Il numero di protoni presenti in un atomo si chiama **numero atomico = Z** ogni elemento differisce per il numero Z

ISOTOPI atomi di uno stesso elemento ma con un ≠ N° di neutroni x es. ¹⁴C e ¹²C
I'H ha 3 isotopi: ¹H prozio (il + abbondante)

²H deuterio (6000 volte – abbondante)

³H trizio (praticamente non esiste in natura ma viene prodotto artificialmente, è <u>radioattivo</u>)

La <u>stabilità di un isotopo</u> è determinata dal rapporto protoni/neutroni Elementi a basso N° atomico sono stabili quando Z=N Elementi ad alto N° atomico sono stabili quando N>Z

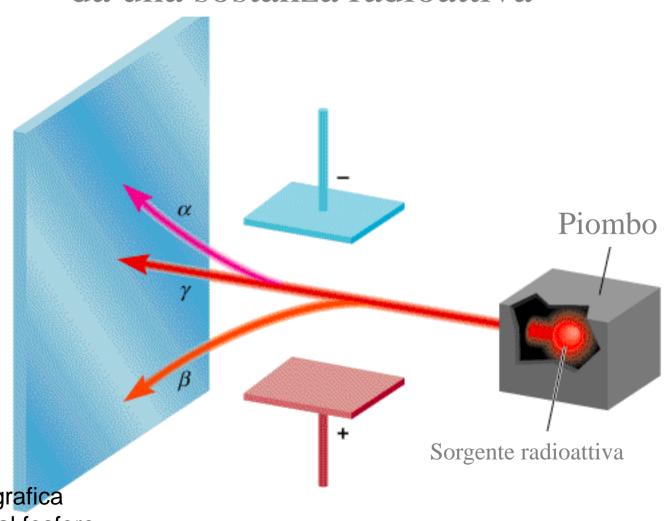
RADIOISOTOPI sono isotopi instabili che x stabilizzarsi, in seguito a variazioni della struttura del loro nucleo, emettono particelle e/o radiazioni elettromagnetiche (fenomeno chiamato DECADIMENTO RADIOATTIVO)

SONO IN PREVALENZA PRODOTTI ARTIFICIALMENTE

Elementi molto pesanti (Z>83), la stabilità del nucleo non è mai del tutto raggiunta.

Decadimento radioattivo o disintegrazione

un processo di **trasformazione nucleare**, con liberazione di **energia nucleare**, di un **radionuclide padre**, in un nuclide figlio o progenie, il quale può essere a sua volta **stabile** o instabile.


Se il figlio è stabile, il processo di decadimento è terminato.

Se anche il **figlio** è **instabile**, inizia un **nuovo processo di decadimento** che può anche essere **differente rispetto a quello del suo predecessore**.

TRASMUTAZIONE NUCLEARE = processo con cui un elemento chimico per mezzo di reazioni nucleari viene trasformato in un altro

Se artificialmente, mediante bombardamento con particelle accelerate x es. da ciclotroni o sincrotroni.

I tre tipi di radiazione emessa da una sostanza radioattiva

Lastra fotografica o schermo al fosforo

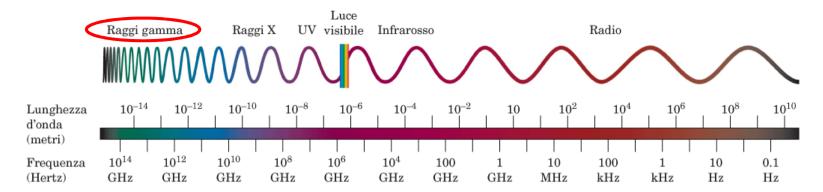
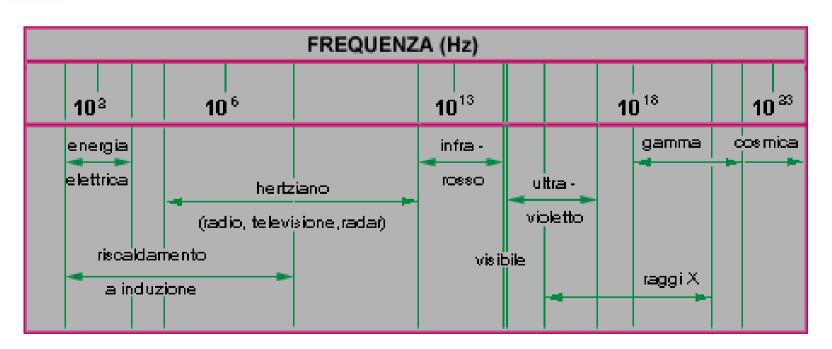



