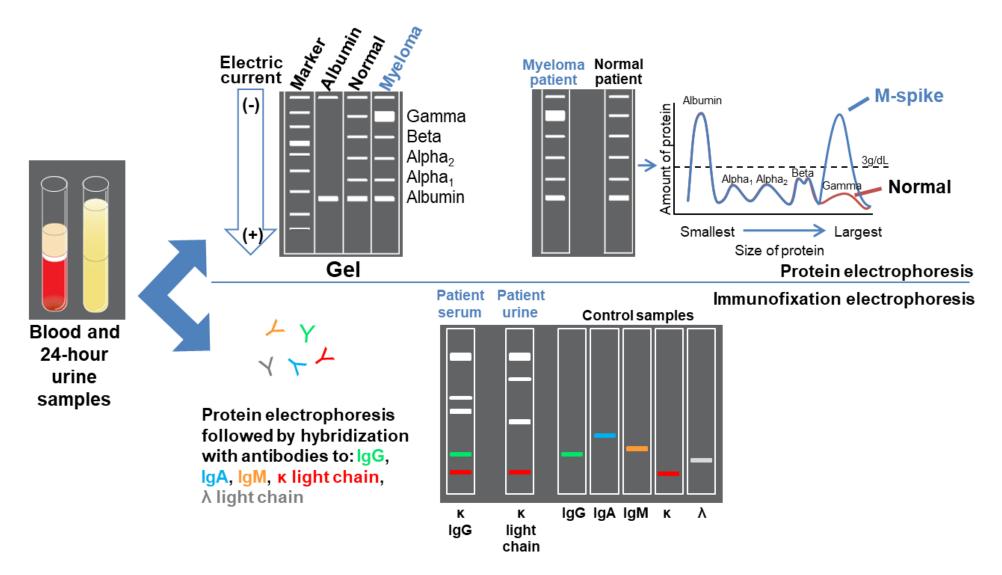
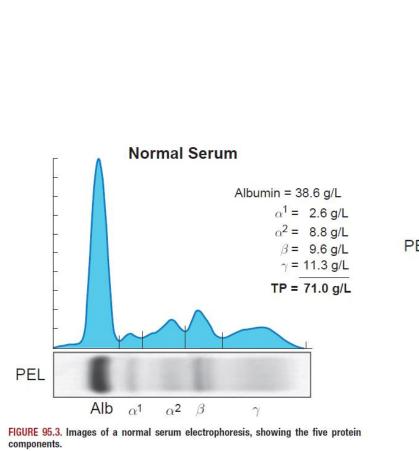

Multiple myeloma prof. Gian Matteo Rigolin

MM: definition

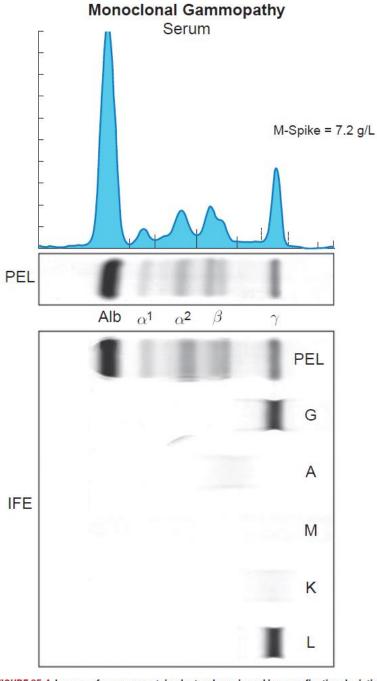
 MM is a malignant disease characterised by proliferation of clonal plasma cells in the bone marrow and typically accompanied by the secretion of monoclonal immunoglobulins that are detectable in the serum or urine.


MM and monoclonal Ig protein

- In most patients, MM is characterized by the secretion of a monoclonal Ig protein (also known as M protein or monoclonal protein), which is produced by the abnormal plasma cells.
- In 15–20% of patients, the MM cells secrete only monoclonal free light chains (micromolecular MM)
- In <3% of patients, MM cells secrete no monoclonal protein.


- ●lgG 52%
- ●lgA 21 %
- •K or λ light chain only (Bence Jones) 16%
- ●lgD 2%
- •Biclonal 2%
- ●lgM 0.5%
- •Negative 6.5%

K is the predominant light chain isotype compared with λ , by a factor of 2 to 1 with the exception that λ light chains are more common in IgD MM and MM associated with amyloidosis


Monoclonal Gammopathies: Protein electrophoresis and immunofixation

Mayo Clinic. Test ID: PEL: Electrophoresis, Protein, Serum. Available at: www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/80085. Accessed March 2016; Lab Tests Online. Protein Electrophoresis, Immunofixation Electrophoresis. Available at: https://labtestsonline.org/understanding/analytes/electrophoresis/tab/test. Accessed March 2016.

Wintrobes Clinical Hematology 13th Edition

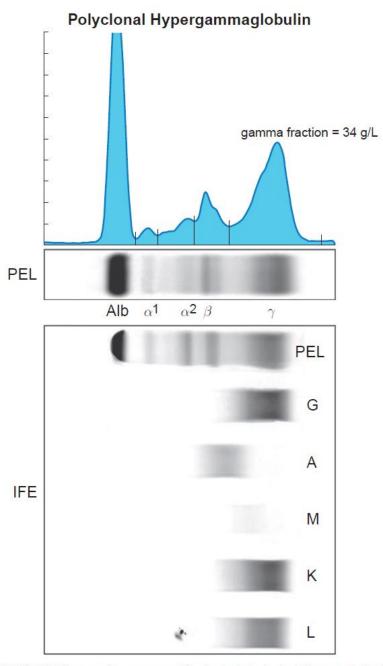


FIGURE 95.4. Images of a serum protein electrophoresis and immunofixation depicting a monoclonal protein.

FIGURE 95.5. Images of a serum protein electrophoresis depicting a polyclonal gammopathy.

MM and monoclonal Gammopathies

- MM is part of a range of disorders referred to as the **monoclonal gammopathies**.
- Within these disorders, the most common is MGUS (Monoclonal Gammopathy of Undetermined Significance).
- MGUS is asymptomatic and consistently precedes the development of MM, with or without an identified intervening stage, referred to as **smouldering multiple myeloma** (SMM).
- Nearly 15% of patients with MGUS will progress to MM, and ~20% will progress to MM or a related condition (such as AL amyloidosis, Waldenstrom macroglobulinaemia or a lymphoproliferative disorder) over 25 years.

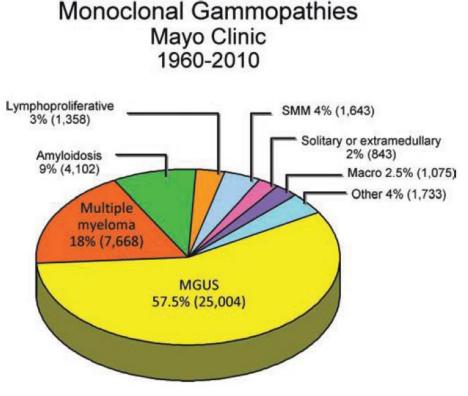


FIGURE 95.1. Distribution of monoclonal gammopathies seen at Mayo Clinic between 1960 and 2010. MGUS, monoclonal gammopathy of undetermined significance; SMM, smoldering multiple myeloma.

DIFFERENTIAL DIGNOSIS OF MONOCLONAL GAMMOPATHIES

lgM type

IgM MGUS (may also be biclonal) Smoldering Waldenström macroglobulinemia Waldenström macroglobulinemia Other (including lymphoma and IgM MM)

POEMS: polyneuropathy, organomegaly, endocrinopathy, M protein, skin changes. SLONM: Sporadic late-onset nemaline myopathy.

Wintrobes Clinical Hematology 13th Edition

Non-IgM type Non-IgM MGUS (may also be biclonal) SMM MM Plasma cell leukemia Solitary plasmacytoma Amyloidosis complicating a B cell neoplasm (AL) Miscellaneous monoclonal gammopathy-associated conditions Osteosclerotic MM with peripheral neuropathy POEMS syndrome Cryoglobulinemia Peripheral neuropathy associated with MGUS SLONM Fanconi's syndrome Light or heavy chain deposition disease Castleman's disease Scleromyxedema Necrobiotic xanthogranuloma Systemic capillary leak syndrome Angioimmunoblastic lymphadenopathy with monoclonal protein Other

MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; SLONM, sporadic late onset nemaline myopathy SMM, smoldering multiple myeloma.

TABLE 97.3

CLASSIFICATION OF MONOCLONAL GAMMOPATHY OF UNDETERMINED SIGNIFICANCE

Туре	Risk of Progression
Non-IgM MGUS ^a	1% per year risk of progression to multiple myeloma, AL amyloidosis, or related disorder
IgM MGUS ^b	1.5% per year risk of progression to Waldenström macroglobulinemia; rare patients can progress to IgM multiple myeloma
Light chain MGUS ^c	Risk of progression to light chain myeloma and AL amyloidosis. Rate of progression not defined.

IgM, immunoglobulin M; MGUS, monoclonal gammopathy of undetermined significance

^aAlmost all patients are IgG or IgA type. Occasional patients may have IgD or IgE monoclonal proteins.

^bNote that conventionally IgM MGUS is considered a subtype of MGUS. Thus, when the term MGUS is used, in general, it includes IgM MGUS.

^cBecause light chain MGUS was only defined in 2010, studies pertaining to MGUS prior to that time do not include patients with this entity; unless otherwise specified studies since then may also not include patients with light chain MGUS.

From Rajkumar SV. Preventive strategies in monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Am J Hematol 2012;87:453-454.

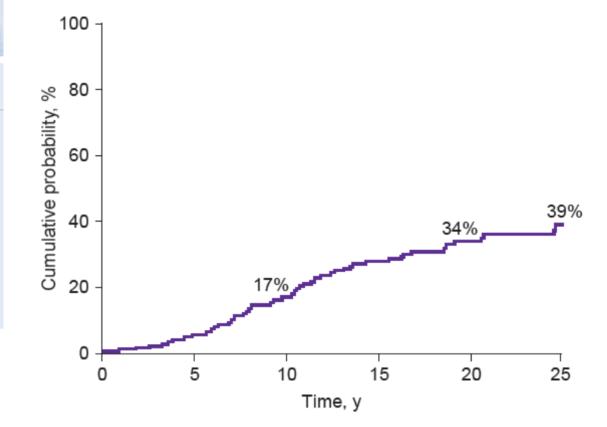


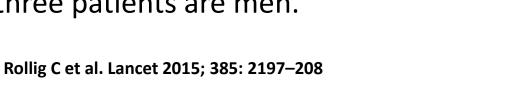
FIGURE 97.4. Actuarial analysis of incidence of multiple myeloma, macroglobulinemia, amyloidosis, or lymphoproliferative disease after recognition of monoclonal protein in 241 patients with monoclonal gammopathy of undetermined significance. (From Kyle RA, , Themeau TM, Rajkumar SV, Larson DR, Plevak MF, Melton LJ 3rd. Long-term follow-up of 241 patients with monoclonal gammopathy of undetermined significance: the original Mayo Clinic series 25 years later. Mayo Clin Proc 2004;79:859–866.)

