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To gain more understanding of the complex molecular processes underlying cleft
lip/palate (CLP), we established a unique human cell bank, consisting of keratinocytes
and corresponding �broblasts from individual CLP patients as a new study tool. After
their careful characterization, we used such patient-derived cell cultures as well as
control keratinocytes forin vitrodifferentiation and proliferation assays. Foreskin-derived
control cells as a group showed signi�cant higher induction of the late differentiation
markers Loricrin and Filaggrin than the group of CLP patients-derived keratinocytes.
Additionally, we detected great variations between individual CLP keratinocyte cell
cultures in regard to their potential to terminally differentiate as assessed by the induction
of Loricrin and Filaggrin. Primary patient cell cultures that did not properly differentiate,
exhibited high proliferation rates. Moreover, we could correlate the expression levels of
transcription factor IRF6to the ability of individual cell cultures to terminally differentiate.
Using clinically relevant, patient-derived cells, our results suggest that some of the
genetic predispositions causing CLP might also lead to de�ciencies in keratinocyte
differentiation manifested inin vitro assays.

Keywords: cleft lip/palate, keratinocytes, differentiation, IRF6, van der Woude Syndrome

INTRODUCTION

Mature epidermis is a dynamic strati�ed epithelium that is constantly subject to self-renewal in a
basal to super�cial direction (Fuchs and Raghavan, 2002; Niemann and Watt, 2002). Mitotically
active cells in the basal layer travel outward to the skin surface in a well-regulated program
of terminal di�erentiation, which is essential for tissue homeostasis and for the acquisition of
the epidermal barrier (Blanpain et al., 2007; Koster and Roop, 2007). While di�erentiating,
keratinocytes undergo major transcriptional as well as morphological changes (Koster and Roop,
2004), which characterize the three distinct cell compartments: spinous, granular, and stratum
corneum (Fuchs and Horsley, 2008). The regulation of epidermal di�erentiation involves the
coordinated and spatiotemporal action of many di�erent genes, repressing proliferation and
triggering terminal di�erentiation in the suprabasal cell layers. During embryogenesis, the
immature ectoderm undergoes a series of di�erentiation and strati�cation processes leading to the
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using 0.05% trypsin-EDTA solution (Gibco) for detaching
fibroblasts, followed by 0.25% trypsin-EDTA solution (Gibco) to
dissociate keratinocytes. This sequential trypsinization process
was attentively checked using a light microscope. From this stage,
keratinocytes were cultured in keratinocyte serum-free medium
(KSFM, Gibco), supplemented with 25 µg/ml bovine pituitary
extract, 0.2 ng/ml epidermal growth factor, and CaCl2 to a final
Ca2+ concentration of 0.4 mM, as previously described (Degen
et al., 2012). To maintain healthy cells, keratinocyte cultures
reaching 40% confluency were re-fed daily with 1:1 medium
(1:1 vol/vol Ca2+-free DMEM with KSFM and supplemented
as described above for KSFM alone) as described previously
(Dabelsteen et al., 2009). As basal keratinocyte medium, we
used KSFM supplemented as above, but without the addition
of extra CaCl2. Hence, this medium contains only 0.1 mM
CaCl2. The normal immortalized oral mucosal and epidermal
keratinocyte cell lines, OKF6/TERT2 and N/TERT1, respectively,
have been described elsewhere (Dickson et al., 2000). Fibroblasts
were cultured in DMEM/10% FCS. The cells used in this
study are summarized in Table 1 and Supplementary Table S1.
Experiments were performed with primary cells from the second
to fourth passage. All primary cells were also tested for their
purities using qPCR and immunofluorescent staining. Note that
each of the fibroblast and keratinocyte primary cell cultures
originating from individual donors represents a mixture of
fibroblasts or keratinocytes that grew out of multiple explants.

Prior to freezing, all primary cells were tested for mycoplasma
contamination by a PCR-based mycoplasma detection assay
(Praetorius, 2015) and by DAPI staining of cultures that had been
grown in the absence of any antibiotics for at least 5 days.

TABLE 1 | Cells that have been used in this study, including the cell name, donor
sex, donor age, and characteristics are indicated.

Cells Donor
sex

Donor
age

Special
characteristics

ORAL KERATINOCYTES

Ry-Ep M NB CLP

Pa-Ep M NB CLP

M6-Ep M NB CLP

B6-Ep M NB CLP

C6-Ep M NB CLP

D6-Ep M NB CLP

E6-Ep M NB CLP

F6-Ep F NB CLP

H7-Ep M NB CLP

OKF6/TERT2 M 57y Normal; floor of the
mouth; immortal

EPIDERMAL KERATINOCYTES

Cx-Ep M n.a. Foreskin

18A-Ep M 4y Foreskin

18B-Ep M 7y Foreskin

18C-Ep M 8y Foreskin

18D-Ep M 7y Foreskin

N/TERT1 M NB Foreskin; immortal

M, male; F, female; y, years; NB, newborn (between 3 and 6 months); CLP, cleft
lip/palate; VWS, van der Woude Syndrome, n.a., not available.

In vitro Differentiation Assays
Primary keratinocytes were thawed at passage 2 in regular KSFM
growth medium. Afterwards, cultures were changed to basal
KSFM medium to push them into their basal differentiation state.
After 3 days in basal medium, 6× 104 keratinocytes were seeded
into 35 mm tissue culture dishes for the differentiation assay in
basal medium. 24 h later, CaCl2 was either adjusted to a final
1.8 mM (Calcium switch), supplemented with 2% FCS (FCS
switch), or a combination of both to induce differentiation. At day
three and five after inducing differentiation, cultures were used
for further analysis.

Alternatively, for cell density-dependent differentiation,
keratinocytes were grown in regular KSFM and plated into
100 mm tissue culture dishes at a cell density of 105 cells. Once
first colonies emerged, proteins and RNA were extracted and
parallel cultures fixed for low-density (LD) analyses. Parallel
cultures were re-fed every other day with KSFM, and at higher
densities every day with fresh 1:1 medium. Once keratinocytes
reached confluency (high-density, HD), RNA and protein were
extracted and additional cultures fixed for analyses.

Growth Assay
To assess keratinocyte growth, 2000 cells were plated in a single
well of a 6-well plate (∼9 cm2), and counted 6–8 days later using a
Neubauer Chamber. Average growth rate in terms of population
doublings (PD) per day was calculated as log2[(number of cells
obtained at subculture/number of cells plated)/number of days
cultured].