FIGURA 10.3 Lo spettro elettromagnetico.

$$C = v\lambda$$
 dove $c = 3 \times 10^8 \text{ m/s}$

Bettelheim, Brown, Campbell, Farrell Chimica e propedeutica biochimica EdiSES **EdiSES**

E = hv dove $h = cost. di Plank = 6.6 x 10^{-34} J s$

Il decadimento mediante emissione di raggi γ si accompagna spesso a emissione anche di particelle α e β

x es. ¹³¹ I
$$\rightarrow$$
 ¹³¹Xe + β- + γ

Col decadimento viene emessa energia, che si esprime in eV

1 ev = E acquisita da 1 e quando è accelerato da una ddp di 1 V

RADIOISOTOPI che emettono p. alfa hanno E di 4-8 MeV beta e gamma sotto i 3 MeV

 $MeV=1,6 \times 10^{-13} J=3,8 \times 10^{-14} cal$

RADIAZIONI CORPUSCOLARI

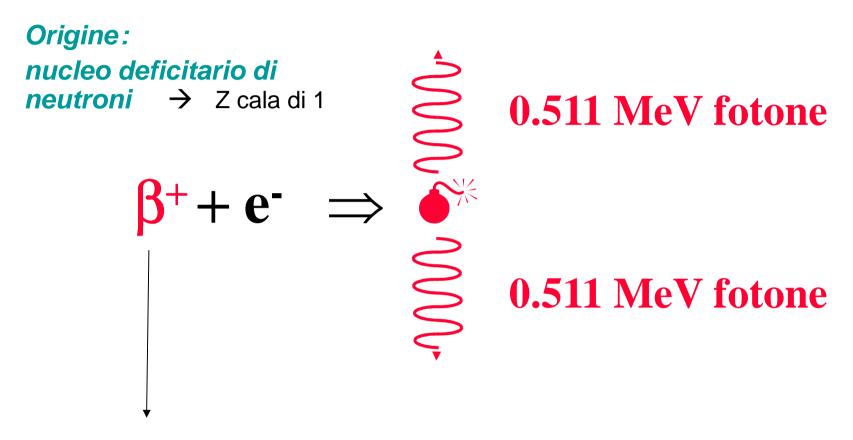
 PARTICELLE α: 2 protoni e 2 neutroni, sotto forma di un nucleo di Elio (He)
 (decadimento alfa)

PARTICELLE β⁻ o negatroni (elettroni di origine nucleare)
 (decadimento beta -)

NEUTRONE → PROTONE + negatrone + anti-neutrino

Decadimento naturale

PARTICELLE β⁺ o positroni
 (decadimento beta +)



PROTONE → NEUTRONE + positrone + neutrino

Neutrino e anti-neutrino

non hanno carica, hanno massa trascurabile e non interagiscono con la materia, ma hanno una certa quota di E

Radiazione da annichilazione

Particelle molto instabili, una volta dissipata la loro energia interagiscono con gli ee <u>vengono annichiliti</u> cioè la massa e l'E delle 2 particelle si trasformano in 2 raggi γemessi a 180°l'uno rispetto all'altro

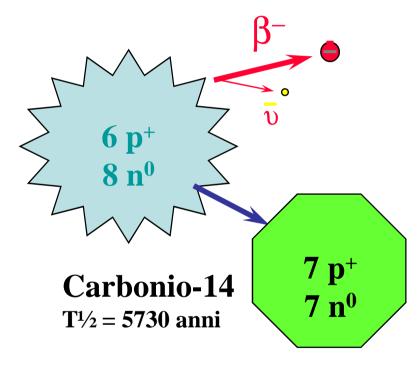
La PET (tomografia a emissione di positroni) usa il 11 C per studiare le patologie cerebrali, altro emettitore β + è il 18 F