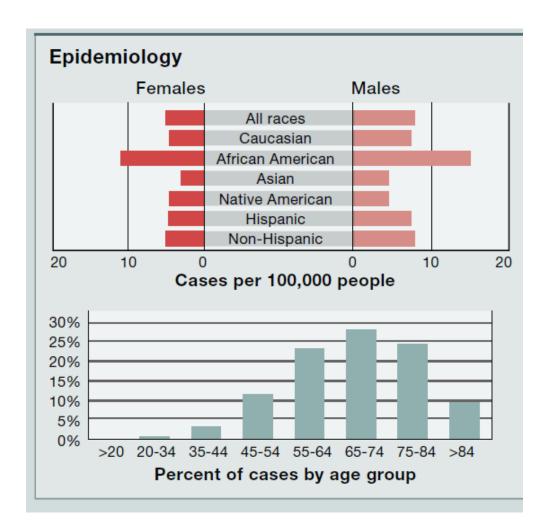
Wintrobes Clinical Hematology 13th Edition

Risk-stratification model to predict progression of MGUS to MM or related disorders

	Risk group	No. of patients	Relative risk	Absolute risk of progression at 20 years (%)	Absolute risk of progression at 20 years accounting for death as a competing risk (%)
-	Low-risk (serum M protein <1.5 gm/dl, IgG subtype, normal FLC ratio (0.26–1.65)	449	1	5	2
-	Low-intermediate-risk (any 1 factor abnormal)	420	5.4	21	10
→		226	10.1	37	18
-	,	53	20.8	58	27

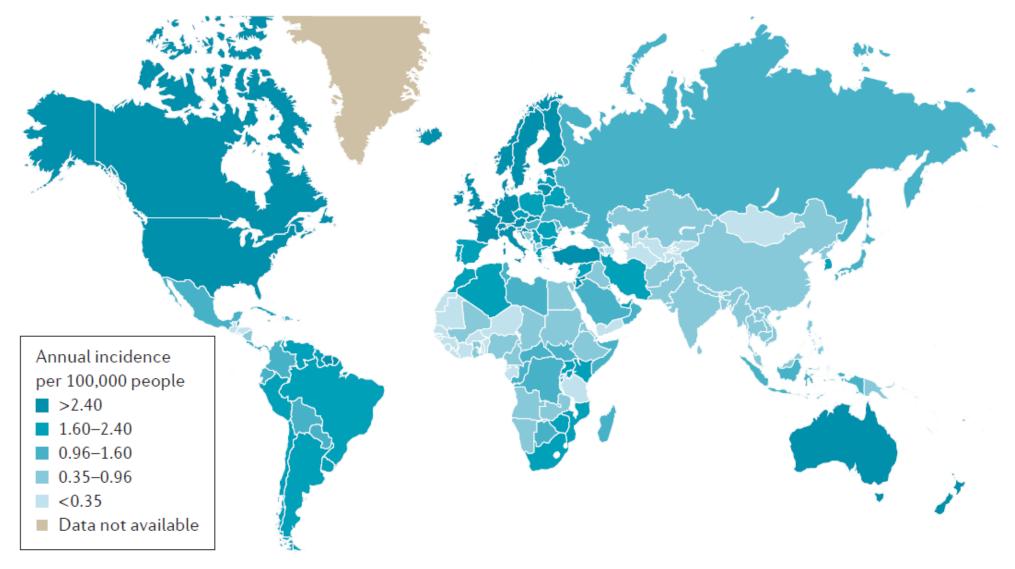
Abbreviation: MGUS, Monoclonal gammopathy of undetermined significance.


This table was originally published in *Blood*. Rajkumar SV et al., Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance (MGUS) *Blood*. 2005; **106**;812–817. © the American Society of Hematology.


- 1. Serum M protein < 1.5 g/dL
- 2. IgG subtype
- 3. Normal FLC ratio (0.26-1.65)

Kyle et al. Leukemia (2010) 24, 1121–1127

MM: epidemiology


- MM is the **2nd most frequent haematological malignancy** with an age-adjusted incidence of 6 per 100 000 per year in the USA and Europe.
 - The incidence is 2-3 times higher in African Americans, making it the most common haematological malignancy in this ethnic group.
- The median age at diagnosis is 69 years, with 75% of patients being diagnosed above the age of 55 years
- Two of three patients are men.

Braggio E et al. Cancer Cell. 2015;28:678

Incidence of multiple myeloma in 2012.

MM: epidemiology

- Significant prevalence differences are observed between age, gender, and race, suggesting a **genetic predisposition** to MM
- With the advent of more effective therapeutic strategies and improvements in supportive care, the median survival has increased from 3 years to 6 years in the past two decades.
- The age-adjusted death rate for men and women between 2006 and 2010 in the USA was 3·4 in 100 000.

Year	1975	1980	1985	1990	1999	2003	2007
5-year relative survival	26.6%	25.8%	27.0%	29.7%	33.5%	41.8%	45.1 %
Increase to 1975	-	-3%	2%	12%	26%	57%	70%

Braggio E et al. Cancer Cell. 2015;28:678

MM: Aetiology

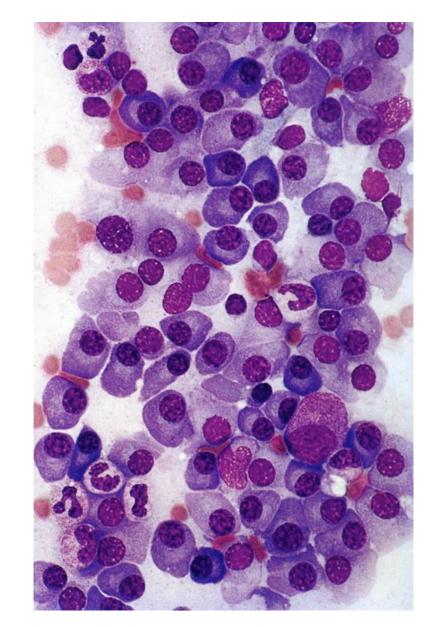
• The cause of MM is unknown, although several studies have evaluated potential risk factors for this disease.

• Environmental and occupational exposures.

- Radiation (little evidence)
- Occupational exposure (farmers: debated)
- Exposure to hair dyes, benzene, petroleum products: little evidence

Genetic factors

- Genome-wide association studies (GWAS) have identified multiple genetic loci associated with an increased risk of MM, in addition to loci associated with an increased mortality in diagnosed patients.
- Several single-nucleotide polymorphisms (SNPs) that could lead to MYC activation, inferior survival or clinical presentation were also identified.

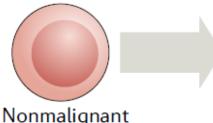

MM: pathogenesis

- MM cells are similar to long-lived, <u>post-germinal centre plasma cells</u>, and are characterised by
 - strong bone marrow dependence,
 - extensive somatic hypermutation of lg genes,
 - absence of IgM expression.
- In most cases, MM is **preceded by a pre-malignant MGUS condition**, followed by an asymptomatic phase, called **SMM**.
- The risk of progression to MM is estimated 0.5%–1% per year for the heavy chain and 0.3% for the light chain MGUS.

MM and chromosomal abnormalities

• Chromosomal abnormalities are present in nearly all cases

- They characterize the
 - heterogeneous clinical presentation,
 - response to treatment,
 - survival outcomes


Zucker-Franklin D Grossi CE. Atlas of Blood cells. Pag 609 (by GL Castoldi)

Primary and secondary cytogenetic abnormalities in MM.

Cyclin dysregulation

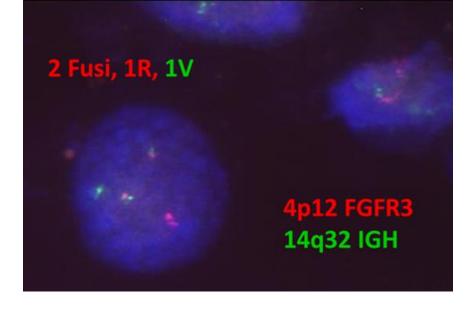
Primary abnormalities

Trisomies (~45%) Odd-numbered chromosomes: 3, 5, 7, 9, 11, 15, 19, and 21

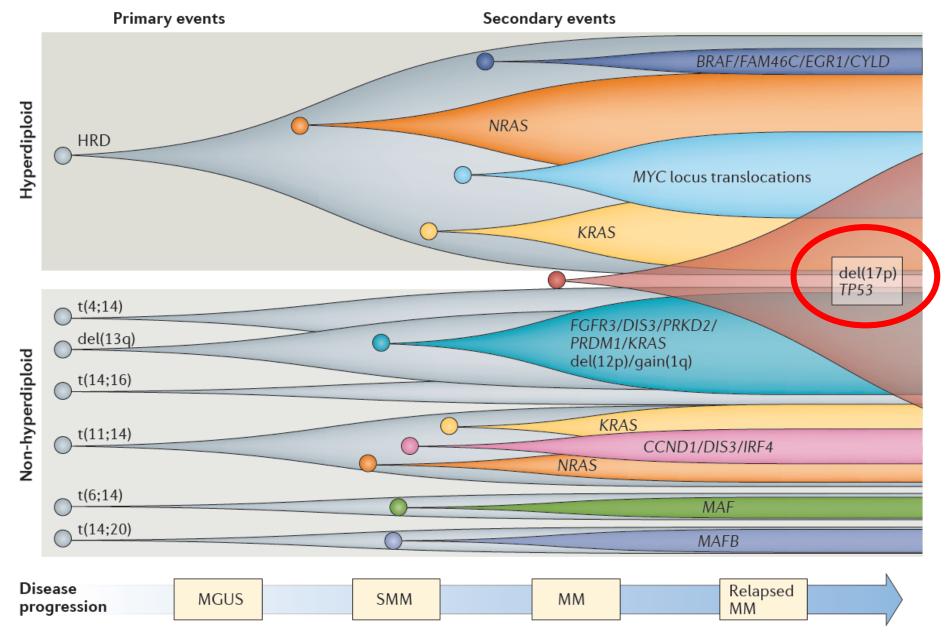
Nonmalignant plasma cell

- 10% of pts, with both an IgH translocation and trisomies
- 10% of pts, with other abnormalities in the absence of either an IgH translocation or a trisomy.