RNA Extraction, cDNA Synthesis, and
Quantitative PCR (qPCR)
Total RNA was isolated from cells using the innuPREP RNA
Mini kit (Analytik Jena AG, Jena, Germany) according to their
standard protocol for eukaryotic cells. RNA concentration was
measured and quality assessed using a Nanodrop 2000c (Thermo
Fisher Scientific). RNA was stored at −80◦C until use. cDNA
was synthesized from 500 ng total RNA using the M-MLV
Reverse Transcriptase (Promega, Dübendorf, Switzerland) and
Oligo(dT)15 Primer (Promega). mRNA levels were quantified
by qPCR using GoTaq R© qPCR Master Mix (Promega) on a
QuantStudio 3 instrument (Applied Biosystems; Thermo Fisher
Scientific). Relative RNA expression was calculated using the
11CT method, normalizing values to GAPDH within each
sample; standard error of the mean (SEM) was calculated
from the results of triplicates. qPCR primers (Supplementary
Table S2) were designed using the NCBI primer designing tool1,
and tested for specificity and efficiency.

Immunoblotting
Whole cell extracts were prepared in RIPA buffer (10 mM Tris-
Cl (pH 8.0), 1 mM EDTA, 0.1% sodium deoxycholate, 0.1%
SDS, 1% NP40, 140 mM NaCl) supplemented with cOmplete
MiniTM Protease Inhibitor cocktail and PhosSTOP EASYpack
(both from Sigma-Aldrich; St. Louis, MO, United States). Protein

1http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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concentrations of the lysates were measured using the BCA
Protein Assay Kit (Pierce, Thermo Fisher Scientific) following
their protocol. 10 µg of proteins in loading buffer (62.6 mM
Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.01% bromophenol
blue) containing 100 mM dithiothreitol (DTT) were boiled for
5 min at 95◦C and separated by SDS-PAGE under reducing
conditions and blotted to nitrocellulose membranes (Sigma-
Aldrich). Then, membranes were stained with 0.1% amido black
solution (MERCK, Schaffhausen, Switzerland) to control for
equal protein loading and blotting efficiency. After blocking for
1 h at room-temperature in Tris-buffered saline (TBS, pH 7.4)
containing 0.05% Tween and 5% skim milk powder (Sigma-
Aldrich), membranes were incubated over-night with primary
antibodies at 4◦C. Membranes were washed three times in TBS-
Tween and incubated for 1 h with peroxidase-conjugated anti-
rabbit/mouse IgG at room-temperature. Blots were developed
using SuperSignal West Dura (Thermo Fisher Scientific) and
scanned by an Imager Chemi Premium Instrument (VWR,
Darmstadt, Germany). Some immunoblots were analyzed
densitometrically using ImageJ software version 1.51w (NIH,
Bethesda, MD, United States2). Briefly, the intensity of each
protein band was normalized to the vinculin band intensity of
the same extract in the same experiment.

Primary antibodies used: Rabbit polyclonal antibodies
anti-Fibronectin (Wehrle-Haller et al., 1991), anti-E-Cadherin
(20874-1-AP, Proteintech, Manchester, United Kingdom), and
anti-Loricrin (Thermo Fisher Scientific). Mouse monoclonal
antibodies used: anti-Lamininγ2 (sc-28330, Santa Cruz,
Heidelberg, Germany), anti-Involucrin (clone SY5), and
anti-Vinculin (V9131, both from Sigma-Aldrich).

Immunofluorescence
For stainings, cells were grown in 35 mm dishes containing
four separate wells (Greiner Bio-One, Frickenhausen, Germany).
Cultures were rinsed twice with PBS before fixation in 4%
paraformaldehyde at room-temperature for 15 min. Afterwards,
cells were washed three times with PBS, permeabilized in
0.1% Triton-X-100 for 5 min, blocked for 15 min in
3% BSA in TBS/0.1% Tween and incubated with primary
antibody for 2 h at room-temperature. Cultures then were
rinsed three times with PBS, incubated with fluorescent-
labeled secondary antibodies (Molecular Probes, Thermo Fisher
Scientific) or tetramethylrhodamine (TRITC)-phalloidin (Sigma-
Aldrich) for 1 h light-protected, rinsed with PBS and H2O
and coverslip-mounted with Vectashield R© Mounting Medium
(Vector Laboratories, Burlingame, CA, United States). DAPI
(Sigma-Aldrich) was added during the last washing step before
mounting. Cells were examined under an Olympus BX-51
phase/fluorescence microscope (Olympus Life Science Solutions,
Tokyo, Japan) equipped with a xenon lamp (X-Cite, series 120PC
Q, Lumen Dynamics, Mississauga, Canada), and fluorescence
filters U-MWIBA3 for AlexaFluor 488, U-MWIGA3 for Alexa
Fluor 568 and TRITC, and U-MNUA2 for DAPI (Olympus
Life Science Solutions). Images were captured by a ProgRes
CT3 camera with ProgRes CapturePro software (Jenoptik, Jena,

2https://imagej.nih.gov/ij/

Germany), using either a 20×/0.5 or a 40×/0.75 NA objective.
Primary antibodies are described above (see “Immunoblotting”
section), except for the mouse monoclonal antibody anti-IRF6
(clone 14B2C16, BioLegend, San Diego, CA, United States).

Tissue Sectioning and H&E Staining
Lip tissue was fixed in 4% formalin for 48 h at room-temperature.
Afterwards, the fixed tissue was trimmed into appropriate size
and shape and placed in embedding cassettes. The tissue was
dehydrated using a series of ethanol incubations, followed by
changes in xylene, before embedding tissue into paraffin blocks. 5
to 6 µm sections were cut on a Reichert-Jung microtome. Slides
containing paraffin sections were deparaffinized and rehydrated
through xylene, ethanol, and deionized H2O, stained with
hematoxylin and eosin (H&E) and mounted with xylene-based
mounting medium.

Statistical Analysis
Experiments were performed in triplicates and repeated at least
three times. Differences between two sets of data were statistically
significant when p ≤ 0.05. Data are represented as means and
standard deviation/standard error of the mean (SD/SEM) as
stated in the figure legends. Statistical analysis using a two-
tailed t-test was carried out at www.physics.csbsju.edu/stats/t-
test.html. The Pearson correlation coefficient was calculated with
the software R version 3.5.0 (The R Foundation, Vienna, Austria).

Data Availability
The datasets generated during and/or analyzed during the
current study are available from the corresponding author on
reasonable request.

RESULTS

Isolation of CLP-Patient Derived Cells
and Their Characterization
The lack of clinically relevant human study tools to better
understand the genes and their functions involved in the
pathogenesis of CLP prompted us to establish a cell bank of CLP
patient-derived fibroblasts and keratinocytes. During standard
surgical closure of the lip, the marginal portion of the upper
lip covering the cleft is in excess and needs to be removed. We
collected such cleft lip tissues and initiated explant cultures to
isolate primary cells.

