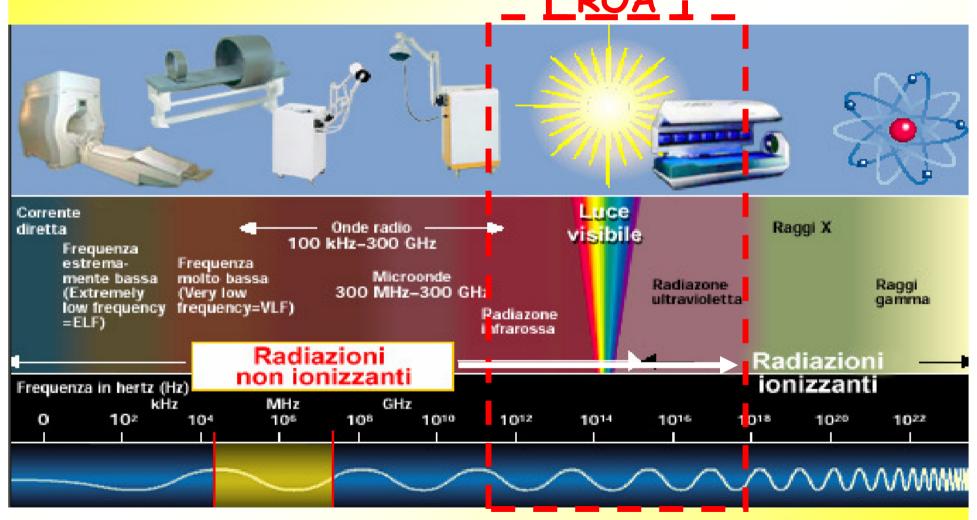
Università di Ferrara
Insegnamento di
Sicurezza nei luoghi di lavoro
A.A. 2015-2016

Rischi da Agenti Fisici: Radiazioni Ottiche Artificiali

Dott. Salvatore Minisci

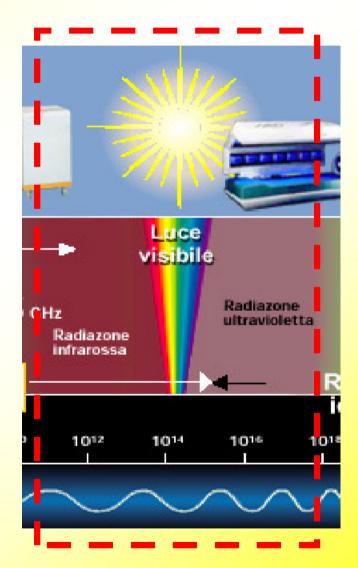

Art. 180 DLgs 81/08 - Definizioni e campo di applicazione

- 1. ... per agenti fisici si intendono il rumore, gli ultrasuoni, gli infrasuoni, le vibrazioni meccaniche, i campi elettromagnetici, le radiazioni ottiche di origine artificiale, il microclima e le atmosfere iperbariche
- **2.** ...
- 3. La protezione dei lavoratori dalle radiazioni ionizzanti è disciplinata unicamente dal D. Lgs. n. 230/95, e sue successive modificazioni.

Agenti fisici rilevanti in ospedale

- campi elettromagnetici
- · radiazioni ottiche di origine artificiale
- radiazioni ionizzanti
- Le radiazioni elettromagnetiche sono costituite da energia che si propaga senza bisogno di un supporto materiale, e sono caratterizzate da una lunghezza d'onda e da una frequenza.
- L'energia è proporzionale alla frequenza e inversamente proporzionale alla lunghezza d'onda.

