pred(dx)
> 0.7

∆k+1 = min (γ1∆k,∆Max)

end
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where γ0 = 16, γ1 = 4.

The initial points of IP�TR is set as described in section 3.2. Furthermore, at

any iteration k, we compute a least squares approximation of the multipliers

vector z(k) from x(k) and the current value of µk, in the same way employed to

compute the starting value z(0) in (3.7).

4.2. A new preconditioner

We recall that for each k, starting the inner iterations from zero, the �rst vector

computed by the PCG Steihaug method with preconditioner Ck is the Cauchy

direction, that is a multiple of the scaled gradient vector of the barrier function

at x(k), Ck
−1∇ϕµk

(x(k)) = (x(k) −Θ)2∇ϕµk
(x(k)).

In other words, there is a clear connection between the preconditioner, the

shape of the trust region (as mentioned above) and the scaling idea.

In the framework of the �rst order method for image denoising, di�erent scal-

ing techniques are proposed to generate e�cient methods. In particular, the

split�gradient method [20] is based on a decomposition of the gradient of the

objective function in a positive and a non positive part

(4.4) ∇f(x) = v(x)− u(x)

where v(x) > 0 and u(x) ≥ 0 for all x ≥ θ. Using this suggestion, in [30]

the authors devise a suitable decomposition of the form (4.4) for the denoising

problem (1.1) and design a scaled gradient projection algorithm based on the

positive diagonal scaling matrix (X(k) − Θ)V (x(k))−1. In view of the good

results obtained with this scaling, we propose as preconditioner in the PCG

Steihaug method the inverse of this scaling matrix

(4.5) Ck
(1) = (X(k) −Θ)−1V (x(k))

This choice modi�es the shape of the trust region constraint in the quadratic

problem (4.1), that becomes

(4.6) ∥(X(k) −Θ)−1/2V (x(k))1/2dx∥2 ≤ ∆k

Consequently, we obtain that the direction computed at the �rst inner iteration

is the same of the split�gradient method applied to the function ϕµk
(x) at
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x(k). Numerical experiments in the next section show an improvement of the

performance of IP�TR algorithm with the preconditioner Ck
(1) with respect to

the standard scaling (4.2).

5. Numerical results

In order to analyze the behavior of IP�LS and IP�TR algorithms we report

the results of a set of numerical experiments on some denoising test problems.

The numerical experiments have been performed in Matlab environment (7.5.0)

on a PC equipped with a Pentium M715 processor with 512Mb of RAM. The

�rst test image is the LCR�phantom described in [21]. It is an array of 256×256

pixels, representing concentric circles of intensities 70, 135 and 200, enclosed

by a square frame of intensity 10, all on a background of intensity 5. The

second original image is a 512 × 512 dental radiography (DR) (see Figure 3,

described in [30]. The noisy image y of each problem is obtained by adding

Poisson noise to a test image x (the original object) by means of the "imnoise"

function included in the Matlab Image Processing Toolbox.

The relative error di�erence in euclidean norm between the noisy and the noisy�

free images is 0.095318 and 0.179 for LCR and DR problems respectively. The

original images and the corresponding noisy version are shown in Figures 2 and

3.

For the problems LCR and DR, we use di�erent settings of the regularization

parameter β and of the value δ in the functional (1.3). When δ ∈ [10−2, 1],

f1(x) can be considered an HS regularization, while for δ = 10−8, it can be

interpreted as a discrete approximation of the TV functional. For the choice of

the values of β, we follow [30]. In both algorithms, we use the same stopping

criteria for the inner PCG method and the outer iterations. In particular, for

the inner PCG algorithm with preconditioner C, the inner stopping criterion

is the following:

√
rTC−1r = ∥r∥C−1/2 < 0.1
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Figure 2 � Left panel: the LCR�phantom. Right panel: the corresponding noisy version.

Figure 3 � Left panel: the dental radiography (DR). Right panel: the corresponding noisy

version.
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Table 1 � Behavior of IP�TR algorithm combined with di�erent preconditioners in the PCG

inner solver; x(0) = e.