It took approximately 3 days until the appearance of the first
cells growing out of the explants and within 1 week, rather big
cell colonies (approximately 1 cm in diameter) surrounded the lip
tissue (Figure 1A). We mostly ended up with mixed cell cultures
containing different cell types (Figure 1B, top row). To determine
the identity and origin of the cell types, we co-stained such mixed
cultures with phalloidin (F-actin) and antibodies to either the
mesenchymal-specific extracellular matrix protein Fibronectin
(FN) or the epithelial basement membrane protein Lamininγ2
(LAMC2) (Figure 1B, first and second columns). The spindle-like
cells stained positive for FN, indicating mesenchymal/fibroblastic
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FIGURE 1 | (A) Explant cultures and appearance of first cells growing out of the lip tissue (T) three to 6 days after initiation. Note how the cell colony is growing from
day to day and the morphological differences between spindle-shaped fibroblasts (F) and the tightly packed, cobblestone-like keratinocytes (K) the dotted line
represents the border between keratinocytes and fibroblasts. Scale bar: 250 µm. (B) Trypsinization of the cells 6 days after explant initiation often results in mixed
cultures containing fibroblasts and keratinocytes. The morphological differences of the two cell types are visible in the brightfield pictures (top row) and when using
phalloidin (red), which stains F-actin (second row, left two columns). Immunofluorescent stainings for a mesenchymal marker, Fibronectin (FN) and two epithelial
proteins, Lamininγ2 (LAMC2) and E-Cadherin, respectively, confirms mesenchymal and epithelial origin of the cells. At the bottom, the merge of rows two and three
including DAPI (blue) is shown. Note that keratinocytes secrete a large amount of LAMC2 that is deposited onto the culture dish while they move around. In contrast,
FN is specifically detected where fibroblasts are located (e.g., see third column, rows two and three). Scale bar: 250 µm.

identity, while the smaller and denser, cobblestone-like cells
expressed LAMC2 suggesting that these cells are keratinocytes
or at least of epithelial-origin. Co-stainings of cultures for FN
and either LAMC2 or the epithelial adhesion marker E-Cadherin
further proved exclusiveness of epithelial or mesenchymal
protein expression within one cell population (Figure 1B, third
and fourth columns).

To gain pure cultures, fibroblasts and keratinocytes were
differentially dissociated from culture dishes using trypsin-
EDTA. All primary cells are also tested and analyzed for their

purities using qPCR and immunofluorescent staining. Definitive
CLP patient-derived fibroblast and keratinocyte cultures are
shown in Figure 2A with the specific expression of FN by
fibroblasts, and LAMC2 and E-Cadherin by keratinocytes,
respectively. To confirm cell identities, we performed quantitative
real-time PCR (qPCR) for three epithelial (LAMC2, CDH1,
and KRT14) and mesenchymal (FN, VIM, and TNC) genes
(Figure 2B), and carried out immunoblots for FN, LAMC2, and
E-Cadherin (Figure 2C) in pure primary cultures. All these assays
confirmed that we established a robust and reproducible method
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FIGURE 2 | (A) Mixed fibroblast/keratinocyte cultures can be purified by sequential trypsinization (see section “Materials and Methods”). Note that keratinocytes and
fibroblasts have completely different growth characteristics: keratinocytes grow as tightly packed colonies, whereas fibroblasts are elongated cells that grow like
networks (see brightfield pictures in top row and F-actin stainings in red). In addition, immunofluorescent staining confirms cell types and their purities: fibroblast
cultures are positive for their marker, FN (third and bottom rows, left column), while keratinocytes express the proteins LAMC2 and E-Cadherin (third and bottom
rows, middle and right columns). Scale bar: 200 µm. (B) qPCR analysis for epithelial markers Lamininγ2 (LAMC2), E-Cadherin (CDH1), and Keratin 14 (KRT14) and
mesenchymal markers Fibronectin (FN), Vimentin (VIM), and Tenascin-C (TNC), respectively, in CLP patient-derived pure fibroblast (F) and keratinocyte (Ep) cultures.
n = four different primary cell cultures. Data are expressed as mean ± SEM. n = 3. ∗p ≤ 0.05 (keratinocytes versus fibroblasts). (C) Immunoblot analysis of CLP
patient-derived keratinocytes and fibroblasts as well as foreskin-derived control (ctrl) cells for the proteins FN, LAMC2, E-Cadherin, and Vinculin confirms identity of
cells: keratinocytes (Ep) only express epithelial markers, whereas fibroblasts (F) express mesenchymal-specific proteins. Bottom panel: Amido Black staining of
blotting membrane to show presence of total proteins in lysates. The blots are shown as cropped images. The full-length blots are presented in Supplementary
Figure S6. kDa, kilo Dalton.
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for the isolation of pure fibroblasts and keratinocytes from CLP
patient-derived lip tissue.

Tissue Origin of Lip-Derived
Keratinocytes: Keratinized or
Non-keratinized Cells?
For controls, we used foreskin biopsies, which are comparable
to the lip in that both tissues represent a mucocutaneous
junction area of the body. Hence, we isolated primary human
keratinocytes and fibroblasts from foreskin biopsies following the
described protocol (see section “Materials and Methods”).

To characterize our control group, we compared foreskin-
derived to CLP patient-derived cell cultures. For example, the
growth characteristics of epithelial primary cell culture H7-Ep
(CLP) and Cx-Ep (control) were similar, although Cx-Ep formed
more regularly shaped and cohesive colonies than H7-Ep as
evidenced by light microscopy (Figure 3A) and specific stainings
for F-actin and E-Cadherin (Figure 3B).

Since both the lip and foreskin are anatomical zones in
which mucosa transitions to skin, we wanted to learn more
about the exact tissue origin of our CLP patient-derived cells.
A simplified schematic representation of keratinized and non-
keratinized lip tissue is shown in Figure 3C. Histological analysis
of a lip biopsy using Hematoxylin and Eosin clearly shows
the mucocutaneous nature of lip tissue with co-existence of
non-keratinized oral mucosa (top of the picture) as well as
highly keratinized epithelium (bottom of the picture) including
hair follicles (HF) and glands (Figure 3D). We concluded that
our CLP-patient derived keratinocytes represent a mixture of
both mucosal as well as non-mucosal cells. To confirm this
notion, we tested the expression of the mucosal markers Keratin
19 (KRT19) [mainly expressed in the basal layer (Lindberg
and Rheinwald, 1989)] and Keratin 4 (KRT4) and Keratin
13 (KRT13), which are both expressed in the differentiated
layers of the non-keratinized epithelium, Keratin 14 (KRT14),
a marker of proliferating basal-layer cells as well as markers of
keratinized, suprabasal epithelia, Keratin 10 (KRT10), Involucrin
(IVL), and Loricrin (LOR) (Figure 3C) by qPCR. These analyses
revealed that the two primary cell groups (five CLP patient-
derived cell cultures and five control cell cultures) are similar
to each other, but significantly different from the oral mucosal
keratinocyte cell line OKF6/TERT2 (Dickson et al., 2000), which
showed highest expression of KRT19 and KRT13, but lowest
expression of all other markers (Figure 3E). Moreover, our final
control and CLP lines did not significantly differ from each
other in their proportions of mucosal and skin contribution as
evidenced by the levels of KRT4/13 (mucosa) and KRT10 (skin)
(Figure 3E).

