

AHA Scienti	ific Statement		
Acute Myocardial Infarction in Women A Scientific Statement From the American Heart Association			
Laxmi S. Mehta, MD, FAHA, Chair; Th Iolli A. DeVon, PhD, RN, FAHA; Cindy L. Gri Michelle N. Johnson, MD, MPH; Kathryn J. L Tracy Y. Wang, MD, MHS, MSc, J Nanette K. Wenger, MD, FAHA; on behalf of Disease in Women and Special Populations Cc Council on Epidemiology and Prevention, C and Council on Quality of C Table 1. Typical Versus Atypica Presenting With AMI	heresa M. Beckie, PhD, FAHA, Co-Chair; ines, MD; Harlan M. Krumholz, MD, SM, J indley, MD; Viola Vacarino, MD, PhD, F/ FAHA; Karol E. Watson, MD, PhD; the American Heart Association Cardiovass ommittee of the Council on Clinical Cardio ouncil on Cardiovascular and Stroke Nursir Care and Outcomes Research al Symptoms in Women		
Typical Symptoms	Atypical Symptoms		
Chest pain/discomfort (pressure, tightness, squeezing)	Chest pain: sharp, pleuritic, burning, aching, soreness, reproducible		
Additional symptoms with chest pain Radiation of pain to jaw, neck, shoulders, arm, back, epigastrium Associated symptoms: dyspnea, nausea, vomiting, lightheadedness, diaphoresis	Other symptoms excluding chest pain Unusual fatigue Unusual shortness of breath Upper back/chest pain Neck, jaw, arm, shoulder, back, epigastric pain Flu-like symptoms Dizziness Generalized scared/anxiety feeling Generalized weakness Indigestion Palpitations		
AMI indicates acute myocardial infarc	tion.		

AHA Scientific Statement

Preventing and Experiencing Ischemic Heart Disease as a Woman: State of the Science A Scientific Statement From the American Heart Association

Jean C. McSweeney, PhD, RN, FAHA, Chair; Anne G. Rosenfeld, PhD, RN, FAHA, Vice Chair; Willie M. Abel, PhD, RN, ACNS-BC; Lynne T. Braun, PhD, CNP, FAHA; Lora E. Burke, PhD, MPH; Stacie L. Daugherty, MD, MSPH; Gerald F. Fletcher, MD; Martha Gulati, MD, MS, FAHA; Laxmi S. Mehta, MD, FAHA; Christina Pettey, PhD, APRN, FAHA; Jane F. Reckelhoff, PhD; on behalf of the American Heart Association Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Hypertension, Council on Lifestyle and Cardiometabolic Health, and Council on Quality of Care and Outcomes Research

McSweeney et al, Circulation 2016

	Table 1. Sex-Related Dif System	ferences in the Cardiovas	cular	
Parameter	Manifestations	Cardiovascular	In response to stress, women experience ar	
Anatomy	Dimensions that are smaller in women (adjust for age and race): left ventricular mass, ventricular wall thickness, left atrial	adaptations	increased pulse rate, resulting in increased cardiac output; men have increased vascula resistance, resulting in increased BP	
U	dimension, left ventricular end-diastolic dimension, and vessel size		Women are more sensitive to altitude or boo positioning changes and experience more orthostatic bynotension and syncope	
Hormonal Influences	Estrogen and progesterone are most influential in women; testosterone is predominant in men	Hematologic indexes	Women have a lower number of circulating red blood cells per unit volume of plasma	
	Menstruation can affect hematologic and	Hematologic indexes		(resulting in a lower hematocrit)
Cordioussoular function	electrocardiographic indexes		Because of a lower hemoglobin, women have a lower oxygen-carrying capacity: this is	
Calulovasculai Tuncuon	Dulso rato in woman is 2 - 5 hpm factor	Electrocardiographic and electrophysiological indexes	balanced by women having a lower oxygen	
	Fiection fraction is higher in women		Consumption	
Physiology	Women have reduced sympathetic and enhanced parasympathetic activity	and electrophysiological indexes	QT interval and a shorter sinus node recove time	
	Women have lower plasma concentrations of norepinephrine		Drug-induced torsades de pointes is more common in women	
			Sudden cardiac death and atrial fibrillation are less common in women	

GenCAD: Gender-specific mechanisms in coronary artery disease in Europe

Gender differences in classical risk factors

• Coronary heart disease develops 7-10 years later in women compared to men. Overall, more women are affected, since they live longer and the disease develops in old age.