Test�problem Preconditioner it itpcg fevals

LCR - β = 0.25; δ = 0.1 (4.2) 14 9432 15

(4.5) 15 830 16

DR - β = 0.3; δ = 1 (4.2) 10 856 11

(4.5) 10 209 11

As outer stopping rule in IP�LS and IP�TR algorithms, we check the outer

residual related to the KKT conditions (2.4):

(5.1)

∥∥∥∥∥ ∇f(x)− z

Z(x− θ)

∥∥∥∥∥ ≤ 10−6

∥∥∥∥∥ ∇f(x(0))− z(0)

Z(0)(x(0) − θ)

∥∥∥∥∥
The method terminates also when µ < 10−14 or a maximum number (MaxIter =

1500) of outer iterations have been executed. In the following tables, we de-

note by it the number of outer iterations and by itpcg the total number of

PCG iterations. The reconstruction error between the original image x̄ and

the computed reconstruction x∗ has been evaluated by means of the relative

error err with respect to the euclidean norm ∥x̄−x∗∥
∥x̄∥ . Furthermore, f denotes

the value of the objective function at the computed solution f(x∗) and fevals

the numbers of objective function evaluations that are performed in order to

obtain the computed solution x∗. The number of gradient and Hessian evalua-

tions are equal to the number of outer iterations. Table 1 shows as the choice

of the preconditioner in the PCG inner solver a�ects the performance of IP�

TR method. While the number of outer iterations is nearly unvaried, the total

number of inner iterations of the PCG solver dramatically decreases when we

use the preconditioner (4.5), that is strictly related to the features of the image

denoising problem. This behavior is coherent to the good performance obtained

when (4.5) is used as scaling matrix for �rst order methods, as focused in [30].

Consequently, all the next numerical results related to IP�TR are obtained

using the PCG method with the preconditioner (4.5) as inner solver.

In Tables 2 and 3, we report the results of the behavior of IP�LS and IP�

TR respectively for the test problem LCR for di�erent values of β and δ and
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di�erent starting points x(0). Here, max (y, 1) indicates the vector obtained by

computing componentwise the maximum. The symbol ∗ indicates a failure (the
stopping criterion (5.1) has not been satis�ed within the maximum number of

outer iterations or the total numbers of inner PCG iterations exceeds 40000).

From the two tables, we draw the following observations:

• the number of outer iterations is generally small for both algorithms;

• we observe a strong dependence on the starting vector x(0); a suitable

choice for x(0) is the vector e or a multiple of e; for x(0) = e, the Hessian

matrix∇2f(e) is given by Y +β∇2f1(e), where ∇2f1(e) is a sparse matrix

where the nonzero entries are of the order of 1
δ . For example, the diagonal

entries are equal to 4
δ . Then, since the Hessian matrix is not excessively

ill-conditioned, the choice of e or a multiple of e as starting point seems

convenient; indeed also the initial multipliers are not too close to zero;

• the behavior of the two algorithms is very similar, although the perfor-

mance of IP�TR algorithm seems more sensitive to the values δ;

• for very small values of δ, we observe a bad performance or a failure of

both algorithms.

In Tables 4, 5 and 6, we report a comparison between the two IP algorithms

and the scaled gradient projection (SGP) method described in [30] on the LCR

and DR problems respectively. It is worth stressing that IP and SGP are very

di�erent methods, but their comparison suggests interesting remarks. In all

tables, the results on the column SGP are obtained by stopping the method

when the following condition is satis�ed [30]:

|f(x(k+1))− f(x(k))| ≤ 10−7|f(x(k+1))|

The results in the column SGP* are obtained by stopping the method when the

objective function becomes less than f(x∗), where x∗ is the solution provided

by IP�LS. In all tables, gevals and Hevals denote the number of gradient and

Hessian evaluations performed by the di�erent methods. Figure 4 show the

behavior of the objective function and the relative reconstruction error for IP�

LS and SGP with respect to the elapsed computation time in the case of LCR
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Table 2 � Behavior of IP�LS algorithm.