H7-Ep Keratinocytes Are Able to
Differentiate in vitro Similar to Controls
Correct epidermal differentiation represents an important
cellular mechanism for proper palatogenesis (Jiang et al.,
2006). Therefore, we wondered whether all CLP patient-derived
keratinocytes were able to undergo the regular differentiation
program or whether the individual genotype of some primary

CLP cell cultures might result in differentiation deficiencies
in vitro. To assess this possibility, we developed our own
differentiation assay (Figure 4A) and used CaCl2 (Ca2+-switch),
FCS (FCS-switch), or a combination of both to induce in vitro
differentiation (Boyce and Ham, 1983; Berghard et al., 1990;
Borowiec et al., 2013). To evaluate differentiation, we analyzed
a panel of markers representing the four specific epithelial cell
layers during differentiation. The genes included, Keratin 5
(KRT5) of the basal layer,KRT10 andTransglutaminase 1 (TGM1)
of the spinous layer (early differentiation markers), IVL, LOR,
and Filaggrin (FLG) of the granular layer and stratum corneum
(late differentiation markers) (Figure 4B), as well as CDKN1B
(p27Kip1), a cell cycle inhibitor. However, first, we determined the
optimal Ca2+ concentration required to induce differentiation in
our cells (Supplementary Figure S1) and decided to consistently
add CaCl2 to a final concentration of 1.8 mM, which is in
line with the literature (Borowiec et al., 2013). In an initial
experiment, we selected one primary CLP patient-derived cell
culture (H7-Ep) and one primary control cell culture (Cx-Ep)
and subjected them to our in vitro differentiation assay. Five days
after the addition of the distinct differentiation triggers, dramatic
changes in cell morphology were evident (Figure 4C). While
both keratinocyte cell cultures formed dispersed, loosely packed
colonies in basal medium (0.1 mM CaCl2), both Ca2+ and/or
FCS shaped tightly-packed colonies with signs of stratification in
the center (asterisks), and elongated cells at the margins (arrows).
To assess changes in the transcriptome in non-confluent cultures
after 3 and 5 days of differentiation, we performed qPCR analyses
(Figure 4E). The Ca2+-switch triggered a robust induction of
the markers KRT10, IVL, TGM1, LOR, FLG, and p27Kip1 in
both CLP and control cells. However, presence of FCS during
differentiation was required to reduce the levels of KRT5, which is
expressed in mitotically active basal layer cells (Figure 4D). The
FCS-switch elevated the levels of the late differentiation markers
IVL and FLG, and of the cell cycle inhibitor p27, while the
Ca2+/FCS-switch significantly raised the levels of only IVL. The
Ca2+/FCS-switch also represented the harshest conditions for
our primary cells, as evidenced by increasing numbers of dying
cells (own observations). H7-Ep were also stained for IVL and a
clear increase after 5 days of differentiation compared to low IVL
levels in basal conditions could be observed confirming the qPCR
results (Figure 4D). While all these data were similar in CLP and
control cells in Ca2+-switch assays, we observed differences in
the genes KRT10, IVL, TGM1, LOR between CLP and control
cells under differentiation conditions containing FCS. Therefore,
we used the CaCl2-switch assay for further studies. Importantly,
the levels of the differentiation markers KRT10 and IVL did not
significantly increase due to higher cell density in our cultures
grown in basal medium between days 3 and 5 of the assay
(Supplementary Figure S2).

Additionally, we used two immortal keratinocyte lines,
OKF6/TERT2 (oral mucosal) and N/TERT1 (epidermal), in our
differentiation assay (Supplementary Figure S3). The outcome
in these cells was very similar to that of our primary keratinocytes
with some slight exceptions: in N/TERT1 and OKF6/TERT2
keratinocytes, the general morphological changes appeared to
be quite subtle and proliferation arrest could not be achieved
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FIGURE 3 | (A) Brightfield pictures of low density cultures of foreskin-derived control cells (Cx-Ep) and CLP patient-derived keratinocytes (H7-Ep). Scale bars:
250 µm. (B) Immunofluorescent staining of E-Cadherin (green) and F-actin (phalloidin, red) of low-density Cx-Ep and H7-Ep keratinocytes. Note that epidermal
keratinocytes form densely packed, regular-shaped colonies, while the oral keratinocytes grow more as scattered colonies. Scale bars: 250 µm. (C) Schematic
representation of keratinized versus non-keratinized tissue, and expression sites of markers characterizing the specific cell layers: LOR, Loricrin; IVL, Involucrin;
KRT4, Keratin 4; KRT10, Keratin 10; KRT13, Keratin 13; KRT19, Keratin 19; KRT14, Keratin 14. BM, basement membrane. (D) H&E staining of a cleft lip biopsy (H7
Tissue) shows the region between the oral mucosa (top) and the keratinized epidermal compartment (bottom) of the infant lip. Such biopsies are used for
establishing explant cultures. Scale bars: 500 µm (left); 250 µm (close-ups, right). HF, hair follicle (E) qPCR analysis of several differentiation markers in five
foreskin-derived keratinocyte cultures (ctrl), five patient-derived keratinocyte cultures (CLP), and one oral mucosal keratinocyte cell line, OKF6/TERT2. Note that the
expression of the differentiation markers in both the control as well as CLP-keratinocytes is similar to each other, but statistically different to OKF6/TERT2. Data are
expressed as mean ± SEM. n = 3. ∗p ≤ 0.05 control- and CLP-keratinocytes versus OKF6/TERT2. n.s.: not significant.
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FIGURE 4 | (A) Schematic representation of the differentiation assay used in this study. Briefly, cells at passage 2 were thawed in regular 0.4 mM Ca2+ KSFM.
Thereafter, cells were pushed into their basal state by culturing them for 4 days in 0.1 mM Ca2+ KSFM before induction of differentiation for 3 or 5 days (see section
“Materials and Methods”). (B) Schematic representation of keratinized epithelium. Shown are the four epithelial cell layers (basal, spinous, granular, stratum corneum)
on the left side, and specific differentiation markers expressed in the different cell layers on the right side: markers of the basal layer: Keratin 5 (KRT5), Keratin 14
(KRT14); markers of the spinous layer: Keratin 10 (KRT10), Transglutaminase 1 (TGM1), Interferon Regulatory Factor 6 (IRF6), Grainyhead-like factor 3 (GRHL3),