Spettro delle radiazioni elettromagnetiche _ ROA]

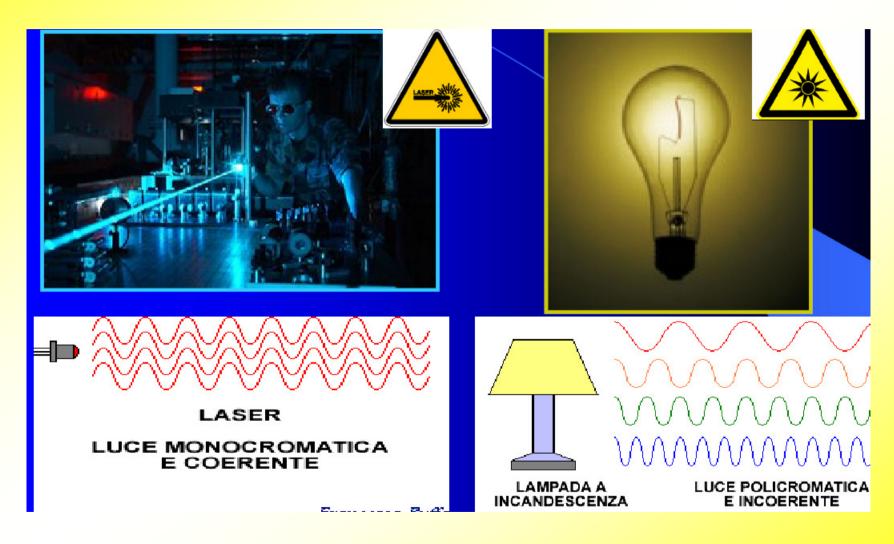


Convenzionalmente si considerano ionizzanti le radiazioni con frequenza maggiore di 3*x*10¹⁵ Hertz ed energia > 12 eV

Radiazioni ottiche artificiali (ROA)

lunghezza d'onda compresa tra 1 mm e 100 nm

- R. Ultraviolette (UV)
 tra 100 e 400 nm
- · R. Visibili tra 400 e 780 nm
- · R. Infrarosse (IR) tra 780 nm e 1 mm


Spettro delle radiazioni ottiche

Radiazione		Lunghezza d'onda	Regione
Ultravioletta	UV-C	100 - 280 nm	Germicida
	UV-B	280 - 315 nm	Eritemale
	UV-A	315 - 400 nm	Luce nera
Visibile		400 - 780 nm	
Infrarossa	IR-A	780 - 1400 nm	IR-A
	IR-B	1400 - 3000 nm	IR-B
	IR-C	3000 nm - 1 mm	IR-C

Radiazioni ottiche artificiali (ROA)

- Possono essere emesse in modo:
 - "coerente" o "incoerente"
 - continuo o pulsato
- Sono "coerenti" (e monocromatiche) le radiazioni ottiche emesse da una sorgente LASER (amplificazione di luce mediante emissione stimolata di radiazione). La "coerenza" è una caratteristica legata alla "fase" dell'onda durante la propagazione. In particolare nelle sorgenti coerenti gli atomi si diseccitano tutti in fase tra loro.
- Sono "incoerenti" (e policromatiche) le radiazioni ottiche emesse dal sole o dalle lampadine a incandescenza o a scarica di gas.

Confronto fra laser e luce policromatica

Esempi di sorgenti di radiazioni ottiche artificiali di uso sanitario

NON COERENTI

- lampade scialitiche
- · lampade germicide
- · lampade o L.E.D. per fototerapia
- · lampade per luce pulsata, abbronzatura