II 18 F viene prodotto in un ciclotrone bombardando con protoni molecole di acqua H_2^{18} O

$$^{18}O + p \rightarrow ^{18}F + n$$

CATTURA ELETTRONICA

Cattura K: cattura di un e dall'orbitale 1s

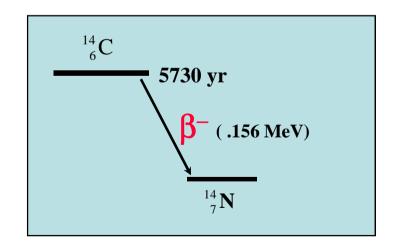

o ⁷Be

Protone + e
$$\rightarrow$$
 N + raggi γ

I Raggi X vengono emessi quando vi è ridistribuzione degli e del mantello esterno in modo tale che l'orbitale 1s viene riempito con un e proveniente da orbitali più esterni

Decadimento Beta⁻ ^{β-}

Processo

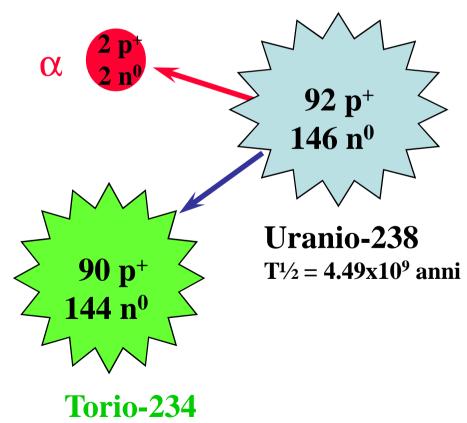

Azoto-14

Equazione di decadimento

$$_{\mathbf{Z}}^{\mathbf{A}}\mathbf{X} \xrightarrow{\boldsymbol{\beta}^{-}}_{\mathbf{Z}+\mathbf{1}}^{\mathbf{A}}\mathbf{Y} + \boldsymbol{\beta}^{-} + \overline{\boldsymbol{\upsilon}}$$

$$^{14}_{6}C \xrightarrow{\beta^{-}} ^{14}_{7}N + \beta^{-} + \overline{\nu}$$

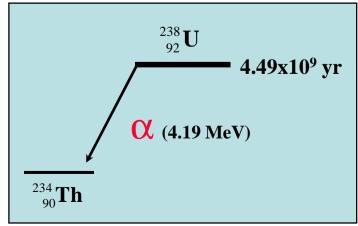
Schema di decadimento

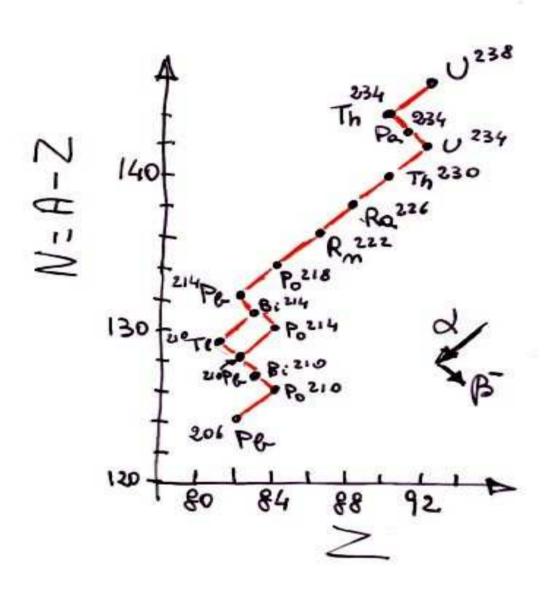


Anche ³H, ³⁵S e ³²P

Decadimento Alfa a

Riguarda isotopi di elementi ad alto Z (come ²²⁶Ra, che si trasforma in ²²²Rn, a sua volta radioattivo per cui si hanno serie di decadimenti e al termine si forma ²⁰⁶Pb)


Processo

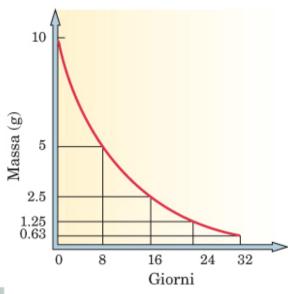


$${}^{A}_{Z}X \xrightarrow{\alpha} {}^{A-4}_{Z-2}Y + {}^{4}_{2}\alpha$$

$${}^{238}_{92}U \xrightarrow{\alpha} {}^{234}_{90}Th + {}^{4}_{2}\alpha$$

schema di decadimento

LA **FAMIGLIA RADIOAT** TIVA DEL Ra - 226


Altri processi di emissione di radiazione

- emissione di Neutroni
- emissione di Protoni
- fissione
- fusione
- e altri

Il decadimento radioattivo è esponenziale e il tempo di dimezzamento (t 1/2 o emivita) è caratteristico di ogni isotopo