(Continued)
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FIGURE 4 | Continued
Krüppel-like factor 4 (KLF4); markers of the granular layer: Involucrin (IVL), Loricrin (LOR), Filaggrin (FLG). BM, basement membrane. (C) Light microscopy images of
control keratinocytes (Cx-Ep) and CLP keratinocytes (H7-Ep) after 5 days in differentiation media. Note that both keratinocyte cultures alter their morphology upon
Ca2+/FCS stimuli. Asterisks: signs of stratification; Arrows: elongated cells. Scale bar: 500 µm. (D) qPCR analysis of various differentiation-related genes in ∼60%
confluent cultures of control keratinocytes (Cx-Ep, black bars) and CLP-keratinocytes (H7-Ep, white bars) 3 and 5 days after induction of differentiation. Genes
studied were: KRT5, KRT10, TGM1, IVL, LOR, FLG, and CDKN1B (p27, marker of cell cycle inhibition). Fold induction of mRNA levels is shown compared to the
reference basal levels, which has been set to 1. Data are expressed as mean ± SEM. n = 3. Significance was reached when p ≤ 0.05 (∗) compared to basal level.
(E) Immunofluorescent microscopy of H7-Ep CLP keratinocytes 5 days after differentiation initiation by various stimuli shows induction of the granular compartment
marker Involucrin. Merged images are shown of F-actin (red), IVL (green), and DAPI (blue). Note that keratinocytes in basal medium (0.1 mM Ca2+) are only very
loosely attached to one another. Scale bar: 250 µm.

upon differentiation, and FCS was able to robustly induce late
differentiation.

Distinct Differentiation Potentials Within
the Primary CLP Patient-Derived Cell
Cultures in vitro
Next, we asked whether cells isolated from individual CLP
patients exhibit significant variations in their CaCl2-induced
differentiation potentials in vitro when compared both relative
to each other and to control keratinocytes. Hence, we evaluated
expression changes in the genes KRT10, IVL, LOR, and FLG
5 days after initiation of differentiation in eight CLP patient-
derived and in five control cell cultures (randomly selected)
by qPCR. Boxplots show that although all differentiation genes
were induced in both the control and the CLP group, the
levels of the late differentiation markers LOR and FLG were
significantly less elevated in the CLP compared to control
cells (Figure 5A). Additionally, the individual CLP patient-
derived keratinocytes exhibited great variations in their ability
to terminally differentiate with the primary cell cultures B6-Ep
and D6-Ep (and to a lesser extent M6-Ep) having significant
differentiation deficiencies as assessed by the lack of robust
induction of IVL, LOR, and FLG (Figure 5B). These deficiencies
were also visible morphologically as the cell cultures M6-Ep and
D6-Ep did not show any signs of stratification as compared to
the cultures E6-Ep and H7-Ep in presence of CaCl2 (Figure 5C).
We confirmed our observations by staining for IVL and LOR in
the well-differentiating H7-Ep and in the differentiation-deficient
culture D6-Ep. D6-Ep clearly showed less IVL- or LOR-positive
cells compared to H7-Ep upon differentiation (Figure 5D).

To exclude the possibility that these data are specific for the
Ca2+-switch, we subjected all primary cell cultures to a cell
density-dependent differentiation assay (Poumay and Pittelkow,
1995). For that, we analyzed expression of KRT10, IVL, LOR, and
FLG in high-density (HD) cultures and compared them to their
levels in low-density (LD) cultures (Figure 6A). Confirming our
Ca2+-switch results, LOR and FLG were significantly less elevated
in the CLP group compared to the control group (Figure 6B)
and the same CLP cultures, B6-Ep, D6-Ep, and M6-Ep, displayed
difficulties to terminally differentiate upon density-dependent
differentiation (Figure 6C). Since we did not observe any
apparent differences in the proportion of oral mucosa compared
to epidermal tissue between our control and CLP lines as assessed
by the levels of KRT4/13 and KRT10 (Figure 3E), we believe that
a lower induction of LOR and FLG in certain lines represents

defects in their intrinsic individual differentiation potentials.
These data were further supported by stainings (Figure 6D) and
immunoblots for IVL and LOR (Figure 6E) in HD compared
to LD cultures. These experiments emphasized the differences
between the primary CLP cell cultures D6-Ep, and H7-Ep/Pa-Ep
in regard to their differentiation potential in vitro, as assessed by
the induction of IVL and LOR at HD. Prompted by these data,
we carefully looked at the clinical manifestation of the newborns
from whom we initially isolated the cells, to see whether in vitro
differentiation deficiencies correlated with clinical characteristics.
Strikingly, D6-Ep cells were derived from an individual who
presented with a bilateral cleft and well-visible lip pits (Van Der
Woude, 1954; Burdick et al., 1985), clinically diagnostic of VWS
(MIM #119300) (Figure 6F). The newborns giving rise to the cells
B6-Ep and M6-Ep did not present with any clinical characteristics
other than CLP.