•

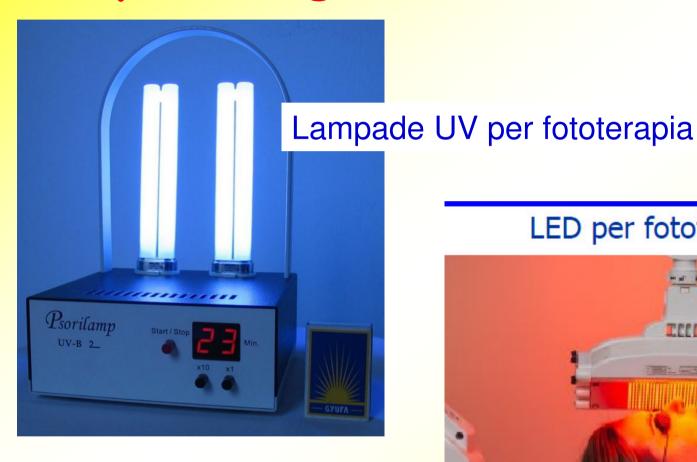
COERENTI

· qualsiasi tipo di LASER

Esempi di sorgenti ROA non coerenti

Lampada UV germicida a vapori di mercurio

Cappa biologica con sorgente UV germicida



13

Lampade germicide UV-C

- Una lampada germicida è un tipo particolare di lampada (a vapori di mercurio) che produce la luce ultravioletta UV-C.
- I raggi UV-C a lunghezza d'onda corta agiscono sul DNA, creando dei dimeri di timina, e portano a morte la cellula.
- · È efficace contro una grandissima quantità di virus, batteri e altri microorganismi.

Esempi di sorgenti ROA non coerenti

LED per fototerapia

Esempi di sorgenti ROA non coerenti

Cabina con lampade UV per fototerapia

Fototerapia con UV-B in dermatologia (psoriasi, vitiligo, acne, dermatite seborroica ...)

- La maggior efficacia terapeutica si raggiunge con la lunghezza d'onda di 311 nm (banda stretta, o Narrow Band), in pieno campo UV-B: con questo tipo di emissione, molto superficiale rispetto ad UV-A e ristretta rispetto ai tradizionali UV-B, si limitano i rischi per il paziente al minimo.
- Anche gli UV-A possono essere terapeutici ma richiedono fluenze nettamente superiori rispetto agli UV-B (anche di 1000 volte), per cui vengono associati con psoraleni (PUVA)

Esempi di sorgenti ROA non coerenti

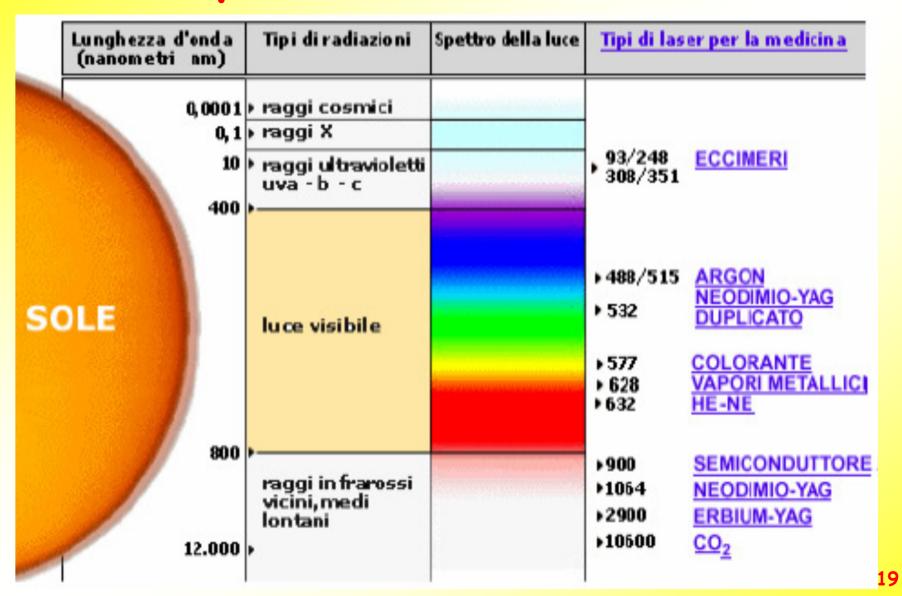
Lampade per fototerapia dell'ittero neonatale Lunghezza d'onda 400-550 nm (picco: 450 nm)

Fototerapia in neonatologia

Per la terapia dell'ittero neonatale:


- Si può usare la radiazione luminosa visibile bianca, quella verde e quella blu (picco di 450 nm),
- La luce blu è sempre più usata per la sua efficacia (assorbita facilmente dalla bilirubina gialla), ma può provocare danni all'occhio (danni retinici di natura termica e fotochimica).