FABELLA 10.2 Tempi di dimezzamento di alcuni nuclei radioattivi

Nome	Simbolo	Tempo di dimezzamento	Radiazione
Idrogeno-3 (trizio)	³H	12.26 anni	Beta
Carbonio-14	¹⁴ 6C	5730 anni	Beta
Fosforo-28	²⁸ ₁₅ P	0.28 secondi	Positroni
Fosforo-32	32P	14.3 giorni	Beta
Potassio-40	$^{40}_{19}{ m K}$	$1.28 imes 10^9 \mathrm{anni}$	Beta + gamma
Scandio-42	$^{42}_{21}{ m Sc}$	0.68 secondi	Positroni
Cobalto-60	$_{27}^{60}{ m Co}$	5.2 anni	Gamma
Stronzio-90	$^{90}_{38}{ m Sr}$	28.1 anni	Beta
Tecnezio-99m	$^{99}{}_{43}^{m}{ m Tc}$	6.0 ore	Gamma
Indio-116	$^{116}_{49} In$	14 secondi	Beta
Iodio-131	$^{131}_{53}I$	8 giorni	Beta + gamma
Mercurio-197	$^{197}_{80}{ m Hg}$	65 ore	Gamma
Polonio-210	$^{210}_{84}{ m Po}$	138 giorni	Alfa
Radon-205	$^{205}_{86}{ m Rn}$	2.8 minuti	Alfa
Radon-222	$^{222}_{86}{ m Rn}$	3.8 giorni	Alfa
Uranio-238	$^{238}_{92}{ m U}$	$4 imes 10^9$ anni	Alfa

GURA 10.4 La curva di ecadimento dello iodio-131.

$$N(t) = N_0 e^{-\lambda t}$$

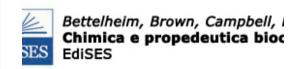
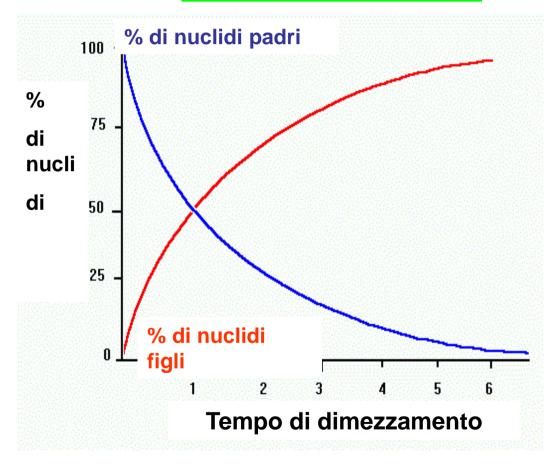
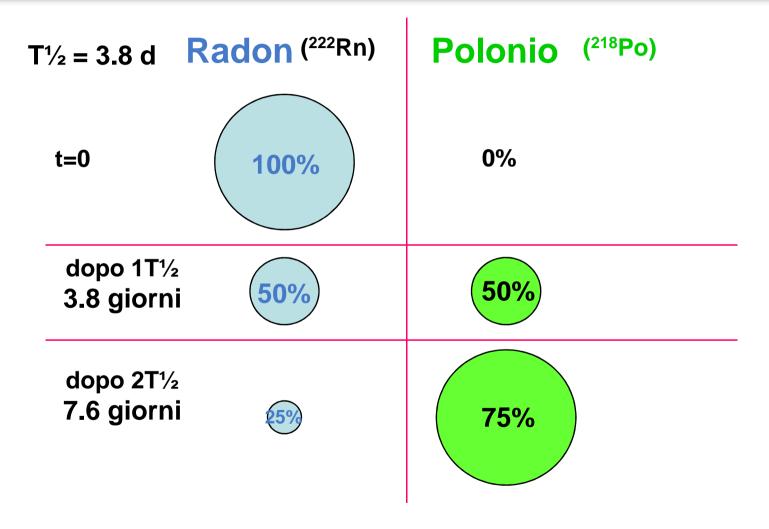