IgH translocations (~55%) Translocations involving the IgH gene locus at 14q32

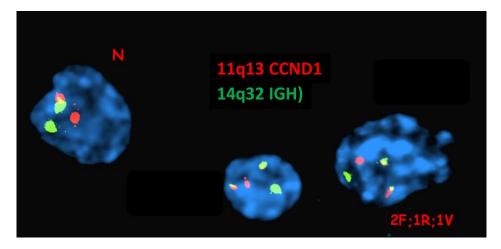

Translocation;locus;gene t(4;14);4p16;FGFR3-MMSET t(14;16);16q23;MAF t(14;20);20q12;MAFB t(8;14);8q24;MAFA t(11;14);11q13;CCND1 t(6;14);6p21;CCND3

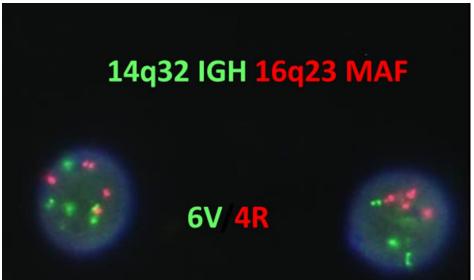
	Secondary abnor	malities
MYO	Monosomies Chromosome 13	Recurrent mutations
d d	Chromosome 17	KRAS
sre	Chromosome 14	NRAS
dysregulation	Deletions	TP53
	Chromosome 17p Chromosome 1p	DIS3
		FAM46C
	Amplification Chromosome 1q	BRAF
	gain or amplification	TRAF3
		ROBO1
		CYLD
		EGR1
	Other conomic	SP140
	Other genomic alterations	FAT3
	miRNA	CCND1


primary vs. secondary cytogenetic abnormalities

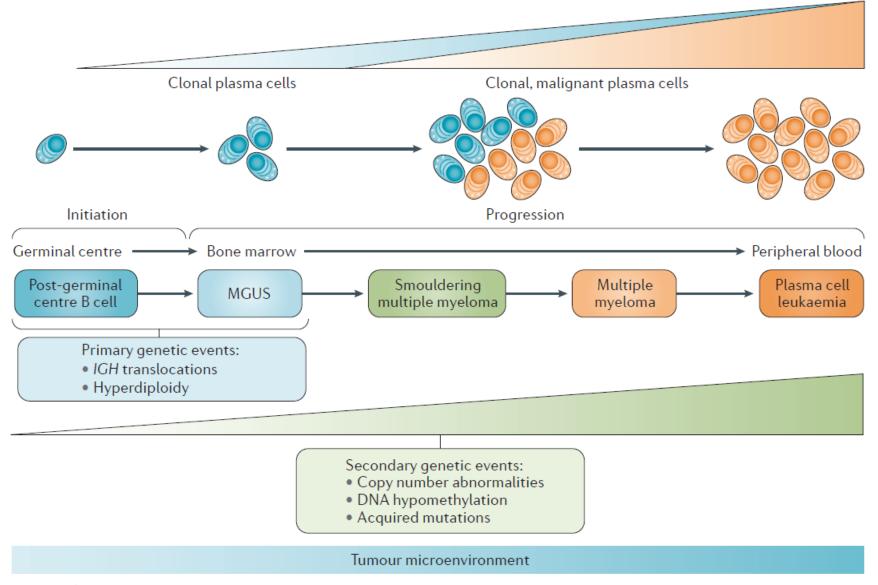
primary cytogenetic abnormalities

- 1. are **nonoverlapping**.
- 2. are considered **initiating events**
- 3. are detectable in almost the entire population of clonal cells while secondary abnormalities are typically **subclonal**.

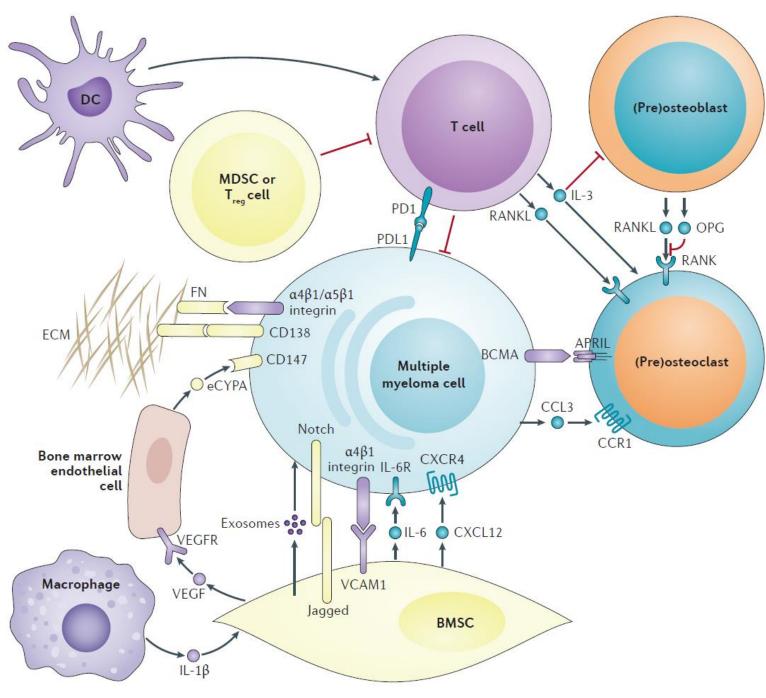

Proposed model of clonal evolution in MM



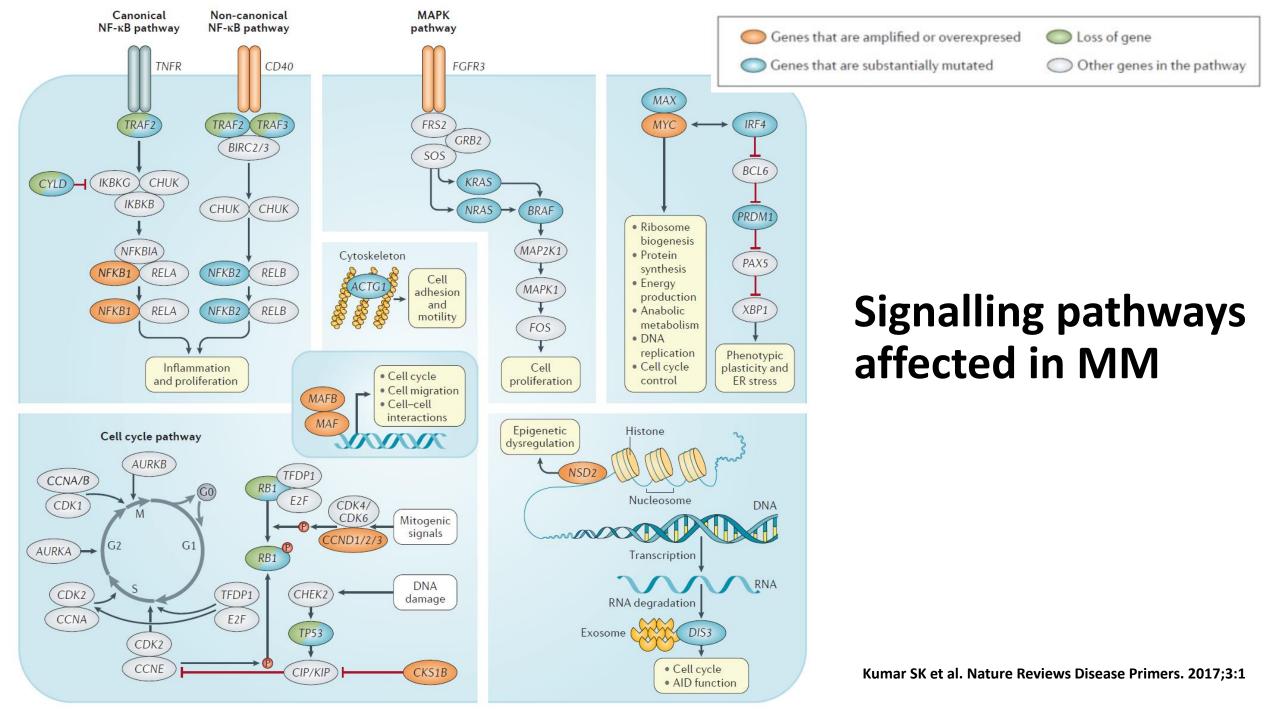
Technical aspects: enrichment


- primary cytogenetic abnormalities are detected using various FISH-based approaches that incorporate some form of plasma cell enrichment technique
- Two commonly used approaches are
 - CD138-based sorting of the plasma cells
 - simultaneous staining of clgs (along with FISH) to identify plasma cells.

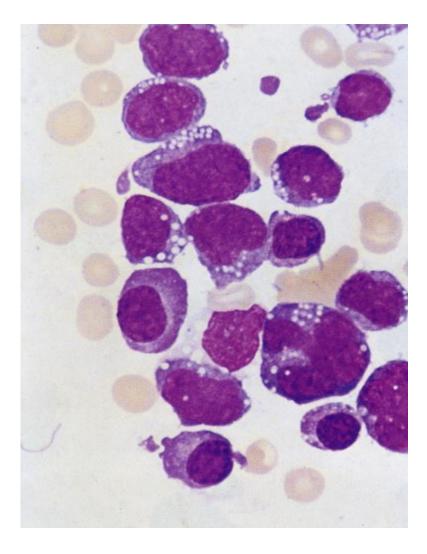
Kumar SK & Rajkumar SV. Nature Rev Clin Oncol. 2018;15:409.



The development of monoclonal gammopathies


Kumar SK et al. Nature Reviews Disease Primers. 2017;3:1

Tumour microenvironment


- Key role of the interaction between MM cells and their bone marrow microenvironment (cell–cell and cell– matrix interactions, and growth factors and cytokines).
- Cellular components of the microenvironment include bone marrow stromal cells, osteoblasts, endothelial cells, and cells of the innate and adaptive immune system, including regulatory T cells.
- Crosstalk between MM and its microenvironment seems to be bidirectional.