Esempi di sorgenti ROA non coerenti

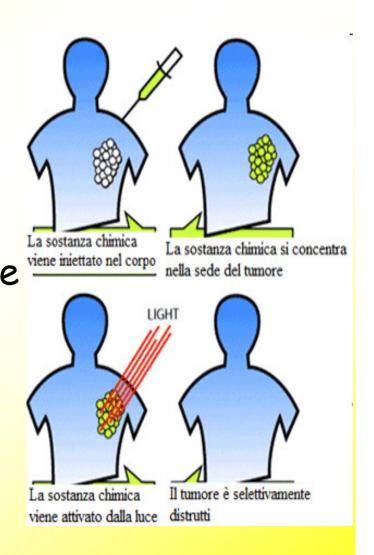


La Luce pulsata intensa (IPL), o terapia flashlamp, è un trattamento non invasivo che utilizza impulsi di luce ad alta intensità per migliorare l'aspetto della pelle: epilazione, macchie, rughe, acne, smagliature ...

Esempi di sorgenti ROA coerenti (LASER)

Lo spettro delle emissioni laser

Il laser in medicina


- La risposta terapeutica dipende da:
 - lunghezza d'onda,
 - durata di irradiazione
 - potenza del laser.
- Combinazioni diverse di questi parametri sono impiegate per trasformare l'energia luminosa in energia:
 - Meccanica
 - Termica
 - Chimica
- Generalmente gli effetti meccanici sono prodotti dall'applicazione di brevi impulsi (dell'ordine dei nanosecondi) ed alte energie.

Il laser in medicina

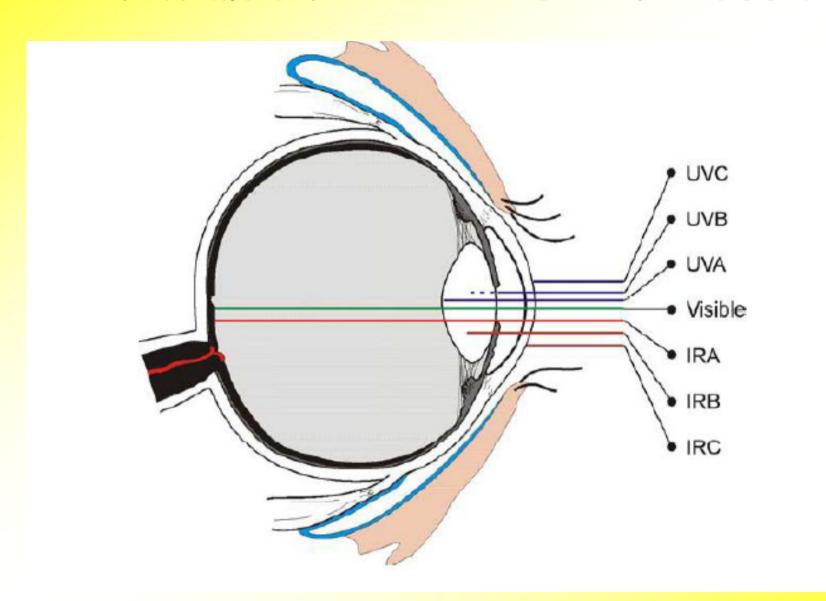
- Onde di stress meccanico si usano per disintegrare calcoli urinari.
- Effetti termici si ottengono abbassando la potenza del laser. Brevi impulsi laser vengono usati in chirurgia oculistica per ablare sottili strati di cornea e correggere i difetti rifrattivi o per fissare la retina.
- La coagulazione selettiva delle vene varicose in chirurgia estetica usa luce laser assorbita selettivamente dall'emoglobina.
- Con la criolaserforesi si ha invece l'immissione di principi attivi per via cutanea.