Levels of IRF6 Correlate Positively With
the Differentiation Potential and
Negatively With the Proliferation Rate of
CLP Cells
Mutations within the transcription factors IRF6, GRHL3, and
KLF4 are associated with clefts (Kondo et al., 2002; Zucchero
et al., 2004; Peyrard-Janvid et al., 2005; Liu et al., 2016; Mangold
et al., 2016). All three factors are important for keratinocyte
differentiation and can be induced by CaCl2 in healthy human
keratinocytes (Moretti et al., 2010; Hopkin et al., 2012; Sen
et al., 2012). Therefore, we were interested to learn whether these
transcription factors are also elevated in our CLP patient-derived
keratinocyte cultures upon differentiation. CaCl2 was the most
robust inducer of IRF6, GRHL3, and KLF4 in H7-Ep (CLP) and
Cx-Ep (control) cells (Figure 7A and Supplementary Figure S4).
We also tested the levels of KLF4α, which is a KLF4 isoform
that was recently shown to antagonize the function of KLF4 and
to stimulate cancer cell proliferation (Ferralli et al., 2016). In
contrast to KLF4, KLF4α was not induced under differentiating
conditions, and consequently, cell differentiation resulted in a
reduced KLF4α/KLF4 ratio in both cell cultures (Figure 7A).
Increased IRF6 levels upon in vitro differentiation in H7-Ep
either by CaCl2 and/or FCS were confirmed using fluorescent
microscopy (Figure 7B). IRF6 levels were also elevated upon
cell density-dependent differentiation (Figure 7C). However,
individual CLP cultures displayed great variation in the ability
to induce levels of IRF6, GRHL3, KLF4 at HD compared to
LD (Figure 7D). Notably, the three primary CLP cell cultures
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FIGURE 5 | (A) Box plots showing the fold induction of specific genes (KRT10, IVL, LOR, and FLG) upon 5 days Ca2+-switch compared to their basal levels of five
control keratinocyte cultures (black) and eight CLP patient-derived cell cultures (white) as assessed by qPCR analyses. Each gene in every patient line was analyzed
in triplicates and the mean was used for the box plots. Note that there are statistically significant differences in the induction of the genes LOR and FLG (∗p ≤ 0.05) in
control vs. CLP keratinocytes. (B) Heat map of Ca2+-induced differentiation potential of the individual keratinocyte cell cultures as assessed by qPCR analyses. Low
potential: ≤50-fold induction (KRT10), ≤2-fold induction (IVL, LOR, FLG); medium potential: 50–100-fold induction (KRT10), 2–5-fold induction (IVL, LOR, FLG);
strong potential: ≥100-fold induction (KRT10), ≥5-fold induction (IVL, LOR, FLG). Note that certain CLP patient-derived keratinocyte cultures, B6-Ep, D6-Ep, and
M6-Ep have deficiencies in their differentiation potential in vitro induced by Ca2+-switch. (C) Live cell images of four CLP keratinocyte cultures grown for 5 days in
1.8 mM Ca2+ KSFM. Note that while the cell cultures E6-Ep and H7-Ep show clear morphological signs of differentiation, these specific morphological features are
missing in the cultures D6-Ep and M6-Ep. Scale bar: 100 µm. (D) Immunofluorescent stainings for the proteins IVL (left panel) and LOR (right panel) in normally
differentiating H7-Ep (top) and differentiation-deficient D6-Ep (bottom). While IVL and LOR are both strongly induced in H7-Ep, D6-Ep shows only minor elevation of
both terminal differentiation proteins. Staining for IVL and LOR: green; F-actin: red, DAPI: blue. Scale bar: 50 µm. Note that the staining for LOR results in a nuclear
background staining.
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FIGURE 6 | (A) Live cell images showing low-density (LD) and high-density (HD) cultures of control (Cx-Ep) and CLP keratinocytes (H7-Ep). Scale bar: 200 µm.
(B) Box plots showing fold induction of the genes KRT10, IVL, LOR, and FLG upon reaching confluence (HD) compared to their levels at low-density (LD) conditions
as assessed by qPCR analyses. Controls: n = 5 (black bars); CLP: n = 8 (white bars). Each gene in every patient line was analyzed in triplicates and the mean was
used for the box plots. Note that there are statistically significant differences for the gene induction LOR and FLG (∗p ≤ 0.05) in control vs. CLP patient-derived
keratinocytes. (C) Heat map of density-dependent differentiation potential of the individual keratinocyte cell cultures as assessed by qPCR analyses. Low potential:
≤100-fold induction (KRT10), ≤2-fold induction (IVL, LOR, FLG); medium potential: 100–500-fold induction (KRT10), 2–5-fold induction (IVL, LOR, FLG); strong
potential: ≥500-fold induction (KRT10), ≥5-fold induction (IVL, LOR, FLG). Note that B6-Ep, D6-Ep, and M6-Ep fail to undergo terminal differentiation upon reaching
confluence. (D) Immunofluorescent stainings for the proteins IVL (left panel) and LOR (right panel) in H7-Ep (top) and D6-Ep keratinocytes (bottom). While IVL and

(Continued)
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FIGURE 6 | Continued
LOR are both strongly induced in H7-Ep, D6-Ep show defects in the induction of both terminal differentiation proteins at confluence. Staining for IVL and LOR: green;
F-actin: red, DAPI: blue. Scale bar: 50 µm. Note that the staining for LOR results in a nuclear background staining. (E) Protein extracts of D6-Ep, Pa-Ep, and H7-Ep
at low- (LD) and high-density (HD) were analyzed for Involucrin and Loricrin expression by immunoblotting (top panel). The blots are shown as cropped images. The
full-length blots are presented in Supplementary Figure S6. Densitometrical quantification of the immunoblots is shown in the bottom panels. Data are expressed
as mean ± SEM. n = 3. Note that protein levels correlate with RNA levels. (F) Clinical manifestation of the newborn who donated the lip tissue from which the
primary cell culture D6-Ep had been derived before (top) and after surgery (bottom). Note the presence of lip pits in the lower lip (arrows), which is a diagnostic
feature of van der Woude Syndrome. Written informed consent was obtained from the parents of the individual for the publication of these images.

B6-Ep, D6-Ep, and M6-Ep, that did not manage to undergo
terminal differentiation, also showed the lowest increase of any
of the three factors (Figure 7D). Within the eight individual
CLP cultures, expression of IRF6, GRHL3, and KLF4 nicely
correlated with each other at LD and HD (Figure 7E and
Supplementary Figure S5), and IRF6 levels correlated with the
in vitro differentiation potential of the same cell cultures as
assessed by the fold induction of LOR and FLG upon reaching
confluence (Figure 7F). Strikingly, all primary CLP cell cultures
exhibited a prominent reduction of KLF4α and KLF4α/KLF4 at
HD compared to LD (Figure 7D).

Lastly, we compared the proliferative capabilities of Ry-Ep
and Pa-Ep as two CLP cell cultures with normal differentiation
potential and reasonable levels of IRF6 to D6-Ep and M6-Ep
cultures, both exhibiting problems to terminally differentiate
and low IRF6 levels. Two well-established proliferation markers
(Ki-67, PCNA) showed reduced expression in the primary cell
cultures Ry-Ep and Pa-Ep compared to D6-Ep and M6-Ep
(Figure 7G, left) and accordingly, cultures D6-Ep and M6-Ep
displayed higher growth rates compared to Ry-Ep and Pa-Ep
(Figure 7G, right).