Rollig C et al. Lancet 2015; 385: 2197–208 Kumar SK et al. Nature Reviews Disease Primers. 2017;3:1

Pathobiology of end organ damage

- Once the clonal plasma cell population is created and progresses to MM, patients develop symptoms (eg, hypercalcemia, lytic bone lesions, renal dysfunction, and anemia) related to
 - the infiltration of plasma cells into the bone or other organs or to kidney
 - damage from excess light chains or monoclonal Ig

Osteolytic bone lesions

- **Osteolytic bone lesions** are the hallmark of MM.
- The pathogenesis of lytic bone lesions characteristic of MM is mediated by an **imbalance between the activity of osteoclasts and osteoblasts** with:
 - enhanced osteoclastic activity
 - marked suppression of osteoblastic activity (in contrast to other malignancies).
- As a result, MM bone lesions tend to be <u>purely osteolytic</u> and better visualized on **plain radiographs** compared with other bone metastases from solid tumors that tend to have an osteoblastic component and are better visualized on radionucleotide bone scans.

Osteolytic bone lesions

• Increased osteolytic activity is mediated by

- an <u>increase in RANKL</u> (receptor activator of nuclear factor kappa-B ligand) expression by osteoblasts (and plasma cells)
- a reduction in the level of its decoy receptor, osteoprotegerin (OPG).

- This leads to an increase in RANKL/OPG ratio, which causes osteoclast activation and bone resorption.
 - Increased levels of macrophage inflammatory protein-1 alpha (MIP-1alpha, CCL3), IL-3, and IL-6 produced by marrow stromal cells also contribute to the overactivity of osteoclasts.
 - Increased expression of SDF-1alpha by stromal cells and MM cells causing osteoclast activation by binding to CXCR4 on osteoclast precursors.

In addition to osteoclast activation, there is active suppression of osteoblasts in myeloma.

- This is most likely related to
 - increased levels of IL-3, IL-7, and dickkopf 1 (DKK1), which inhibit osteoblast differentiation.
 - MM cells express DKK1, an inhibitor of Wnt signaling.
 - An increased expression of DKK1 by these cells has been associated with presence of focal bone lesions in MM.
 - Increased IL-3 and IL-7 levels may also play a role.

Hypercalcemia

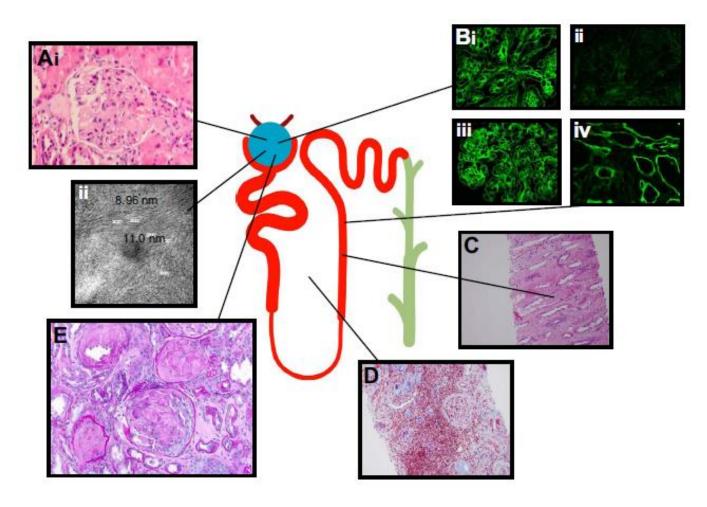
- Hypercalcemia appears to be a product of osteoclast activating factors such as
 - lymphotoxin,
 - interleukin-6,
 - hepatocyte growth factor,
 - receptor activator of nuclear factor kappa B ligand (RANK ligand).

<u>Anemia</u>

In MM anemia may be due to:

- replacement of normal hematopoietic tissue by tumor (<u>myelophthisis</u>)
- 2. <u>disruption</u> of the bone marrow microenvironment.
 - The occurrence of anemia in the setting of **limited BM infiltration** suggests that MM-associated anemia is not entirely due to BM replacement by MM cells.
 - In MM, the BM contains lower than normal numbers of hematopoietic stem and progenitor cells.
 - This appears to be at least partially **due to changes in the BM microenvironment**.
 - Elimination of MM cells and restoration of the normal BM environment may result in repopulation with these precursors and **reversal of the anemia**.

Kidney disease


Kidney disease in pts with monoclonal gammopathies usually results from

- 1. the production of monoclonal Ig or Ig fragments (ie, light or heavy chains)
- 2. clonal proliferation of plasma cells or B cells.
- Kidney injury also result from causes unrelated to monoclonal proteins.
- Mechanisms of kidney injury in plasma cell malignancies can be grouped into
 - Ig-dependent
 - Ig-independent

Kidney disease

- The 3 most common forms of **Ig-dependent** kidney injury include:
 - <u>cast nephropathy</u>, in which casts and crystals composed of filtered monoclonal Ig and other urinary proteins obstruct distal renal tubules, often precipitously, and typically incite an accompanying tubulointerstitial nephritis;
 - **2.** <u>AL amyloidosis</u>, in which primarily monoclonal light chains and other proteins together form β -pleated sheets in the **glomeruli**;
 - 3. <u>monoclonal Ig deposition disease (MIDD)</u>, in which intact or fragmented light chains, heavy chains, or both deposit along **glomerular and/or tubular basement membranes**.

3 distinct syndromes account for most cases of Ig-mediated kidney disease but virtually all nephropathologic syndromes have been observed.

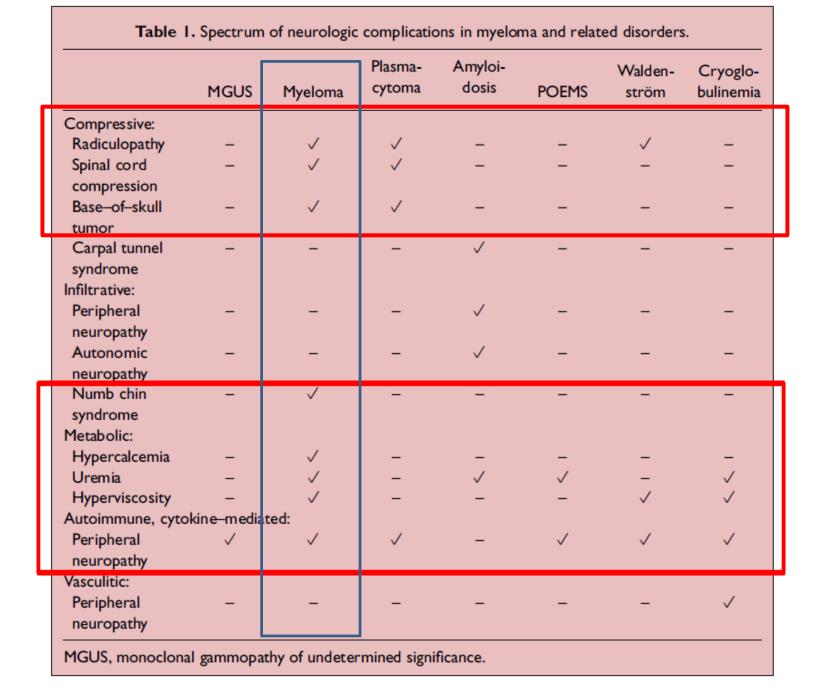
Heher EC et al. Blood. 2010;116(9):1397-1404)

Panel A. Amyloid fibrils consisting of monoclonal Ig and serum proteins **disrupting glomeruli architecture**.

Panel B shows MIDD. Monoclonal light chains kappa and/or heavy chains (IgG), deposit along glomerular (iii) and tubular basement membranes (iv), altering the glomerular structure and causing dose-dependent proximal tubular toxicity.

Panel C shows cast nephropathy. Filtered monoclonal Ig, Tamm-Horsfall, and other proteins form casts, which **obstruct tubules and collecting ducts**. Casts can rupture and result in **interstitial inflammation**.


Panel D shows interstitial inflammation. Inflammation also results from the processing of filtered monoclonal light chains, which induces NF-kB and other signaling pathwaysleading to cytokine-mediated inflammatory infiltrate and subsequent matrix deposition and fibrosis.


Panel E shows glomerular crescent. Virtually every recognized nephropathologic lesion has been described in association with paraproteinemia.

Ig-dependent mechanisms				
Mechanism	Details			
Cast nephropathy (myeloma kidney)	Risk factors include light chain myeloma with $>$ 10 g/day of monoclonal Ig excretion, IgD myeloma,			
	volume depletion, sepsis, medications (see "Medication toxicity" below)			
MIDD	Often associated with kappa light chains. Systemic syndrome may be present.			
AL amyloidosis	Often associated with nephrotic-range albuminuria and lambda light chains. Systemic syndrome may be present.			
Glomerulonephritis	Membranoproliferative, diffuse proliferative, crescentic, cryoglobulinemic all recognized			
Tubulointerstitial nephritis	May also result from non-Ig mechanisms.			
Minimal change or membranous glomerulopathy	Albuminuria is typically present, in addition to light chain proteinuria			
Henoch-Scholein purpura/IgA nephropathy	Associated with IgA myeloma			
Immunotactoid and fibrillary glomerulopathy	Rare conditions			
Intracapillary monoclonal deposits of IgM thrombi	Associated with Waldenström macroglobulinemia			
TMA	Paraprotein causes endothelial injury with resulting TMA			
Hyperviscosity syndrome	Most common with Waldenström macroglobulinemia			
	lg-independent mechanisms			
Mechanism	Details			
Volume depletion or sepsis	Can cause acute tubular necrosis and/or precipitate cast nephropathy			
Hypercalcemia	Can precipitate cast nephropathy			
Tumor lysis syndrome	Uric acid or phosphate nephropathy			
Medication toxicity	Zoledronate: acute renal failure			
	Pamidronate: collapsing focal segmental glomerulosclerosis			
	Nonsteroidal anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, angiotensin receptor			
	blockers, loop diuretics, or IV contrast can precipitate cast nephropathy			
Direct parenchymal invasion by plasma cells	Associated with advanced or aggressive myeloma			
Pyelonephritis	Immunodeficiency from myeloma, deficient Ig, and chemotherapy all contribute			

Table 1. Mechanisms of renal failure in plasma cell dyscrasias in Ig-dependent and -independent categories

Ig indicates immunoglobulin; MIDD, monoclonal Ig deposition disease; TMA, thrombotic microangiopathy; and IV, intravenous.