Terapia fotodinamica contro alcuni tumori

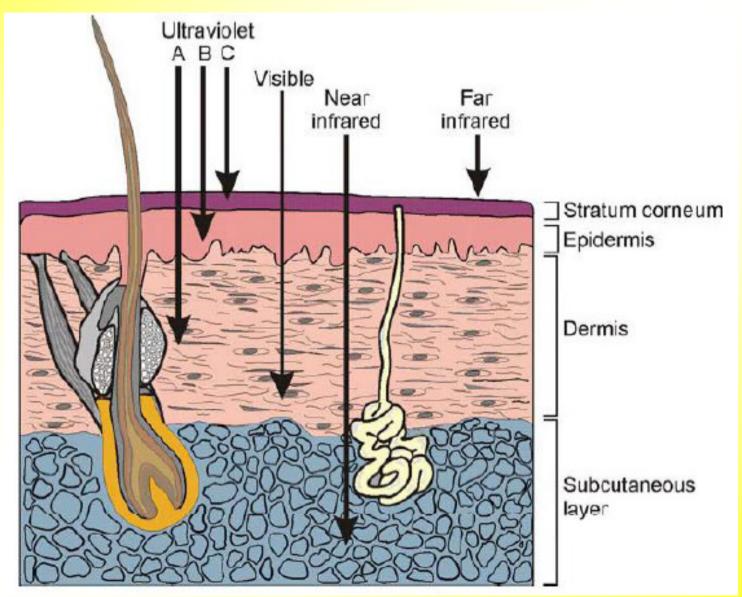
- Tecnica non invasiva per la rimozione di tumori allo stadio iniziale e per il controllo delle metastasi.
- Si inietta un farmaco inattivo sensibile alla luce, che riconosce e si lega alle sole cellule malate. Al passaggio di un fascio di luce ad una determinata lunghezza d'onda, il farmaco attiva una reazione che distrugge le sole cellule tumorali.

Effetti sulla salute e sulla sicurezza

- La pericolosità delle sorgenti ROA è relativa a:
 - energia emessa dalla sorgente
 - energia ricevuta dal lavoratore
 - lunghezza d'onda (o frequenza)
 - modalità di impiego
 - tempo di esposizione.


Meccanismi degli effetti biologici delle ROA

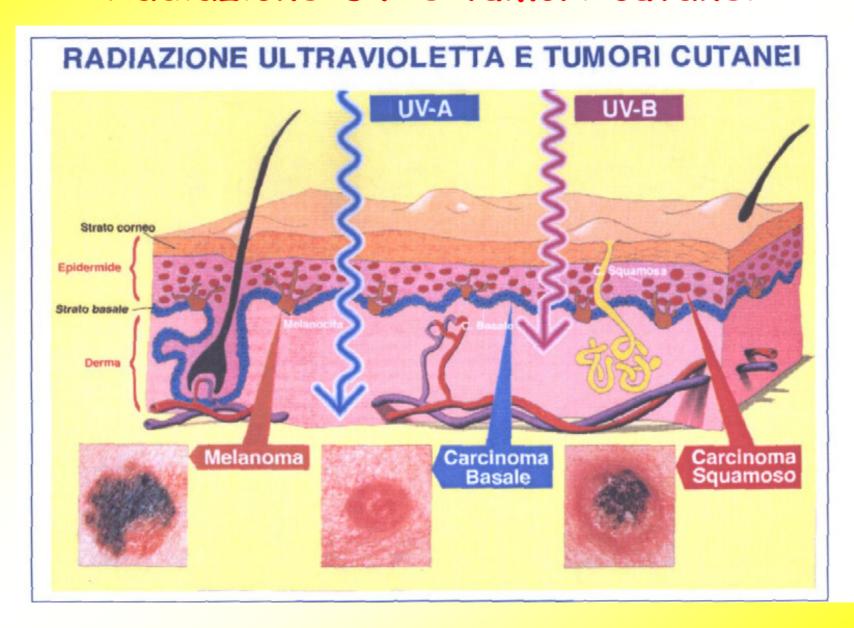
Termico	Fotochimico
Accumulo di calore -> aumento della T° -> ustione Aggravato da scarsa vascolarizzazione.	Assorbimento di fotoni -> reazioni chimiche -> alterazioni molecolari (anche del DNA). Aggravate da fotosensibilizzanti
IR e visibile	UV e visibile


Meccanismo della radiazione UV

- La radiazione UV altera le molecole di DNA delle cellule della pelle, inducendo basi adiacenti di timina a formare legami covalenti.
- Due basi adiacenti di timina non si legano in modo normale, ma causano una distorsione dell'elica del DNA, interferiscono con i meccanismi di copia e in generale con il funzionamento del DNA.
- Il tutto porta facilmente a delle mutazioni, che possono sfociare in episodi di cancro. Questo effetto degli UV può essere facilmente osservato in colture batteriche.