DISCUSSION

In our study, we aimed to build a human CLP cell bank
allowing us to study CLP in vitro. So far we collected 23 lip
biopsies, from which keratinocytes and fibroblasts had been
isolated (Supplementary Table S1). We developed a very robust
and reproducible explant culture assay for the isolation of
lip tissue-derived cells. We undertook every effort possible to
reduce any inter-experimental variations during primary cell
isolation: tissues were processed within less than 1 h after biopsy,
explant cultures were performed by the same person (MD),
and the protocol (see section “Materials and Methods”) was
strictly followed. In addition, all tissue donors were newborns,
3–6 months of age, when undergoing the first surgery to correct
the cleft lip. Hence, we are convinced that the differences in
gene expression or phenotypes within the individual patient cell
cultures reflect each individual’s specific genetic predisposition
rather than a culture artifact or differences in age. We used
foreskin-derived cells as our control group, although we are well
aware of the fact that such cells are not the best controls for our
study. Analyzed parameters might be affected by differences in
age and sex of the tissue donors, as well as by the different origin
of tissues. We considered to use biopsies from children with
acute lip trauma as control, but refrained from this possibility for
ethical as well as practical reasons (damaged tissue, uncommon

trauma in this age group). Our control cells may not be the ideal
control, but we consider them the best compromise in a research
project using human samples. Both lip and foreskin cells are
comparable in their tissue origin since they are both derived from
a mucocutaneous junction area of the body. Indeed, our control
keratinocytes isolated from the foreskin of healthy boys displayed
similar gene profiles as the CLP cultures (Figure 3), independent
of the fact that they were derived from older tissue donors.
Foreskin-derived cells therefore appeared to be an acceptable
control group for our study. One option to further validate our
control group would be to retrieve foreskin samples from the
CLP group. Having such cells would allow us to demonstrate that
the differences described here between CLP lip cells and healthy
foreskin cells are also detectable when comparing healthy and
CLP patient-derived foreskin cells. However, this was not possible
since none of our male patients from the CLP group had a need
for circumcision.

In vitro keratinocyte differentiation has been investigated
for a long time. However, there is no consensus for studying
this process, which makes comparisons between different
analyses very difficult. Experimental parameters that add to
the complexity include the use of diverse keratinocyte cells
(HaCaT, mouse/human keratinocytes), the advances of the
culture methods from the application of a fibroblast-feeder
layer (Rheinwald and Green, 1975) to monolayered cultures,
a developing variety in culture media (KSFM, EpiLife, or
FCS-containing medium), different timing of differentiation, or
even inconsistent culture temperatures (Borowiec et al., 2013).
Although Ca2+ has been established as one of the main factors
regulating keratinocyte differentiation (Hennings et al., 1980), a
recent study indicates that presence of FCS might be beneficial
for optimal keratinocyte differentiation (Borowiec et al., 2013).
In our hands, the addition of FCS did not induce the expression
of late differentiation markers (FLG, LOR) more efficiently than
a simple single Ca2+-switch (Figure 4). However, presence of
FCS was required for the downregulation of KRT5, which is in
agreement with the mentioned study (Borowiec et al., 2013).
Generally, FCS in the culture medium was not very well tolerated
by our primary cells. For this reason and the fact that the
Ca2+-switch was enough to induce late differentiation genes
as well as an anti-proliferative gene (p27Kip1), we decided to
perform all our comparative differentiation studies using CaCl2.
Anyhow, we consider the quality of the primary cells, the time
they had been cultured in basal medium and were allowed to
differentiate as important as the proper differentiation trigger
for robust induction of terminal differentiation. We believe that
comparative studies in regard to differentiation require a strictly
followed protocol including the identical passage numbers of
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FIGURE 7 | (A) qPCR analyses of the transcription factors IRF6, GRHL3, KLF4 and its isoform KLF4α in ∼60% confluent cultures of control keratinocytes (Cx-Ep)
and CLP-keratinocytes (H7-Ep) 3 and 5 days after induction of differentiation by 1.8 mM Ca2+. Fold induction of mRNA levels is shown compared to the reference
levels (basal medium), which has been set to 1. Data are expressed as mean ± SEM. n = 3. Significance was reached when p ≤ 0.05 (∗) compared to basal level.
While IRF6, GRHL3, and KLF4 are induced, KLF4α does not drastically change upon Ca2+-switch. Consequently, the KLF4α/KLF4 ratio dramatically decreases
upon differentiation. (B) IRF6 is induced upon Ca2+ and FCS-induced differentiation as evidenced by immunofluorescent staining of H7-Ep. IRF6: green; F-actin:
red; DAPI: blue. Scale bar: 50 µm. (C) Immunofluorescent analysis of H7-Ep as an example CLP cell culture that shows a prominent up-regulation of IRF6 upon
reaching confluence. IRF6: green; F-actin: red; DAPI: blue. Scale bar: 50 µm. (D) qPCR analyses of the same three genes in CLP-keratinocytes at low-density (LD,
black bars) and high-density (HD, white bars). Data are expressed as mean ± SEM. n = 3. Significance was reached when p ≤ 0.05 (∗). Note that certain CLP
patient cultures do not induce the transcription factors upon reaching confluence. Also, KLF4α as well as the ratio KLF4α/KLF4 is dramatically reduced at HD.

(Continued)
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FIGURE 7 | Continued
(E) Correlations of the three transcription factors in LD and HD cultures within the eight CLP patient-derived keratinocyte cultures. Tables (top panels) show the
Pearson’s Correlation Coefficients and an example scatter plot is shown below. (F) Pearson’s Correlation Coefficients (top) and scatter plot (bottom) at HD show that
IRF6 RNA levels correlate with the terminal differentiation potentials (induction of FLG and LOR) of CLP patient-derived cultures. (G) qPCR analysis of the proliferation
markers Ki-67 and PCNA in Ry-Ep, Pa-Ep, D6-Ep, and M6-Ep (left panels). The right panel shows the same four CLP keratinocytes in a growth assay. Note that
higher proliferation marker expression as well highest proliferation rate was detected in those cells having problems to terminally differentiate (D6-Ep and M6-Ep). PD,
Population Doublings. Data are expressed as mean ± SEM. n = 3. ∗p ≤ 0.05.

the keratinocytes. Also, we complemented our Ca2+-switch data
with a second CaCl2-independent in vitro differentiation assay:
cell density-dependent differentiation (Figure 6). Strikingly and
reassuringly, both assays resulted in the same outcomes: CLP
cell cultures B6-Ep, D6-Ep, and M6-Ep exhibited deficiencies
to terminally differentiate as judged by the lack of significant
induction of LOR and FLG (Figures 5, 6).

While it has been known that KLF4 is up-regulated under
differentiating conditions (Cordani et al., 2011; Sen et al., 2012),
nothing is reported yet on the regulation of KLF4α during
keratinocyte differentiation. KLF4α is one of the main isoforms
of KLF4 and was found to be over-expressed in pancreatic cancer
and to correlate with poor patient prognosis (Wei et al., 2010).
More recently, it was shown that KLF4α is able to antagonize
the function of KLF4 in breast cancer and that an increased ratio
of KLF4α/KLF4 induced cancer cell proliferation (Ferralli et al.,
2016). Here, we show for the first time that KLF4α as well as
the ratio KLF4α/KLF4 drastically decrease under differentiating
conditions in primary normal and CLP keratinocytes (Figure 7).
Hence, the function of the pro-differentiation factor KLF4 cannot
be antagonized by low levels of the pro-proliferative KLF4α

during keratinocyte differentiation.
Using a randomly selected set of eight CLP patient-derived