Common characteristics of peripheral neuropathies in plasma cell dyscrasias

	Paraprotein	Clinical symptoms	Neuropathy pattern	Electrodiagnostic findings	Pathology
MGUS (IgM)	lgM-к	Lower extremity numbness, ataxia, tremor	Distal, symmetric, sensory	Slow MCV, markedly prolonged DML, low TLI, conduction blocks, reduced sensory potentials	Loss of myelinated fibers with evidence of remyelination; IgM antibody bound to myelin; separation of myelin lamellae
MGUS (IgG or IgA)	lgG-к or lgA-к	Upper and lower extremity weakness and numbness	Proximal and distal, symmetric, sensorimotor	Slow MCV, prolonged DML	Endoneurial deposits and/or possible widening of myelin lamellae
ММ	lgG-к	Heterogeneous: weakness and/or numbness of the hands and/or feet	Heterogeneous: distal, symmetric, sensory, motor, or sensorimotor	Mild slowing of MCV, mildly reduced DL, and low-absent CMAPs and SNAPs	Axonal degeneration with occasional segmental demyelination
WM	IgM к	Lower extremity numbness, ataxia, tremor	Distal, symmetric, sensorimotor	Reduced motor amplitude, increased fibrillation potentials	IgM antibody bound to myelin; separation of myelin lamellae
POEMS	IgG-λ	Ascending weakness, tingling, and burning	Distal, symmetric, motor > sensory	Uniform slow CV, normal TLI, no conduction blocks, reduced motor amplitude, increased fibrillation potentials	Demyelination with secondary axonal degeneration; increased thickness of the basal lamina and narrowing of endoneurial vessels; uncompacted myelin
AL amyloidosis	lgG-λ or only λ	Lower extremity tingling, burning, and weakness	Distal, symmetric, sensory followed by motor, with autonomic failure	Mild slowing of MCV, mild reduction in CMAP, mildly prolonged DL; absent SNAPs; increased fibrillation potentials	Endoneurial deposition of amyloid

Abbreviations: CIDP, chronic inflammatory demyelinating polyneuropathy; CMAP, compound muscle action potential; CV, motor nerve conduction velocity; DADS, distal acquired demyelinating syndrome; DL, distal latency; DML, distal motor latencies; MCV, mean corpuscular volume; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; TLI, terminal latency index; SNAP, sensory neuron action potential.

MM: Symptoms.

- The most common clinical manifestations of symptomatic MM are
 - anaemia,
 - infections,
 - lytic or osteopenic bone disease,
 - renal failure,
- Patients with MM might be diagnosed at an asymptomatic stage by chance.
- Generally, MM is diagnosed at an earlier stage today than in the past.
- Back pain, particularly in older patients, or unclear anaemia should prompt screening for the presence of MM.

Table 1. Symptoms and sig	gns of multiple mye	loma at presentation.
---------------------------	---------------------	-----------------------

Symptom or sign	Patients (%)
Spontaneous bone pain	66
Fatigue	32
Weight loss (>20 pounds)	12
Infection and bleeding	< 15
Paresthesia	5
'Tumor fever'	< 1
M protein in serum or urine	97
Lytic lesions, osteoporosis, or fracture on plain radiograph	79
Hemoglobin $< 12 \text{ g/dL}$	73
Creatinine $> 2 \text{ mg/dL}$	19
Calcium $> I I mg/dL$	13
Viscosity $> 4 cP$	<7

Data compiled from Kyle RA et al (2003, Mayo Clinic Proceedings 78: 21-33) with permission.

MM: Clinical presentation

- Symptoms and signs present in 5 percent or less included:
 - paresthesias (5 percent),
 - hepatomegaly (4 percent),
 - splenomegaly (1 percent),
 - lymphadenopathy (1 percent), and
 - fever (0.7 percent).
 - Pleural effusion and diffuse pulmonary involvement due to plasma cell infiltration are rare and usually occur in advanced disease.
- As the use of "routine" blood work has become more common, patients are being diagnosed earlier in the disease course.

MM: Clinical presentation.

- Extramedullary plasmacytomas (EP) are seen in approximately 7 % of patients with MM at the time of diagnosis, and is best diagnosed by PET/CT scan;
- An additional 6 % of patients will develop EP later in the disease course.
- the presence of EP at diagnosis is associated with inferior survival.

Clinical entities of EMM

EMM entities	Definition	Clinical presentation
Bone-related plasmacytomas	Plasmacytomas developed from the bone, arising in continuity with the bone marrow.	Tumor masses affecting the axial skeleton: ribs, vertebrae, skull, sternum, pelvis.
Extramedullary disease	Soft-tissue plasmacytoma or PC infiltration of an anatomical site distant from the bone marrow. Secondary to a hematogenous spread.	Mainly affect the liver, skin, CNS, pleural effusion, kidneys, lymph nodes, pancreas.May be triggered by invasive procedures (ie, catheter insertion, surgical scars).
PCL	Aggressive variant of myeloma characterized by the presence of circulating plasma cells (>20% and/or absolute count $>2 \times 10^{9}$ /L).	Could be considered as EMM because of blood involvement. Extramedullary disease is also very common in PCL patients.
SP	Localized bone or extramedullary infiltration by clonal plasma cells without systemic tumor dissemination.	Bone marrow and skeletal survey are both normal. CRAB symptoms are absent. Focal radiotherapy is the treatment of choice.

CNS, central nervous system; CRAB, hypercalcemia, renal failure, anemia, bone lesions; SP, solitary plasmacytoma.

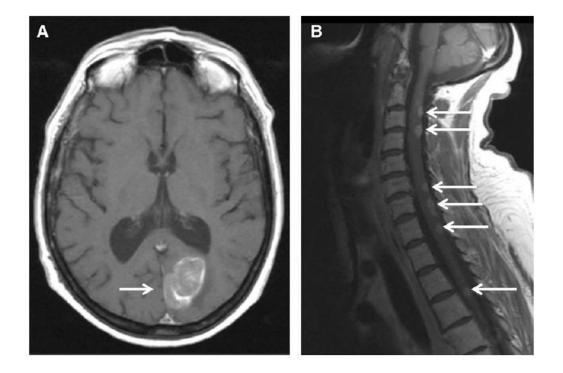
.

Neurologic disease

- **Radiculopathy**, usually in the thoracic or lumbosacral area, is the most common neurologic complication of MM.
- It can result from compression of the nerve by a paravertebral plasmacytoma or rarely by the collapsed bone itself.
 - Cord compression
 - occurs in approximately 5% of patients;
 - This set of symptoms constitutes a **medical emergency**; MRI or CT myelography of the entire spine must be performed immediately, with appropriate follow-up treatment by chemotherapy, radiotherapy, or neurosurgery to avoid permanent paraplegia.

Peripheral neuropathy

• uncommon at the time of initial diagnosis and, when present, is usually due to amyloidosis.


CNS involvement

- Intracranial plasmacytomas are rare.
- Leptomeningeal myelomatosis is uncommon and more frequent in advanced stages

Characteristics	Summary of features
Definition	Soft-tissue plasmacytoma or PC infiltration of an anatomical site distant from the bone marrow (eg, strict extramedullary disease as defined in Table 1)
Incidence	6% to 8% in de novo patients 10% to 30% in relapsed/refractory patients
Molecular pathogenesis	CD44 ^{high} , CD56 ^{low} , CXCR4/CXCL12 Hypoxia Ras, P53, FAK mutations
Clinical characteristics	Symptoms related to organ involvement Mostly liver, skin, CNS, pleural effusion, kidneys, lymph nodes, pancreas
Biological characteristics	High LDH, anemia, thrombocytopenia High-risk gene expression profile High-risk cytogenetics (17p deletion)
Morphology	Frequent immature/plasmablastic morphology
Staging	Value of PET-CT to detect extramedullary disease CNS EMM: MRI, CSF analysis (morphology, flow cytometry, protein electrophoresis)
Prognosis	 EMM is an independent adverse prognostic factor in de novo MM patients receiving intensive therapy. Few series specifically analyzed the particular outcome of EMM.

CSF, cerebrospinal fluid; CXCL, CXC chemokine ligand; CXCR, CXC chemokine receptor; FAK, focal adhesion kinase; LDH, lactate dehydrogenase; MRI, magnetic resonance imaging; PET-CT, positron emission tomography/computed tomography.

Extramedullary MM

MRI (T1 weighted) showing an occipital mass with leptomeningeal involvement (A, white arrow) and multiple posterior medullary lesions (B, white arrows), in a relapsed MM patient who developed progressive ataxia.

Touzeau C. Blood. 2016;127(8):971-976

Characteristic	MGUS	POEMS	Multiple myeloma	AL amyloidosis	Cryoglobuli- nemia
Peripheral neuropathy	~5%	100%	I8%	15–20%	~25%
Sensory versus motor predominance	Sensory, ataxia (lgM) sensorimotor ^a	Predominantly motor	Sensory	Sensory, sen- sorimotor	Predominantly sensory
Organomegaly	_	++	+	++	+ +
Skin involvement	-	++	+	+	+++
Other symptoms	Asymptomatic	Edema, fati- gue, endo- crine abnorm- alities	Bone pain, fatigue, infec- tions	Fatigue, edema, cardi- omyopathy, nephrosis	Purpura, arthralgia, hepatitis, nephritis
Monoclonal heavy chain	lgM>lgG> lgA	lgG>lgA> lgM	lgG> lgA	lgG>lgA> lgM	lgM>>lgG>
Monoclonal light chain	κ 65% of cases	$\lambda > 95\%$ of cases	κ 65% of cases	λ 75% of cases	к 75% of cases
Serum M-spike, gm/dl	< 3	Usually <2	Usually>3	Usually<2	Usually < 2
BM plasma cells, %	<10	Usually <5	>10	Usually < 10	Usually <5
Skeletal lesions	-	+++ (sclerotic, mixed sclero- tic and lytic)	+++ (lytic, osteoporotic, or fracture)	-	-
Thrombocy- tosis	-	++	-	+ to ++	+
Anemia	_	+	++	+	+ +

MGUS, monoclonal gammopathy of undetermined significance; BM, bone marrow. -, absent; +, rare, +; occurs frequently; + + +, almost always present.

^a See also Table 3.

Clinical presentation.

• Coagulation abnormalities.

- MM can be associated with hemostatic abnormalities, either bleeding or thrombosis.
- Bleeding/thrombosis may be present in as many as 1/3 of patients and is related to thrombocytopenia, uremia, hyperviscosity, interference with coagulation factors and treatments.

• Hypercalcemia.

- Rates of hypercalcemia at presentation have been decreasing in the last few decades, suggesting earlier diagnosis (rates from 18-30% to less than 10%)
- Hypercalcemia often causes renal insufficiency.