Test�problem x(0) f err it itpcg fevals

LCR - β = 0.25; δ = 10−1 e 55566.4 0.02588 21 815 22

10−1e 55566.4 0.02588 18 662 19

max (y, 1) 55566.4 0.02590 76 5427 361

LCR - β = 0.2; δ = 10−2 e 49239.8 0.02440 116 4885 437

10−2e 49241.3 0.02445 36 3431 121

max (y, 1) 49238.7 0.02408 273 38546 1952

LCR - β = 0.25; δ = 10−8 e * * * * *

10−8e * * * * *

max (y, 1) * * * * *

DR - β = 0.3; δ = 1 e 209705.5 0.02974 18 164 19

max (y, 1) 209705.5 0.02975 40 578 87

Table 3 � Behavior of IP�TR algorithm.

Test�problem x(0) f err it itpcg fevals

LCR - β = 0.25; δ = 10−1 e 55566.4 0.02587 15 830 16

10−1e 55566.4 0.02587 15 912 16

max (y, 1) 55566.4 0.02586 553 1373 554

LCR - β = 0.2; δ = 10−2 e 49262.0∗ 0.02594∗ 1500∗ 5113∗ 1553∗

10−2e 49445.8 0.03139 53 4387 68

max (y, 1) 49281.6∗ 0.02365∗ 1500∗ 2081∗ 1500∗

LCR - β = 0.25; δ = 10−8 e * * * * *

10−8e * * * * *

max (y, 1) * * * * *

DR - β = 0.3; δ = 1 e 209705.5 0.02974 10 209 11

max (y, 1) 209705.5 0.02974 30 276 40
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Table 4 � LCR problem with β = 0.25, δ = 10−1 and x(0) = 10−1e

IP�LS IP�TR SGP* SGP

f 55566.4 55566.4 55566.4 55578.4

err 0.02588 0.02587 0.02582 0.02491

it 18 15 246 167

itpcg 662 912 / /

fevals 19 16 258 171

gevals 19 16 246 167

Hevals 18 15 / /

time 33.5 38.7 47.6 25.2

problem with β = 0.25, δ = 10−1 and x(0) = 10−1e.

For LCR problem with β = 0.25 and δ = 10−8, where IP-LS and IP-TR fail,

SGP method produces a solution in 560.2 seconds and it=2454, f=56721.3,

err=0.02639 and fevals=3964.

From these numerical results, we can observe that in general IP-LS algo-

rithm exhibits fast convergence and it enables us to obtain accurate solutions

of the optimization problem (1.1). Nevertheless, from the image reconstruction

point of view, the goal is to obtain a satisfactory approximation of the original

image with a low computational cost; with this aim in mind, the robustness of

SGP is evident. Then, IP-LS can be useful for computing benchmark solutions

of high accuracy.

A �nal consideration is concerned with the discrete approximation of TV

function, i.e. when δ is very small. Although SGP is able to produce a solution

also in this case, we discover a number of numerical instabilities in all methods,

such as a very slow convergence or a failure (as in IP approach). In our opinion,

this arises since for small δ, the problem (1.1) is very near to be a nonsmooth

optimization problem and then a di�erent class of methods should be used to

successfully deal with this problem. In literature a number of contributions in

this direction have been given for the reconstruction of images corrupted by

Gaussian noise (see the references in [12]); a focus about the special case of

Poisson noise will be the subject of future work.
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Table 5 � LCR problem with β = 0.2, δ = 10−2 and x(0) = 10−2e

IP�LS IP�TR SGP* SGP

f 49241.3 49445.8 49241.3 49256.9

err 0.02445 0.03139 0.02582 0.02350

it 36 53 1052 625

itpcg 3431 4387 / /

fevals 121 68 1082 639

gevals 37 53 1052 625

Hevals 36 36 / /

time 133.2 171.3 200.1 119.1

Table 6 � DR problem with β = 0.3, δ = 1 and x(0) = e

IP�LS IP�TR SGP* SGP

f 209705.5 209705.5 209705.5 209705.6

err 0.02974 0.02974 0.02972 0.02972

it 18 10 44 41

itpcg 164 209 / /

fevals 19 11 46 44

gevals 18 11 44 41

Hevals 18 11 / /

time 90.8 85.1 43.2 41.3
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