TABELLA 10.5 Alcuni isotopi radioattivi utili in diagnostica per immagini

	Isotopo	Tipo di decadimento	Emivita	Uso in diagnostica medica
¹¹ ₆ C	Carbonio-11	eta^+,γ	20.3 m	Scansione del cervello per tracciare il metabolismo del glucosio
$\binom{18}{9}$ F	Fluoro-18	eta^+,γ	109 m	Scansione del cervello per tracciare il metabolismo del glucosio
$^{32}_{15}P$	Fosforo-32	β	14.3 d	Diagnostica di tumori dell'occhio
$^{51}_{24}\mathrm{Cr}$	Cromo-5	E.C., γ	27.7 d	Diagnosi di albinismo, immagini della milza e del tratto gastro-intestinale
$_{26}^{59}\mathrm{Fe}$	Ferro-59	β , γ	44.5 d	Funzionamento del midollo osseo; diagnosi di anemie
⁶⁷ ₃₁ Ga	Gallio-67	Ε.С., γ	78.3 h	Scansione del corpo completa per la diagnosi di tumori
⁷⁵ ₃₄ Se	Selenio-75	Ε.С., γ	118 d	Scansione del pancreas
^{81m} ₃₆ Kr	Cripton-81m	γ	$13.3 \mathrm{\ s}$	Scansione della ventilazione dei polmoni
$^{81}_{38}\mathrm{Sr}$	Stronzio-81	β	22.2 m	Scansione per le patologie dell'osso, incluso il cancro
^{99m} Tc	Tecnezio-99m	γ	6.01 h	Scansioni di cervello, fegato, reni; diagnosi del muscolo cardiaco danneggiato
$^{131}_{53}{ m I}$	Iodio-131	β , γ	8.04 d	Diagnosi del malfunzionamento della tiroide
$^{197}_{80}{ m Hg}$	Mercurio-197	Ε,С., γ	64.1 h	Scansione dei reni
$^{201}_{81}{ m Tl}$	Tallio-20	E,C., γ	3.05 d	Scansione del cuore e test da sforzo

Tempo di dimezzamento

<u>radioattivo</u>

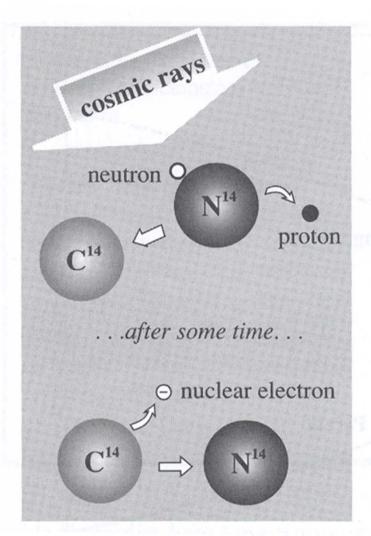

La radioattività ci fornisce una metodica per misura l'età degli oggetti semplicemente con il conteggio dei nuclidi padri e figli presenti nel campione. Campioni "giovani" conterranno molti padri e pochi figli, a differenza di campioni "vecchi" che, invece, avranno pochi nuclidi padri e molti figli. Questa tecnica nota sotto il nome di radiodatazione è utilizzata per datare "oggetti" terrestri con età comprese

"Principi fisici alla base della qualche migliaio di anni formazione delle immagire miliardi di anni.

radiologiche"