Causes of hypercalcemia

Parathyroid mediated	
Primary hyperparathyroidism (sporadic)	
Inherited variants	
Multiple endocrine neoplasia (MEN) syndromes	
Familial isolated hyperparathyroidism	
Hyperparathyroidism-jaw tumor syndrome	
Familial hypocalciuric hypercalcemia	
Tertiary hyperparathyroidism (renal failure)	
Non-parathyroid mediated	
Hypercalcemia of malignancy	
PTHrp	
Activation of extrarenal 1 alpha-hydroxylase (increased calcitriol)	
Osteolytic bone metastases and local cytokines	
Vitamin D intoxication	
Chronic granulomatous disorders	
Activation of extrarenal 1 alpha-hydroxylase (increased calcitriol)	

Medications
Thiazide diuretics
Lithium
Teriparatide
Excessive vitamin A
Theophylline toxicity
Miscellaneous
Hyperthyroidism
Acromegaly
Pheochromocytoma
Adrenal insufficiency
Immobilization
Parenteral nutrition
Milk alkali syndrome

PTHrp: PTH-related peptide.

Adapted from: Khairallah W, Fawaz A, Brown EM, and El-Hajj Fuleihan G. Hypercalcemia and diabetes insipidus in a patient previously treated with lithium. Nat Clin Pract Nephrol 2007; 3:397

Malignancies associated with hypercalcemia

Osteolytic metastases:
Breast cancer
Multiple myeloma
Lymphoma
Leukemia
Humoral hypercalcemia (PTHrP):
Squamous cell carcinomas
Renal carcinomas
Bladder carcinoma
Breast cancer
Ovarian carcinoma
Non-Hodgkin lymphoma
CML
Leukemia
Lymphoma

1,25-dihydroxyvitamin D:
Lymphoma (Non-Hodgkin, Hodgkin, lymphomatosis/granulomatosis)
Ovarian dysgerminomas
Ectopic PTH sectretion:
Ovarian carcinoma
Lung carcinomas
Neuroectodermal tumor
Thyroid papillary carcinoma
Rhabdomyosarcoma
Pancreatic cancer

Clinical manifestations of hypercalcemia

Renal	Musculoskeletal	
Polyuria	Muscle weakness	
Polydipsia	Bone pain	
Nephrolithiasis	Osteopenia/osteoporosis	
Nephrocalcinosis	Neurologic	
Distal renal tubular acidosis	Decreased concentration	
Nephrogenic diabetes insipidus	Confusion	
Acute and chronic renal insufficiency	Fatigue	
Gastrointestinal	Stupor, coma	
Anorexia, nausea, vomiting	Cardiovascular	
Bowel hypomotility and constipation	Shortening of the QT interval	
Pancreatitis	Bradycardia	
Peptic ulcer disease	Hypertension	
	· · · ·	

UpToDate[®]

Treatment of hypercalcemia

Intervention	Mode of action	Onset of action	Duration of action
Isotonic saline hydration	Restoration of intravascular volume Increases urinary calcium excretion	Hours	During infusion
Calcitonin	Inhibits bone resorption via interference with osteoclast function Promotes urinary calcium excretion	4 to 6 hours	48 hours
Bisphosphonates	Inhibit bone resorption via interference with osteoclast recruitment and function	24 to 72 hours	2 to 4 weeks
Loop diuretics*	Increase urinary calcium excretion via inhibition of calcium reabsorption in the loop of Henle	Hours	During therapy
Glucocorticoids	Decrease intestinal calcium absorption Decrease 1,25-dihydroxyvitamin D production by activated mononuclear cells in patients with granulomatous diseases or lymphoma	2 to 5 days	Days to weeks
Denosumab	Inhibits bone resorption via inhibition of RANKL	4 to 10 days	4 to 15 weeks
Calcimimetics	Calcium sensing receptor agonist, reduces PTH (parathyroid carcinoma, secondary hyperparathyroidism in CKD)	2 to 3 days	During therapy
Dialysis	Low or no calcium dialysate	Hours	During treatment

PTH: parathyroid hormone; RANKL: receptor activator of the nuclear factor kappa-B ligand: CKD: chronic kidney disease.

* Loop diuretics should not be used routinely. However, in patients with renal insufficiency or heart failure, judicious use of loop diuretics may be required to prevent fluid overload during saline hydration.

Data from: Shane E, Dinaz I. Hypercalcemia: pathogenesis, clinical manifestations, differential diagnosis, and management. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (Sixth Edition). American Society of Bone and Mineral Research 2006; 179.

UpToDate

	Test		
Blood	Serum protein electrophoresis and immunofixation Serum immunoglobulins quantitative Serum free light chain assay Total serum protein, serum albumin, creatinine, calcium, electrolytes, lactate dehydrogenase, β2-microglobulin Haemoglobin, white blood cell count, differential count, platelet count		
Urine	Urine protein electrophoresis and immunofixation 24 h urine for total protein, light chains		
Bone marrow	Aspirate and biopsy for plasma cell count, morphology, amyloid* Cytogenetic evaluation and fluorescence in-situ hybridisation for the detection of del 13, del 17p13, t(4;14), t(11;14), t(14;16), 1q+		
Bones	Skeletal survey (conventional x-ray) or low-dose CT scan without contrast		
Whole body	MRI*, PET-CT* Tissue biopsy for solitary or extraosseous plasmacytoma*		
*Useful under some circumstances.			
Table 1: Diagnostic workup for multiple myeloma			

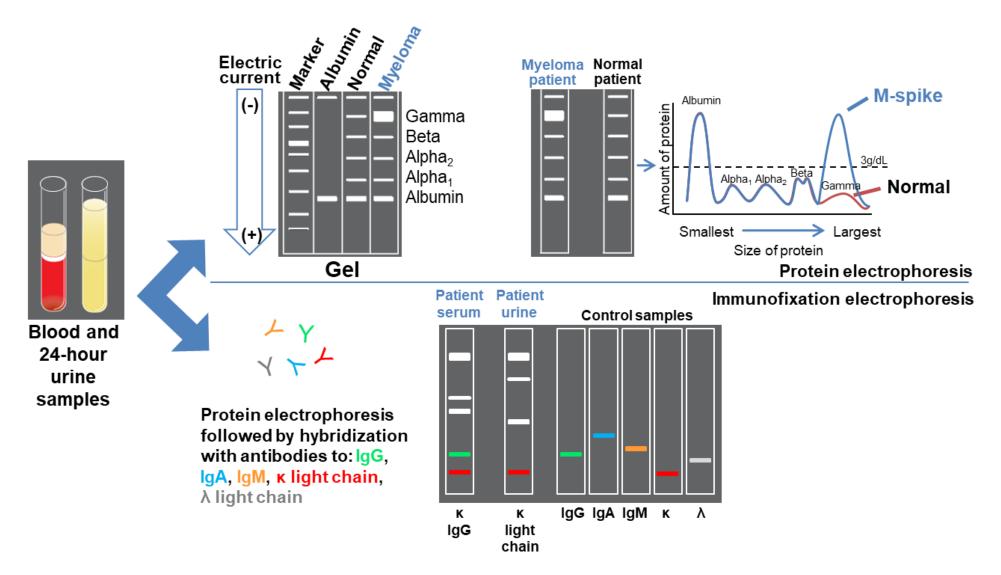
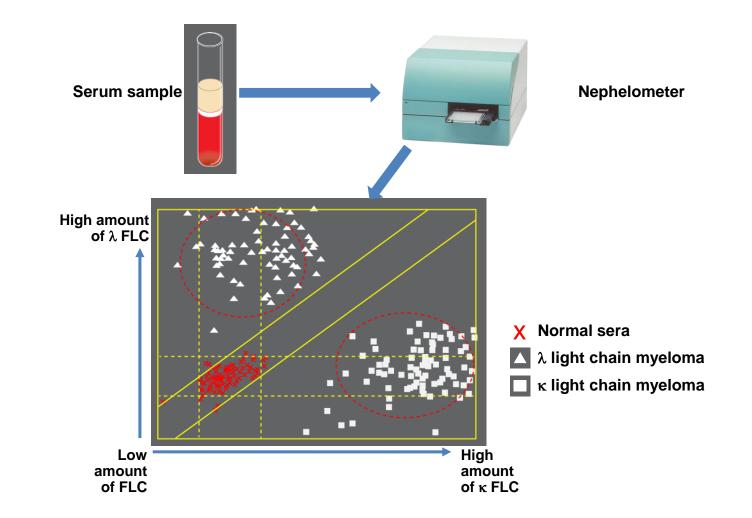
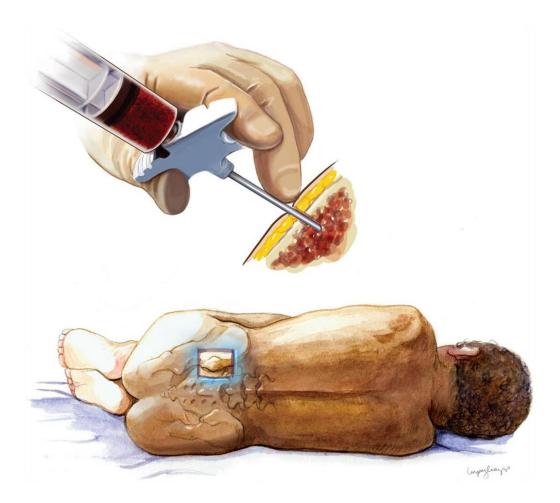

Diagnostic site	Tool	Diagnosis	At response	At follow-up	At relapse
	BM cytology and biopsy to confirm plasmacytosis and monoclonality	Obligatory	Obligatory*	Not required	Obligatory**
Bone marrow	Flow cytometry	Recommended	Optional	Not required	Optional
	Cytogenetics	Obligatory	Not required	Not required	Optional
Blood	Advanced techniques: GEP, NGS Blood count and blood smear Serum electrophoresis and IF Serum free light chain Serum immunoglobulin levels Renal and liver function tests Calcium Lactate dehydrogenase Albumin, β2-microglobulin	Optional Obligatory Obligatory Recommended *** Obligatory Obligatory Obligatory Obligatory Obligatory Obligatory	Not required Obligatory Obligatory Recommended *** Obligatory Obligatory Obligatory Obligatory Obligatory Recommended	Not required Obligatory Obligatory Recommended *** Obligatory Obligatory Obligatory Obligatory Obligatory Recommended	Not required Obligatory Obligatory Recommended *** Obligatory Obligatory Obligatory Obligatory Obligatory Obligatory
Urine	Urine sample to check for proteinuria and Bence-Jones proteins 24 h urine collection	Obligatory Recommended [†]	Obligatory Recommended [†]	Obligatory Recommended [†]	Obligatory Recommended [†]
Imaging	Low dose whole-body CT PET/CT Whole-body MRI	Recommended ^{††} Optional Optional	Not required Optional ^{†††} Not required	When symptomatic When symptomatic When symptomatic	Recommended Optional Optional

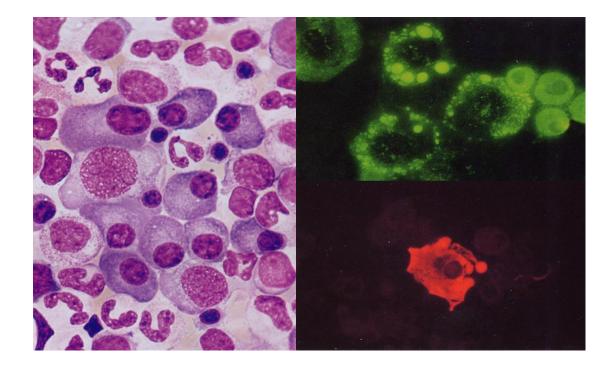
 Table 2. Recommendations on further examinations at diagnosis, for response assessment, during follow-up and at relapse.