keratinocyte cultures, we tested the hypothesis that the cause
for CLP in some patients might result from gene mutations
affecting keratinocyte differentiation during development, which
is reflected by differentiation deficiencies in vitro later on using
their cells. We used eight CLP patient-derived cultures since
we believed that this number represented a reasonably sized
set of samples that could be analyzed within a relatively short
time frame to avoid experimental variations (e.g., different batch
of media). Indeed, we identified B6-Ep, D6-Ep, and M6-Ep as
CLP patient-derived cultures that showed defective potential
to terminally differentiate (Figures 5, 6). Although we do not
have any information about the CLP-associated genes in our
tissue donors, we speculate that a genetic predisposition might
be responsible for the development of CLP as well as for
the differentiation deficiencies in vitro in the corresponding
cells. Non-syndromic CLP remains a complex craniofacial
anomaly with an unclear genetic etiology (Mehrotra, 2015).
Numerous CLP candidate genes have been identified, which
can be categorized into transcription factors, growth factors,
extracellular matrix proteins, genes involved in metabolism,
immune response, and detoxification processes (Stuppia et al.,
2011). Recently, non-syndromic CLP-causing variants have been
identified in genes encoding proteins responsible for the assembly
of the epithelial cadherin-catenin complex. Among them are the
genes CDH1 and CTNND1 (Brito et al., 2015; Cox et al., 2018).

While pathological mutations within CTNND1, which encodes
for the critical E-Cadherin binding partner p120Ctn, disrupt
the E-Cadherin-p120Ctn interaction, CDH1 variants affect the
extracellular calcium chelating hinge domains of E-Cadherin
(Cox et al., 2018). Hence, mutations within both of these genes
result in weaker or dysfunctional epithelial adhesion complexes
(Cox et al., 2018). It is well established that differentiating
epidermal cells require intact cell-cell junctions (Fuchs, 1990) and
that interfering with the function of E-Cadherin in keratinocytes
results in differentiation deficiencies (Wheelock and Jensen,
1992; Young et al., 2003; Charest et al., 2009). Hence, presence
of non-syndromic CLP-causing mutations within genes of the
epithelial adhesion complex (e.g., CTNND1, CDH1) might result
in keratinocyte differentiation defects as we have described in
our study. Recently, CTNND1 and CDH1 variants have also
been identified as the cause of the rare Blepharocheilodontic
(BCD) syndrome (OMIM 119580), which is characterized by
CLP (Ghoumid et al., 2017). In this regard, it is noteworthy
that after initially assuming that the tissue donors were all non-
syndromic CLP patients and identifying D6-Ep as a patient cell
culture having problems to terminally differentiate, we were
subsequently informed that the donor of these cells presents lip
pits associated with a bilateral CLP, which is a clinical diagnostic
criterion for VWS.

VWS is the most common syndromic form of CLP and most
of the causal VWS mutations occur within the transcription
factor IRF6. IRF6 regulates the balance between keratinocyte
proliferation/differentiation and Irf6-deficient mice display a
hyperproliferative epidermis (Kondo et al., 2002). Although Irf6
is not necessary for early differentiation, Irf6 knockout mice fail
to undergo terminal differentiation (no expression of Flg and
Lor) leading to aberrant craniofacial morphogenesis, such as oral
adhesions and clefts (Ingraham et al., 2006; Richardson et al.,
2006). Using skin from the hip region of CLP children, Hixon
et al., showed that the proliferation rate of VWS keratinocytes was
increased when compared to non-syndromic CLP keratinocytes,
both in vivo and in vitro (Hixon et al., 2016). These observations
are in agreement with our results using D6-Ep keratinocytes: they
failed to terminally differentiate (Figures 5, 6), but showed higher
rates of proliferation than most other non-syndromic CLP cell
cultures (Figure 7). Hence, the fact that the donor of the D6-
Ep culture is a VWS patient supports all our results using D6-Ep
keratinocytes.

Independent of VWS, we present evidence that IRF6 levels per
se correlate with GRHL3 and KLF4, and with the differentiation
potential of the individual CLP cultures (Figure 7). Since both
GRHL3 and KLF4 have been shown to be directly regulated
by IRF6 (de la Garza et al., 2013; Liu et al., 2016), a positive
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correlation of these three transcription factors in CLP patient-
derived cells makes sense. However, we are careful with the
interpretation of our results, since our correlation analysis only
contained eight individual CLP cell cultures. Clearly, many more
individual CLP cultures need to be analyzed in order to get
a better understanding of potential correlations between IRF6,
GRHL3, and KLF4. Nevertheless, our analysis so far clearly argues
in favor of IRF6 correlating with GRHL3, and KLF4 in CLP
patient-derived keratinocyte cultures in vitro. Moreover, qPCR
analyses of the CLP patient-derived keratinocytes revealed that
IRF6 levels in the VWS culture D6-Ep, as well as in the other
two differentiation-deficient cultures, B6-Ep and M6-Ep, were
decreased compared to all other cell cultures at HD (Figure 7D).
If all three patients had mutations within IRF6, these results
would be in agreement with the fact that haploinsufficiency is
observed in CLP cases caused by IRF6 mutations. Reduced IRF6
mRNA levels could result from gene mutations affecting IRF6
RNA stability or by the fact that IRF6 is a direct IRF6 target
gene itself (Botti et al., 2011). Accordingly, the three primary
cell cultures B6-Ep, D6-Ep, and M6-Ep also displayed the lowest
RNA levels of GRHL3 and KLF4 among all CLP-derived cultures
(Figure 7D). However, to draw any definitive conclusions, future
studies should include Next-Generation-Sequencing analyses of
these CLP patient-derived cell cultures.

In summary, we have established a unique and novel
human CLP patient-derived cell bank of keratinocytes and
corresponding fibroblasts that were isolated from discarded lip
tissue obtained during the first corrective surgery of the cleft
lip. We extensively characterized both the primary patient-
derived fibroblasts and keratinocytes. While this study focused
on keratinocytes, we have the possibility to include CLP patient-
derived fibroblasts in future studies. Here, we subjected CLP
patient-derived keratinocytes to in vitro differentiation as well
as proliferation assays. We found that the late differentiation
markers, LOR and FLG, were significantly less induced in the
group of CLP cultures than in the control group upon in vitro
differentiation. In addition, we discovered various differentiation

potentials within the individual CLP keratinocyte cultures and
could correlate the terminal differentiation capabilities with the
expression levels of the transcription factors IRF6, GRHL3, and
KLF4. These data are the first to analyze human keratinocytes
isolated from the discarded lip tissue of the orofacial cleft.
We anticipate that our findings and the availability of clinical
relevant CLP patient-derived cells will stimulate collaborative
efforts to gain a better understanding of the genetic and cellular
mechanisms involved in the complex pathogenesis of CLP, which
could hopefully help in managing CLP individuals in the future.
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