9

• Dyslipidemia is an equally strong risk factor in women and in men.Lipid lowering therapy should therefore be used in both.

Marital Status, Cardiovascular Diseases, and Cardiovascular Risk Factors: A Review of the Evidence

Abstract

Background: There is evidence showing that marital status (MS) and marital disruption (*i.e.*, separation, divorce, and being widowed) are associated with poor physical health outcomes, including for all-cause mortality. We checked for the available evidence on the association between MS and cardiovascular (CV) diseases, outcomes, and CV risk factors.

Methods: A search across the PubMed database of all articles, including the term "marital status" in their title, was performed. All articles were then manually checked for the presence of the following terms or topic: CV diseases, acute myocardial infarction, acute coronary syndrome, coronary artery disease, cardiac arrest, heart failure, heart disease, and CV mortality. Moreover, other search terms were: CV risk factors, hypertension, cholesterol, obesity, smoking, alcohol, fitness and/or physical activity, and health. Systematic reviews, meta-analyses, controlled trials, cohort studies, and case-control studies were potentially considered pertinent for inclusion. Case reports, comments, discussion letters, abstracts of scientific conferences, articles in other than English language, and conference abstracts or proceedings were excluded. *Results:* In total, 817 references containing the title words "marital status" were found. After elimination of

Results: In total, 817 references containing the title words "marital status" were found. After elimination of articles dealing with other topics, 70 records were considered pertinent. Twenty-two were eliminated for several reasons, such as old articles, no abstract, full text unavailable, other than English language, comments, and letters. Out of the remaining 48 articles, 13 were suitable for the discussion, and 35 (accounting for 1,245,967 subjects) were included in this study.

Conclusions: Most studies showed better outcomes for married persons, and men who were single generally had the poorest results. Moreover, being married was associated with lower risk factors and better health status, even in the presence of many confounding effects.

- Genetic factors are important in premature heart disease in women and in men.
- Erectile Dysfunction is associated with general metabolic and cardiovascular health risks in men.
- Menopause, polycystic ovary syndrome, andropause and hypogonadism are associated with increased cardiovascular risk in women and men.

Gender-specific mechanism of disease

- In men, arteriosclerosis of large coronary arteries is the dominant mechanism leading to myocardial ischemia and infarction.
- Middle-aged women frequently have angina pectoris and myocardial ischemia in the presence of normal coronary arteries. The term ischemic heart disease is suitable for this form of disease.

Gender-specific mechanism of disease

• In pregnancy and in the peripartum period, preeclampsia, peripartum cardiomyopathy and coronary artery dissection should be suspected in symptomatic women.

Gender in prevention

- Women underestimate their risk for cardiovascular disease and are less open for preventive actions than men. Secondary prevention goals are less often achieved in women than in men.
- Exercise is a stronger protective factor in women, but women exercise less then men.
- Smoking cessation is more difficult for women than for men.

Gender in clinical manifestation and diagnosis

- Women with myocardial ischemia and infarction may have a greater variety of symptoms than men.
- The ECG normally is an indicator of myocardial ischemia. However, women exhibit changes in ECG more often than men, caused by factors other than myocardial ischemia.
- Women have relatively lower exercise tolerance than men and the exercise-ECG is less sensitive for CAD.

Sex and Circadian Periodicity of Cardiovascular Diseases Are Women Sufficiently Represented in Chronobiological Studies?