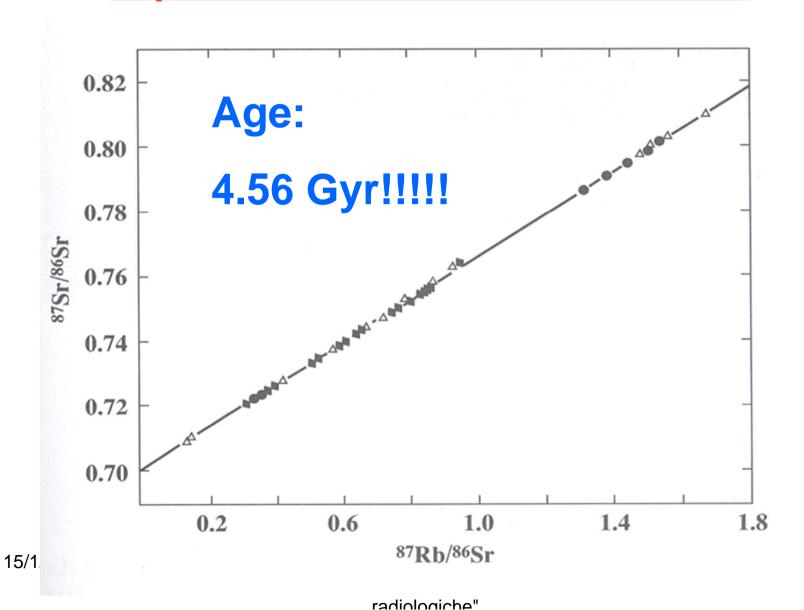
15/12/2015

ESEMPIO DI T½



Radiodatazione

<u>Padre</u>	<u>Figlio</u>	<u>T_{1/2}</u>
Carbonio-14	Azoto-14	5,730 anni
Potassio-40	Argon-40	1.25 miliardi anni
Uranio-238	Piombo-206	4.5 miliardi anni
Thorio-232	Piombo-208	14 miliardi anni
Rubidio-87	Stronzio-87	48.8 miliardi anni
Samario-147	Neodimio-143	106 miliardi anni
Uranio-235	Piombo-207	704 miliardi anni


Radiodatazione col Carbonio-14

- 1. I raggi cosmici (e- solari , p & n) entrano nell'atmosfera terrestre.
- 2. Urtano contro gli atomi dell'atmosfera espellendo neutroni energetici.
- 3. I neutroni a loro volta urtano contro N -14 (7p, 7n), producendo C-14 (6p,8n) e H (1p, 0n)
- 4. Gli esseri viventi assorbono continuamente C-14 (cioè come CO₂ durante la fotosintesi).
- 5. Quando l'animale o la pianta muoiono cessando di assimilare C-14.
- 6. Il C-14 decade con un tempo di dimezzamento di 5730 appi fisici alla base della

Età < 70,000 anni

Il più "vecchio" meteorite

20

Ionizzazione di un atomo

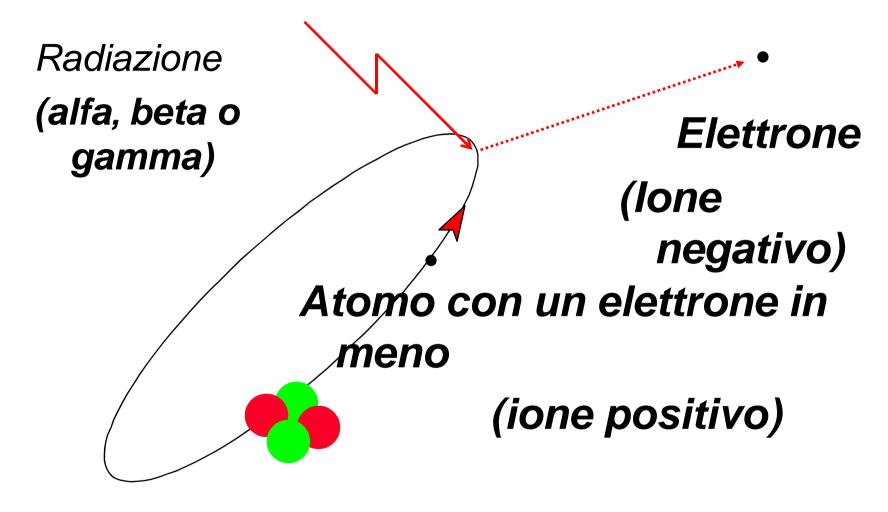
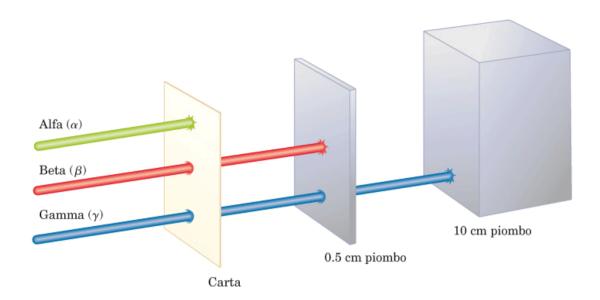
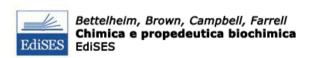