BM: bone marrow; GEP: gene expression profiling; IF: immunofixation; NGS: next generation sequencing; CT: computed tomography; PET: positron emission tomography; MRI: magnetic resonance imaging; *Obligatory for patients in complete response. **Obligatory for patients with light chain escape, oligosecretory disease, *** SFLC monitoring is obligatory for patients with light-chain disease. *Obligatory in the case of proteinuria. **Obligatory when radiographs do not show osteolytic lesions ***PET/CT is required for confirmation of minimal residual disease negativity.


Haematologica 2018;103:1772-1784

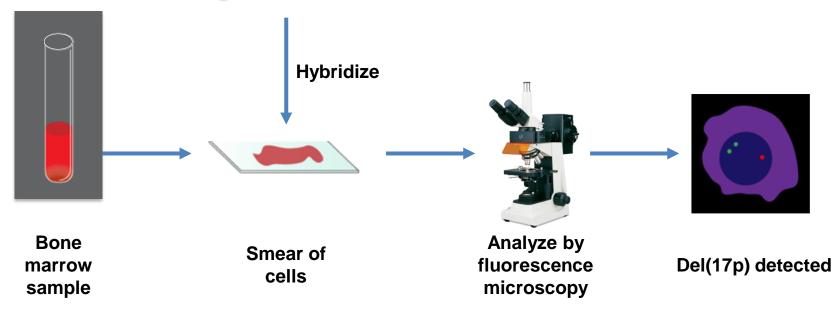
Monoclonal Gammopathies: Protein electrophoresis and immunofixation


Mayo Clinic. Test ID: PEL: Electrophoresis, Protein, Serum. Available at: www.mayomedicallaboratories.com/test-catalog/Clinical+and+Interpretive/80085. Accessed March 2016; Lab Tests Online. Protein Electrophoresis, Immunofixation Electrophoresis. Available at: https://labtestsonline.org/understanding/analytes/electrophoresis/tab/test. Accessed March 2016.


Establishing diagnosis: Free light chain assay

Bradwell. Lancet. 2003;361:489

Establishing diagnosis: Bone marrow assessment

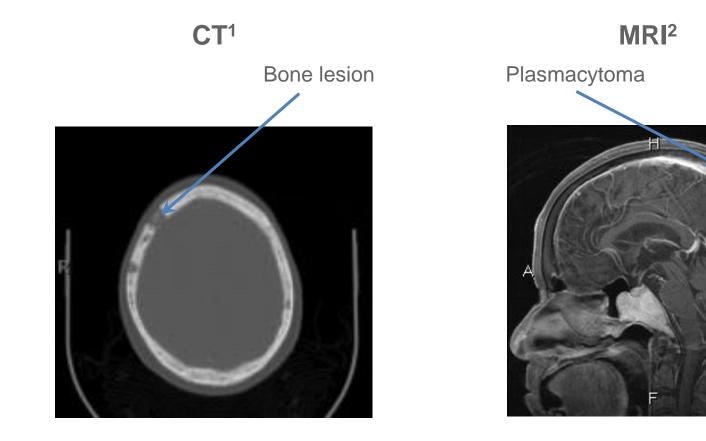

Mayo Clinic. Bone marrow biopsy and aspiration. Available at: www.mayoclinic.com/health/medical/IM01819. Accessed March 2016.

Determining prognosis: Assessment of genetic abnormalities by FISH

Example: Detection of chromosomal deletion by FISH in multiple myeloma

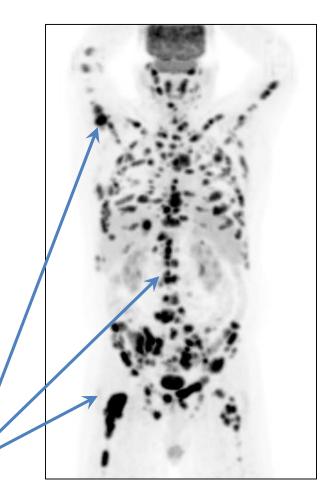
Main and the second second

Chromosome 10-specific fluorescent probe



Establishing diagnosis: Skeletal survey

Reproduced with permission from OrthoInfo. © American Academy of Orthopaedic Surgeons. http://orthoinfo.aaos.org.


CT imaging and MRI are useful in the evaluation of lesions in suspected MM

1. Talamo. Bone lesions. Available at: http://www.myelomapennstate.net/Contents/04a-ClinManifest.htm. Accessed March 2016; 2. Terada. Cases J. 2009;2:9110.

PET

- PET provides a whole body image and shows only active MM lesions
- PET is useful in the diagnostic workup and in determining response to treatment

Bone lesions with active metabolic uptake

Talamo. Evaluation of bone disease. Available at: http://www.myelomapennstate.net/Contents/10a-BoneDis-PET.htm. Accessed March 2016.

MM & PET

Active multiple myeloma

¹⁸F-FDG PET/CT should be considered as part of the initial investigations in patients with newly diagnosed multiple myeloma because it provides information useful for prognostication and allows to more carefully assess the bulk of the disease, particularly in patients with extramedullary sites of the disease; assessing the bulk of the disease with ¹⁸F-FDG PET/CT also applies to patients with relapsed or refractory multiple myeloma

In patients with newly diagnosed multiple myeloma, with or without EMD, and more than three B focal lesions, ¹⁸F-FDG PET/CT identifies subgroups of patients with unfavourable outcomes; controversies exist about the prognostic role of SUV_{max}

¹⁸F-FDG PET/CT is now the preferred technique for evaluating and monitoring response to therapy; A metabolic changes assessed by ¹⁸F-FDG PET/CT provide an earlier evaluation of response compared with MRI

¹⁸F-FDG PET/CT should be coupled with sensitive bone marrow-based assays as part of minimal B residual disease detection inside and outside the bone marrow

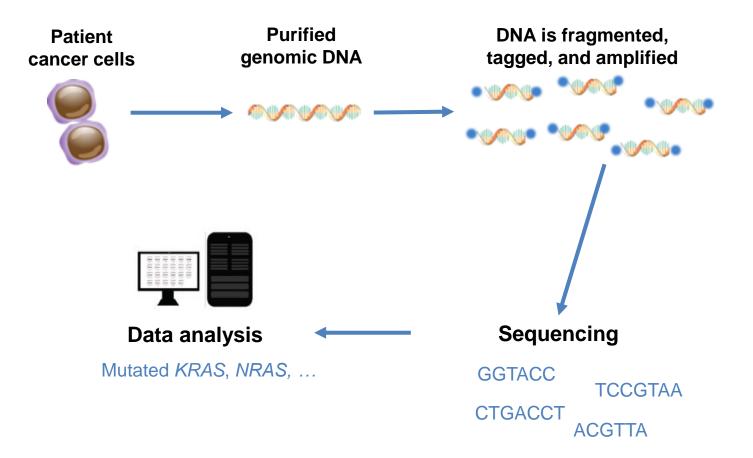
Smouldering multiple myeloma

Patients who meet the diagnostic criteria for smouldering multiple myeloma and have one or A more lytic lesions on ¹⁸F-FDG PET/CT should be defined as having multiple myeloma that requires immediate therapy

¹⁸F-FDG PET/CT is recommended to distinguish smouldering multiple myeloma from active A multiple myeloma if whole-body X-ray is negative and whole-body MRI is unavailable

Solitary plasmacytoma

Patients with focal lesions on PET but without underlying lytic lesions on the CT part of ¹⁸F-FDG PET/ B CT are at high risk of progression to active multiple myeloma


Patients with suspected solitary plasmacytoma, either extramedullary plasmacytoma or solitary bone A plasmacytoma without symptoms or signs suggestive of cord compression, should receive ¹⁸F-FDG PET/CT to unequivocally confirm the diagnosis, provided whole-body MRI is unavailable

¹⁸F-FDG= ¹⁸F-fluorodeoxyglucose. EMD=extramedullary disease. ASCT=autologous stem-cell transplantation. SUV=standardised uptake value.

Table 5: Recommendations for the use of ¹⁸F-FDG PET/CT in patients with multiple myeloma and other plasma cell disorders

В

Determining prognosis: Next-generation sequencing

Johnsen. Blood. 2013;122:3286; Kakkar Basho. Am J Hematol Oncol. 2015;11:17; Chapman. Nature. 2011;471:467.

Diagnostic criteria

- The diagnosis of MGUS, SMM and MM requires
 - 1. the detection of serum monoclonal protein levels,
 - 2. assessment of the bone marrow
 - 3. Assessment of myeloma-defining events (MDEs) including
 - biomarker assessment
 - the presence or absence of CRAB features.

		MGUS	SMM	ММ	
				Biomarker	CRAB
M-Protein < 30 g/l	1				
BM PC < 10%	1 -				
M-Protein > 30 g/l					
BM PC > 10%					
BM PC > 60%					
FLC ratio > 100					
MRI \geq 2 focal lesion:	s				
Hypercalcemia					
Renal failure					
Anemia					
Bone disease					

Figure 1. The differential diagnosis between monoclonal gammopathy of undetermined significance, smoldering myeloma and multiple myeloma. The discrimination between these monoclonal gammopathies is based on: (i) the plasma cell infiltration in the bone marrow, (ii) the presence of clinical symptoms related to myeloma disease and (iii) the existence of biomarkers of disease that allow initiation of treatment. MGUS: monoclonal gammopathy of undetermined significance; SMM: smoldering multiple myeloma; MM: multiple myeloma; BM: bone marrow; PC: plasma cells; FLC: free light chain; MRI: magnetic resonance imaging.