Roberto Manfredini, MD^{0.*}, Raffaella Salmi, MD^b, Rosaria Cappadona, MV^c, Fulvia Signani, PsyD^d, Stefania Basili, MD^e, Niki Katsiki, MD, MSc, PhD, FRSPH^f

Cardiomiopatia da stress

Triggers 'emotivi'

- Morte, malattia grave o grave lesione riguardante un membro della famiglia, un amico, il proprio animale
- Cattive notizie (diagnosi di grave malattia, divorzio di un famigliare)
- Grave litigio
- Aggressione
- Coinvolgimento in azione legale
- Incidente d'auto
- Trasloco
- Perdita economica (affari, gioco, licenziamento)
- Disastri naturali (terremoti..)
- Party a sorpresa
- Public speaking

Europe	an Heart Journal Advance Access published March 2, 2016
European Heart Jos	rnal CLINICAL RESEARCH
SCRET/ OF CARDINGSY	rear paracerson popula
Happy heart	syndrome: role of positive emotional
stress in take	otsubo syndrome
Table I	Happy heart events ($n = 20$)
Patient 1	Birthday party
Patient 2	Son's wedding
Patient 3	Meeting after 50 years with friends from high school
Patient 4	Preparing 50th wedding anniversary (pleasant anticipation)
Patient 5	Positive job interview
Patient 6	Wedding
Patient 7	Favourite driver won race car competition
Patient 8	Becoming grandmother
Patient 9	Surprise farewell celebration
Patient 10	Son's company opening
Patient 11	Favourite rugby team won game
Patient 12	Emotional speaking during a friend's birthday
Patient 13	Celebrating 80th birthday
Patient 14	Winning several jackpots at the casino
Patient 15	Celebration of normal PET-CT scan
Patient 16	Visiting opera with her family
Patient 17	Family party
Patient 18	Unexpected visit from favourite nephew
Patient 19	Grandchildren visiting from London (abroad)
Patient 20	Becoming great grandmother

Triggers 'fisici'

- Procedure chirurgiche e cardiochirurgiche
- Cause respiratorie
- Patologie gastroenteriche
- Patologie reumatologiche
- Patologie endocrine
- Patologie ematologiche
- Patologie infettive
- Dialisi
- Patologie neurologiche
- Sostanze illecite o farmaci: cocaina, abuso di antidepressivi, β2 stimolanti, adrenalina...
- Altri: traumi, ustioni, colpo di calore, abuso di energy drinks, puntura di medusa, ..

Gender Differences in Patients with Takotsubo Cardiomyopathy: Multi-Center Registry from Tokyo CCU Network

Tsutomu Murakami, Tsutomu Yoshikawa*, Yuichiro Maekawa, Tetsuro Ueda, Toshiaki Isogai, Konomi Sakata, Ken Nagao, Takeshi Yamamoto, Morimasa Takayama

The Tokyo CCU Network Scientific Committee, Tokyo, Japan

		All patients	Male	Female	P value
		(n = 368)	(n = 84)	(n = 284)	
Age (years) [range]		76 [67-82]	72 [64-81]	76 [68-83]	0.040
Hospitalization within 24 hours		86.7%	92.9%	84.9%	0.058
Symptom					
	Chest pain	48.6%	39.3%	51.4%	0.051
	Dyspnea	33.4%	35.7%	32.8%	0.613
Preceding stress					
	No stress	36.1%	31.0%	37.7%	0.260
	Physical stress ^a	35.6%	50.0%	31.3%	0.002
	Emotional stress	28.3%	19.0%	31.0%	0.039
Vital signs					
	Systolic blood pressure (mm Hg) [range]	133 [111-160]	131 [110-164]	134 [112-160]	0.690
	Diastolic blood pressure (mm Hg) [range]	79 [66-91]	80 [64-92]	79 [67-91]	0.719
	Heart rate (bpm) [range]	87 [75-108]	88 [72-114]	87 [75-104]	0.921
	Arterial oxygen saturation (%) [range]	98 [95-99]	98 [94-99]	98 [95-99]	0.857

^a Physical stress included acute respiratory failure, central nervous system disorders, infection, post-surgery, trauma, etc.