FIGURA 10.6 Penetrazione di emissioni radioattive. Le particelle alfa con carica +2 e massa 4 uma interagiscono fortemente con la materia, ma hanno minore potere penetrante. Esse sono fermate da più fogli di carta sovrapposti. Le particelle beta, con massa minore e una carica più bassa delle particelle alfa, interagiscono meno fortemente con la materia. Esse penetrano la carta facilmente, ma sono bloccate da uno strato di piombo spesso 0.5 cm. I raggi gamma, privi di massa e carica, hanno il maggiore potere penetrante. Per bloccarli sono necessari 10 cm di piombo.

Radiazione	Potere ionizzante	Potere penetrante	Percorso in aria	
α	altissimo	bassissimo	qualche cm	
β	alto	basso	qualche mt	
γ	bassissimo	altissimo	qualche Km	

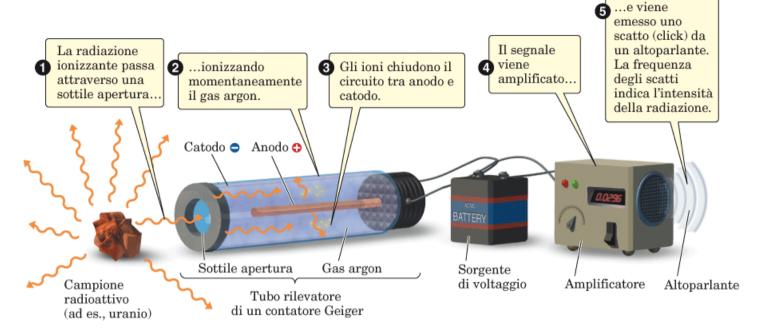
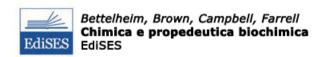



FIGURA 10.5 Rappresentazione schematica del contatore Geiger-Müller.

3

AUTORADIOGRAFIA, basato sulla capacità di impressionare una emulsione fotografica, come una lastra a raggi X

CONTATORI A SCINTILLAZIONE, vengono emesse radiazioni luminose in seguito a eccitazione di solidi o liquidi.

2

Attività

Si misura in Becquerel, Bq, che rappresenta l'attività di una sorgente in cui si ha 1disintegrazione per secondo!!! (dps)

Attività

Nel vecchio sistema di unità di misura l'attività veniva misurata in Curie, Ci, che rappresenta l'attività di una sorgente in cui si hanno 37 miliardi di disintegrazioni al secondo (1g di 286 Ra puro)

DOSIMETRIA DELLE RADIAZIONI IN MEDICINA

la misura delle grandezze che consentono di calcolare il danno biologico dovuto all'esposizione (esterna o interna) ai diversi tipi di radiazioni ionizzanti.

ROENTGEN (R) u. di m. usata in radiologia x i raggi X e gamma

Intensità dei raggi che producono in 1 ml di aria 2 miliardi di coppie ioniche (2,58 x 10⁻⁴ coulomb)

energia trasmessa

In prima approssimazione il danno biologico è proporzionale alla quantità di energia ceduta dalla radiazione per unità di massa, cioè ai Joule dissipati in un chilogrammo di tessuto biologico = Gray (Gy)

energia assorbita

1 Sv (Sievert) = dose di radiazione che determina un assorbimento di E nell'uomo pari a 1 Gray di raggi X 1 Gy = 1Sv di raggi X

La misura del grado di esposizione alle radiazioni

- dipende dal tipo di radiazioni nucleari che attraversano la materia
- dipende dal tipo di materia che è attraversata dalle radiazioni (aria, materia in genere,

Per legge la max dose che può essere assorbita da un operatore esposto alle radiazioni = 50 mSv/anno


Vi sono anche limiti per le persone comuni di esposizione medica alle R. di 1 mSv/anno

ABELLA 10.4 Esposizione media alle radiazioni provenienti da sorgenti comu

Sorgente	Dose (mrem/anno)	
Radiazioni di fondo		
Raggi cosmici Radiazioni terrestri (rocce, edifici)	27 28	,
Interno del corpo umano (K-40 e Ra 226 nelle ossa) Radon nell'aria	39 200	
Totale	294	
Radiazioni artificiali		
Raggi X usati a scopo medico ^a Medicina nucleare Prodotti di consumo Impianti nucleari per la generazione di energia	39 14 10 0.5	
Altro Totale	$\frac{1.5}{65}$	
Somma complessiva	359^{b}	

^aProcedure mediche individuali possono esporre alcune parti del corpo a livelli molto più alti. Ad esempio, i raggi X al torace danno 27 mrem e una serie diagnostica GI dà 1970 mrem.

