$e = \underbrace{v_B - v_A}_{u_A - u_B}$

COEFFICIENTE DI RESTITUZIONE

 $e = V(h_b/h_d)$

 $\begin{array}{ll} \text{L= m.v} & \text{QUANTIT\`a DI MOTO} \\ m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 & \text{URTO ELASTICO} \end{array}$

 $m_1u_1 + m_2u_2 = (m_1+m_2)v$ URTO PERFETTAMENTE ANELASTICO

μ=tgθ COEFFICIENTE DI ATTRITO

 $F = \mu N$ FORZA DI ATTRITO

 $N=mgcos\theta$ FORZA NORMALE

Momento angolare = momento di inerzia x velocità angolare

 $L = I \omega$ Momento angolare

 $I_A = mr^2$ Momento di inerzia rispetto asse A $I_i \times \omega_i = I_f \times \omega_f$ CONSERVAZIONE DEL MOMENTO

ANGOLARE

$I_A = I_{CofG} + md^2$

MOMENTO TOTALE DI INERZIA

$0.006 \times m$	Segment	Moment of inertia
0.016	Head	0.024 kg.m²
	Trunk	1.261
	Upper arm	0.021
	Forcarm	0.007
0.0465	Hand	0.0005
0.100	Upper leg (thigh)	0.105
0.061	Lower leg	0.050
0.161	Foot	0.003
	0.016 0.028 0.022 0.050 0.0145 0.0465 0.100 0.061	0.016

 $W = Fd \cos\theta$ LAVORO

 $Ec = \frac{1}{2} mv^2$ ENERGIA CINETICA Ep = mgh ENERGIA POTENZIALE

 $\begin{array}{ll} P = F \ v & POTENZA \\ P = W/t & POTENZA \\ J = F.t = m. \ v & IMPULSO \end{array}$