Penetrazione delle ROA nell'occhio

Penetrazione delle ROA nella cute


Effetti sulla salute e sulla sicurezza

Regione spettrale	Occhio	Pelle	
Ultravioletto C (da 100 nm a 280 nm)	Fotocheratite	Eritema (scottatura della	Tumori cutanei
Ultravioletto B (da 280 nm a 315 nm)	Fotocongiuntivite	pelle)	accelerato di invecchiamento della pelle
Ultravioletto A (da 315 nm a 400 nm)	Cataratta fotochimica	Reazione di fotosensibilità	(elastosi)
Visibile (da 400 nm a 780 nm)	Lesione fotochimica e termica della retina	Totosensibilita	
Infrarosso A (da 780 nm a 1400 nm)	Cataratta bruciatura del a retina		Bruciatura
Infrarosso B (da 1400 nm a 3000 nm)	Cataratta, bruciatura della cornea		della pelle
Infrarosso C (da 3000 nm a 1 mm)	Bruciatura della cornea		

Effetti dell'esposizione a UV

Effetti deterministici	Effetti probabilistici
 Esiste una soglia per il fenomeno La gravità aumenta con la dose assorbita 	 Non esiste soglia La probabilità aumenta con la dose assorbita
EritemaFotocheratite e fotocongiuntiviteCataratta	Tumori cutanei(UV=gruppo 1 IARC)Fotoelastosi

Radiazione UV e tumori cutanei

Effetti "indiretti" delle ROA

- Sorgenti molto intense possono causare:
 - Abbagliamento
 - Disorientamento
 - Incendi o esplosioni
- Reazioni di fotosensibilità
- La valutazione del rischio deve tenere conto dei soggetti "particolarmente sensibili".

Soggetti particolarmente sensibili

- ·Donne in gravidanza e minori
- · Albini ed individui del fototipo 1 (UV)
- Portatori di malattie del collagene (UV)
- Soggetti in trattamento con farmaci fotosensibilizzanti
- Soggetti affetti da alterazione dell'iride o della pupilla
- Soggetti portatori di drusen (Luce Blu)
- Soggetti affetti da patologie cutanee fotoindotte (UV e IR)
- Soggetti affetti da xeroderma pigmentosus (UV)
- Soggetti epilettici per esposizione a luce visibile intermittente
- Soggetti portatori di impianto IOL (cristallino artificiale)

Prevenzione

- Valutazione dei rischi
- Eliminazione del fattore di rischio
- Schermatura delle sorgenti
- Eliminazione delle superfici riflettenti
- Delimitazione delle zone e limitazione dell'accesso
- Procedure e segnaletica di sicurezza
- Dispositivi di Protezione Individuale
- · Informazione e formazione
- Sorveglianza sanitaria

Misure di prevenzione e protezione

- Contenimento della sorgente all'interno di idonei alloggiamenti schermanti completamente ciechi oppure di attenuazione nota; ad esempio, la radiazione UV si può schermare con finestre di vetro o materiali plastici trasparenti nel visibile;
- Adozione di schermi ciechi o inattinici a ridosso delle sorgenti;
- Separazione fisica degli ambienti con ROA potenzialmente nocive dagli altri ambienti o postazioni di lavoro vicini;

Misure di prevenzione e protezione

- Impiego di automatismi (interblocchi) per disattivare le sorgenti ROA potenzialmente nocive (es.: lampade germicide a raggi UV) sugli accessi ai locali nei quali queste sono utilizzate;
- Definizione di "zone ad accesso limitato", con idonea segnaletica di sicurezza, ove chiunque acceda deve essere informato e formato sui rischi e sulle appropriate misure di protezione.