Fonte: Consiglio Nazionale per la Protezione dalle Radiazioni e Misura, NCRP Report No. 93 (1993).

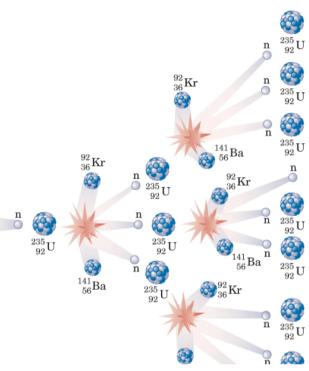
=3,59 mSv

^bLo standard per la salute (governo degli Stati Uniti) indica 5000 mrem/anno come esposizione annuale permessa per i lavoratori. È stato suggerito di abbassare questo livello a 4000 mrem/anno, o anche meno, per ridurre il rischio di "innesco" di tumori anche a basso livello di radiazioni.

Protezione dalle radiazioni 118

Linee guida di riferimento per la diagnostica mediante immagini

Testo revisionato da esperti rappresentanti la radiologia e la medicina nucleare europee

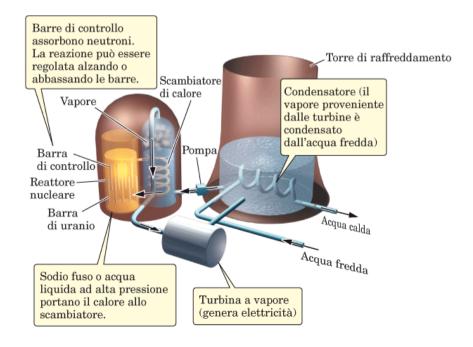

In collaborazione con il Royal College of Radiologists del Regno Unito

Procedura diagnostica	Dose efficace (mSv)	Equivalente a n. di radiografie toraciche	Periodo approssimativo di esposizione a equivalenti dosi di adiazioni naturali
			di fondo (¹)
Esami a raggi X:			
Arti e articolazioni			
(ad eccezione dell'anca)	< 0,01	< 0,5	< 1,5 giorni
Torace (radiogramma	< 0,01	~ 0,5	< 1,5 gi0iiii
unico PA)	0,02	1	3 giorni
Cranio	0,07	3,5	11 giorni
Colonna toracica	0,7	35	4 mesi
Colonna lombare	1,3	65	7 mesi
Anca	0,3	15	7 settimane
Bacino	0,7	35	4 mesi
Addome	1,0	50	6 mesi
Urografia	2,5	125	14 mesi
Esofago baritato	1,5	75	8 mesi
Prime vie dig.ti	3	150	16 mesi
Transito baritato	3	150	16 mesi
Clisma opaco	7	350	3,2 anni
TC encefalo	2,3	115	1 anno
TC torace	8	400	3,6 anni
TC addome o pelvi	10	500	4,5 anni

Come ci si protegge?

Sostanzialmente in quattro modi:

- 1. Mantenendo la maggior distanza possibile tra sorgente radioattiva ed operatore (il numero di radiazioni che mi può investire diminuisce quadraticamente con la distanza)
- 2. Minimizzando i tempi di esposizione alla sorgente radioattiva
- 3. Schermando le radiazioni con "pareti" di materiale opportuno (piombo e calcestruzzo, solitamente)
- 4. Seguendo le disposizioni dell'Esperto Qualificato


992 U

generazione di energia nucleare.

FIGURA 10.10 Diagramma

schematico di un impianto di

Bettelheim, Brown, Campbell, Fa Chimica e propedeutica bioch EdiSES FIGURA 10.9 Una reazione a catena inizia quando un neutrone collide con un nucleo di uranio-235.