doi:10.1371/journal.pone.0136655.t001

Murakami et al, PLoS ONE 2015

Gender Differences in Patients with Takotsubo Cardiomyopathy: Multi-Center

Registry from Tokyo CCU Network

Tsutomu Murakami, Tsutomu Yoshikawa*, Yuichiro Maekawa, Tetsuro Ueda, Toshiaki Isogai, Konomi Sakata, Ken Nagao, Takeshi Yamamoto, Morimasa Takayama

The Tokyo CCU Network Scientific Committee, Tokyo, Japan

Odds ratio 95% C	onfidence P value
4.32 1.4	1–13.6 0.011
ase present 1.46 0.4	8-4.84 0.511
1.12 0.3	6–3.47 0.839
all count 4.38 1.3	8–16.9 0.011
tein level 1.42 0.4	5–4.70 0.548
c peptide level 2.61 0.7	8–9.48 0.119
ejection fraction 2.09 0.6	8–7.08 0.198
sent 0.92 0.2	8–2.79 0.878
ejection fraction 2.09 0.6 sent 0.92 0.2	8–7.08 8–2.79

doi:10.1371/journal.pone.0136655.t004 Stepwise multiple logistic regression analysis.

Murakami et al, PLoS ONE 2015

Gender differences in the manifestation of tako-tsubo cardiomyopathy Birke Schneider ^{a,*}, Anastasios Athanasiadis ^b, Claudia Stöllberger ^c, Wolfgang Pistner ^d, Johannes Schwab ^e, Uta Gottwald ^f, Ralph Schoeller ^g, Birgit Gerecke ^h, Ellen Hoffmann ⁱ, Christian Wegner ^j, Udo Sechtem ^b ics of 324 fe ale and m Female Male p Value Characteristics $\begin{array}{c} 296 \\ 68 \pm 12 \end{array}$ (91%) (27-90) 28 66±12 (9%) (37-84) ge (years) 0.31 0.08 0.78 0.60 1.00 0.52 0.35 0.10 0.005 1.00 0.93 217 45 9 2 16 7 226 111 88 27 70 (73%) (15%) (3%) (1%) (5%) (2%) (2%) (2%) (38%) (30%) (9%) (24%) 16 5 (57%) (18%) (4%) (4%) (4%) (4%) (86%) (21%) (57%) (7%) (14%) yncope hock/Re Other None riggering event Emotional stress Physical stress Both None 1 24 6 16 2 4 Doans Time from symptom onset to hospital admi Hours Cardiac makers CK median - ULN CK-MB median - ULN CK-MB median - ULN Troponin median- ULN Angiography Symptom onset to angiography (days) LV ejection fraction Apical balooning Intraaortic balloon pump 7.6 ± 6.8 (0-23.8) 7.2±7.1 (0-23.0) 0.57 1.17 1.34 7.2 (0.72-1.80) (0.85-2.20) (2.9-17.9) (1.10–2.11) (0.75–1.77) (7.6–29.0) 1.55 1.28 10.7 0.05 0.76 0.03 (0-2) (18-81) (64%) (36%) (1%) (0-2.75) (23-80) (64%) (36%) (4%) 1 49±14 189 107 1 46±15 18 10 0.48 0.23 1.00 0.24 Schneider et al, Int J Cardiol 2016