Obblighi del costruttore

- DLgs. 17/2010: se una macchina emette ROA potenzialmente nocive, il costruttore deve riportare nel manuale di istruzioni le relative informazioni.
- se la categoria di emissione è 1 o 2, il fabbricante deve marcare le macchine con:
 - il segnale di sicurezza
 - la categoria
 - la norma di riferimento

NORME UNI EN 12198-1-2-3:2009

- Trattano le macchine che possono emettere radiazioni non ionizzanti: CEM e ROA
- Classificano la macchina in una categoria in funzione del livello di radiazione secondo valori assegnati dalla norma stessa:

Cat.	Livelli emissione	Restrizione e misure di protezione	Informazione - addestramento
0	< livelli di riferimento per la popolazione	Nessuna	Nessuna
	> livelli di riferimento per la	Possono essere necessarie	Informazioni su
1	popolazione	Limitazione accesso e	pericoli, rischi ed
	raccom. europea 1999/519/CE	misure di protezione	effetti indiretti
	> livelli azione	Restrizioni speciali e	Come sopra,
2	DLgs.81/2008 -titolo VIII	misure di protezione	in più necessario
	capo IV	obbligatorie	l'addestramento

NORMA CEI EN 62471:2010 Sicurezza fotobiologica delle lampade e dei sistemi di lampade

- Le lampade e i sistemi di lampade sono classificate in 4 gruppi.
- Non sono definiti vincoli specifici per la marcatura

Gruppo	Stima del Rischio
Esente	Nessun rischio fotobiologico
Gruppo 1	Nessun rischio fotobiologico nelle normali condizioni di impiego
Gruppo 2	Non presenta rischio in condizioni di riflesso naturale di avversione alla luce o effetti termici
Gruppo 3	Pericoloso anche per esposizioni momentanee

Marcatura specifica per apparecchiatura di categoria 1 (o 2) (rad. non coerente)

Emissione di radiazione ottica Categoria 1 (o 2) EN 12198

Classificazione della pericolosità dei Laser (IEC 60825-1)

La pericolosità degli apparecchi LASER è definita attraverso delle "classi" crescenti in funzione dei rischi che generano:

- · classe 1 1M
- · classe 2 2M
- classe 3A 3R 3B
- classe 4

Classi di pericolo dei laser

- Classe 1; (potenza <0,04 mW): intrinsecamente innocui.
- Classe 2; (<1 mW): normalmente non sono in grado di arrecare danni alla vista (per es. stampanti laser e alcuni puntatori con emissione di luce rossa).
- Classe 3a; (<5 mW): possono danneggiare la vista se usati con dispositivi ottici che riducono il diametro del raggio aumentandone la potenza specifica (per es. puntatori laser con emissione di luce azzurrina).

Classi di pericolo dei laser

- Classe 3b; (tra 5 e 500 mW): possono danneggiare la vista se il raggio entra nell'occhio direttamente; i raggi diffusi non sono pericolosi ma le riflessioni speculari sono pericolose come il raggio diretto (per es. alcuni tipi di puntatori laser con luce verde).
- Classe 4; (>500 mW): è pericolosa l'esposizione anche al raggio diffuso (laser industriali usati per il taglio dei metalli).

Obblighi del costruttore di LASER

Apporre su ogni apparecchio una o più targhette Sul pittogramma del laser associare, tranne che per la classe 1, una ulteriore targhetta contenente:

- avvertimenti relativi all'utilizzo in sicurezza
- classe del LASER
- potenza max. della radiazione emessa
- lunghezze d'onda emesse
- durata dell'impulso, se presente
- norma usata per la classificazione

Segnaletica LASER

- In caso di Zona Laser Controllata (ZLC) la CEI EN 60825-1:2009 richiede che agli accessi delle aree con laser di Classe 3B e 4 siano indicati:
- Presenza del laser
- Classe di appartenenza
- · Obbligo di occhiali di protezione

APPARECCHIO LASER
DI CLASSE 4