Hiromasa Horiguchi ^c , Kiyohide Fush	imi ^d	oyuki lallaka , letsu	io oeua ,
nionaza norigaeni , nijonači asi			
fultivariable logistic regression model for in-hospital mortality in patients with TC.			
	Odds ratio	95% CI	p-Value
In-hospital TC (reference: out-of-hospital TC)	2.02	1.43 to 2.85	< 0.001
Age (years), by 10-year increase	1.33	1.15 to 1.53	< 0,001
Male sex (reference: female)	1.24	0.91 to 1.70	0.176
Ambulance use (reference: non-use)	1.09	0.82 to 1.47	0.550
Hospital volume (case/year)	1.03	0.98 to 1.07	0.216
Academic hospital (reference: non-academic hospital)	0.97	0.68 to 1.37	0.845
Japan Coma Scale at admission (reference: 0 [alert])			
1–3 (drowsy)	2.10	1,43 to 3.07	< 0.001
x (reference: female)			
Chronic pulmonary disease	1.11	0.67 to 1.84	0.684
Chronic liver disease	2.69	1.33 to 5.42	0.006
Chronic renal failure	1.62	0.95 to 2.77	0.078
Peptic ulcer disease	0.99	0.53 to 1.85	0.966
Thyrotoxicosis	0.85	0.11 to 6.65	0.879
Rheumatic disease	2.92	1.46 to 5.83	0.002
Psychiatric disease	0.43	0.19 to 0.96	0.039
Sepsis	2.02	1.17 to 3.49	0.011
Pneumonia	3.07	2.15 to 4.38	< 0.001
Cerebrovascular diseases	1,99	1.24 to 3.20	0.004
Acute renal failure	3.76	1.80 to 7.84	< 0.001
Acute gastrointestinal diseases	2.51	1.16 to 5.41	0.019
	0.80	0.09 to 5.50	0.751
Status asthmaticus	0.72		
Status æthmaticus Seizure or status epilepticus	0.72	0.26 to 2.92	0.824
Status asthmaticus Seizure or status epilepticus External injury	0.72 0.87 1.25	0.26 to 2.92 0.60 to 2.60	0.824 0.549

Parasuram Krishnamoorthy ^a Jalaj Garg ^b Abhishek Sharma ^c				
Chandracokar Palar	nicuramud Noorai	Shahb Grogal	nior ^d Nainach (Data
Carl J. Lavie ^{e, f} Has	an Ahmad ^d	Shari Greggi		ratei
Variable	Total $(n = 7.510)$	Males $(n = 705; 9.4\%)$	Females	p value
	(1-7,510)	(1 = 705, 5.4%)	(1 = 0,000, 90.0%)	
Age, years Length of stay, days Cardiometabolic risk factors	65.6 (64.9-66.2) 4.9 (4.5-5.2)	59.5 (56.6-62.3) 5.9 (4.5-7.2)	66.2 (65.5-66.8) 4.8 (4.4-5.1)	<0.001 0.12
Diabetes	1,507 (20)	112 (15.9)	1,395 (20.5)	0.19
Hypertension	4,619 (61.5)	393 (55.8)	4,226 (62.1)	0.14
Hyperlipidemia	3,304 (44)	249 (35.3)	3,055 (44.9)	0.03
Obesity	638 (8.5)	44 (6.3)	594 (8.7)	0.32
Tobacco	1,247 (16.6)	162 (22.9)	1,085 (15.9)	0.03
Prior CAD Other risk forters	3,525 (46.9)	335 (47.4)	3,190 (46.8)	0.89
Apriaty	752 (10)	49 (6 9)	705 (10.3)	0.17
Alcohol	244 (3 3)	48 (0.8)	180 (2.6)	<0.001
Cocaine	37 (0.5)	5 (0.8)	32 (0.5)	0.001
Amphetamine	9(0.1)	9(1.3)	-	<0.001
Depression	1,100 (14.7)	42 (5.9)	1.058 (15.6)	<0.01
Migraine	179 (2.4)	11 (1.5)	168 (2.5)	0.48
Seizure	95 (1.3)	20 (2.8)	75 (1.1)	0.08
Malignancy Acute critical illness	360 (4.7)	48 (6.8)	312 (4.5)	0.23
Sepsis	347 (4.6)	63 (9)	284 (4.2)	<0.01
Acute CVA	161 (2.2)	30 (4.2)	131 (1.9)	0.07
Respiratory failure	987 (13.1)	129 (18.2)	858 (12.6)	0.06
Acute renal failure Complications	626 (8.33)	78 (11.1)	548 (8.1)	0.21
Vontrigular arrhythmia	180 (2.4)	34 (4.8)	146 (2.1)	0.04
Sudden cardiac death	423 (3.7)	39 (7.7)	371 (3.4)	<0.01