CRAB features

- HyperCalcaemia:
 - serum calcium >1 mg/ dl higher than the upper limit of normal levels (>11 mg/dl)
- Renal insufficiency:
 - creatinine clearance of <40 ml/min or serum creatinine >2 mg/dl
- Anaemia:
 - Hb levels of >2 g/dl below the lower limit of normal levels (<10 g/dl)
- Bone lytic lesions:
 - the presence of one or more lytic lesions detected by conventional radiology, CT imaging (or low-dose CT) or PET–CT

Myeloma Defining Events (MDE)*

- 1. CRAB features
- 2. A clonal bone marrow plasma cell percentage of ≥60%
- 3. An involved-to-uninvolved serum free light-chain ratio of ≥100
- 4. Two or more focal lesions on MRI (at least 5 mm in size)
 - *If there is no end-organ damage, the presence of one or more biomarker is sufficient for diagnosis

Diagnostic criteria for MM

- Both criteria must be met
 - Clonal bone marrow plasma cells ≥10% or biopsy-proven bony or extramedullary plasmacytoma
 - 2. Any one or more of the myeloma defining events (MDE)

Rajkumar SV, et al. Lancet Oncol 2014;15:e538–e548.

Diagnostic criteria for Smoldering MM

- Both criteria must be met:
 - Serum monoclonal protein (IgG or IgA) ≥3 g/dL, or urinary monoclonal protein ≥500 mg per 24 h and/or clonal bone marrow plasma cells 10%–60%
 - 2. Absence of myeloma defining events or amyloidosis

Non-IgM MGUS

All 3 criteria must be met:

- 1. Serum monoclonal protein (non-IgM type) <3 g/dL
- 2. Clonal bone marrow plasma cells <10%
- 3. Absence of end-organ damage (CRAB) that can be attributed to the plasma cell proliferative disorder

IgM MGUS

- All 3 criteria must be met:
 - 1. Serum IgM monoclonal protein <3 g/dL
 - 2. Bone marrow lymphoplasmacytic infiltration <10%
 - 3. No evidence of anemia, constitutional symptoms, hyperviscosity, lymphadenopathy, or hepatosplenomegaly that can be attributed to the underlying lymphoproliferative disorder.

Light Chain MGUS

• All criteria must be met:

- 1. Abnormal FLC ratio (<0.26 or >1.65)
- 2. Increased level of the appropriate involved light chain (increased k FLC in patients with ratio >1.65 and increased λ FLC in patients with ratio <0.26)
- 3. No Ig heavy chain expression on immunofixation
- 4. Absence of end-organ damage that can be attributed to the plasma cell proliferative disorder
- 5. Clonal bone marrow plasma cells <10%
- 6. Urinary monoclonal protein <500 mg/24 h

Solitary plasmacytoma

• All 4 criteria must be met

- 1. Biopsy proven solitary lesion of bone or soft tissue with evidence of clonal plasma cells
- 2. Normal bone marrow with no evidence of clonal plasma cells
- 3. Normal skeletal survey and MRI (or CT) of spine and pelvis (except for the primary solitary lesion)
- 4. Absence of end-organ damage (CRAB) that can be attributed to a lymphoplasma cell proliferative disorder

Solitary Plasmacytoma with minimal marrow involvement

• All 4 criteria must be met

- 1. Biopsy proven solitary lesion of bone or soft tissue with evidence of clonal plasma cells
- 2. Clonal bone marrow plasma cells <10%
- 3. Normal skeletal survey and MRI (or CT) of spine and pelvis (except for the primary solitary lesion)
- 4. Absence of end-organ damage (CRAB) that can be attributed to a lymphoplasma cell proliferative disorder

IMWG Criteria for Diagnosis of Myeloma

No	MDE		
MGUS • M-protein < 3 g/dL • Clonal plasma cells in BM < 10% • No MDE	 Smoldering Myeloma M-protein ≥ 3 g/dL (serum) or ≥ 500 mg/24 hrs (urine) Clonal plasma cells in BM ≥ 10% to 60% No MDE 	Active or Symptomatic Myeloma	
		 Underlying plasma cell proliferative disorder AND ≥ 1 SLiM-CRAB* features 	

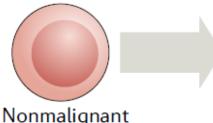
***S**: ≥ 60% clonal bone marrow plasma cells

Li: Serum free light chain ratio \geq 100 (involved kappa) or \leq 0.01 (involved lambda) M: MRI studies with > 1 focal lesion (> 5 mm in size)

C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN)

R: Renal insufficiency (CrCl < 40 mL/min or serum creatinine > 2 mg/dL)

A: Anemia (Hb < 10 g/dL or 2 g/dL < normal)


B: Bone disease (≥ 1 lytic lesions on skeletal radiography, CT, or PET/CT)

Primary and secondary cytogenetic abnormalities in MM.

Cyclin dysregulation

Primary abnormalities

Trisomies (~45%) Odd-numbered chromosomes: 3, 5, 7, 9, 11, 15, 19, and 21

Nonmalignant plasma cell

- 10% of pts, with both an IgH translocation and trisomies
- 10% of pts, with other abnormalities in the absence of either an IgH translocation or a trisomy.

IgH translocations (~55%) Translocations involving the IgH gene locus at 14q32

Translocation;locus;gene t(4;14);4p16;FGFR3-MMSET t(14;16);16q23;MAF t(14;20);20q12;MAFB t(8;14);8q24;MAFA t(11;14);11q13;CCND1 t(6;14);6p21;CCND3

	Secondary abnormalities				
MYO	Monosomies Chromosome 13	Recurrent mutations			
dysregulation	Chromosome 17	KRAS			
	Chromosome 14	NRAS			
	Deletions	TP53			
	Chromosome 17p Chromosome 1p	DIS3			
		FAM46C			
	Amplification Chromosome 1q	BRAF			
	gain or amplification	TRAF3			
		ROBO1			
		CYLD			
		EGR1			
	Other conomic	SP140			
	Other genomic alterations	FAT3			
	miRNA	CCND1			

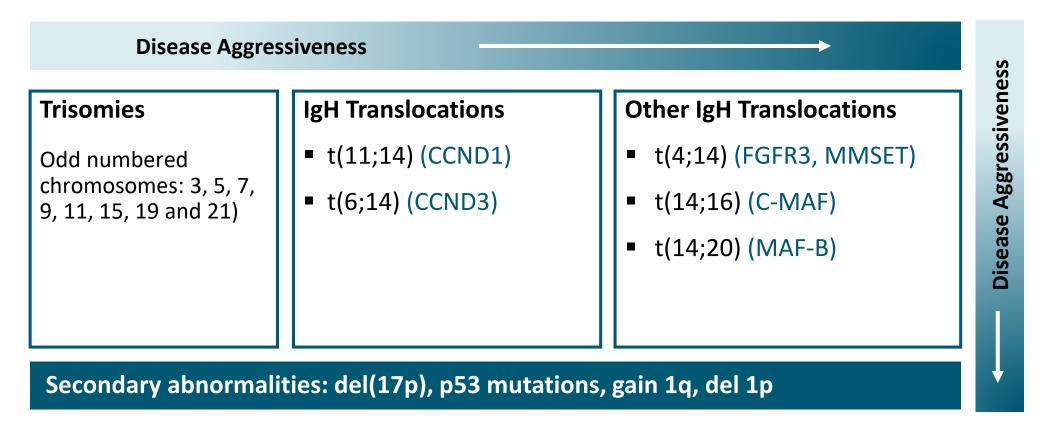
Proportion of MM patients at presentation with major clinical features across molecular subtypes

Molecular featu MM subtype	ure defining	Bone-disease variant (%)	Renal-failure variant (%)	Anaemia variant (%)	Mixed variant (%)
Trisomies		36	4	14	45
t(11;14)	15-20%	35	7	14	44
t(4;14)	~15%	26	6	23	45
t(14;16)	~5%	13	25	4	46
t(14;20)	~1%	0	0	0	1
t(6;14)	~1-2%	33	0	33	33
Unknown partne of IgH gene regio		37	14	9	41

IgH, immunoglobulin heavy chain; MM, multiple myeloma.

clinical impact of genomic alterations in MM

Genomic event	(Potential) driver genes involved		Prognostic value
Primary events			
Translocations: driver	t(11;14): CCND1 (REFS 8,29,31)	15%	Neutral or adverse*
genes	t(4;14): FGFR3/MMSET ²⁷⁻³¹	15%	Adverse
	t(6;14): CCND3 (REF. 45)	2%	Neutral
	t(14;16): MAF ^{29,42,46}	5%	Neutral or adverse [‡]
	t(14;20): MAFB ⁴⁶	1%	Adverse
Copy-number	Hyperdiploidy: tri 3, 5, 7, 9, 11, 15, 19 or 21 (REFS 64,65)	50%	Favourable
variations	del13q: RB1, DIS3, mir15a or mir16.1 (REFS 53,69) (potential drivers)	40%	Neutral [§]


HRD is defined as a number of chromosomes between 48 and 74.

Manier S et al. Nat Rev Clin Oncol 2017;14:100.

Genomic event	(Potential) driver genes involved	Frequency in patients with MM	Prognostic value
Secondary events			
Chromosome gains:	1q: MCL1, CKS1B, ANP32E or BCL9 (REFS 9,66,70)	40%	Adverse
potential driver genes	8q: MYC ⁸	15%	Neutral
	11q: CCND1 (REF. 77)	15%	Neutral
Chromosome losses:	1p: CDKN2C or FAM46C ^{53,75,77}	30%	Adverse
potential tumour suppressor genes	12p: CD27 (REF. 77)	15%	Adverse
	14q: TRAF3 (REF. 53)	10%	Not determined
	16q: CYLD or WWOX	30%	Neutral
	17p:TP53 (REF. 85)	10%	Adverse
Translocations	Affecting MYC ^{8,9}	15%	Adverse
Somatic mutations ⁹	MAPK pathway: KRAS, NRAS or BRAF	45%	Neutral
	NF-κB pathway: CYLD, TRAF3, LBT or NIK	15%	Neutral
	RNA metabolism: DIS3 or FAM46C	15%	Neutral
	DNA-repair pathway: TP53, ATM or ATR	10%	Adverse
	Plasma cell differentiation: IRF4 or PRDM1	10%	Favourable

Manier S et al. Nat Rev Clin Oncol 2017;14:100.

Cytogenetic Risk Stratification of Myeloma

- Double-hit myeloma = any 2 high-risk abnormalities
- Triple-hit myeloma = 3 or more high-risk abnormalities

Kumar. Blood. 2012;119:2100. Kumar. Nature Rev Clin Oncol. 2018;15:409. Rajkumar SV © 2018.

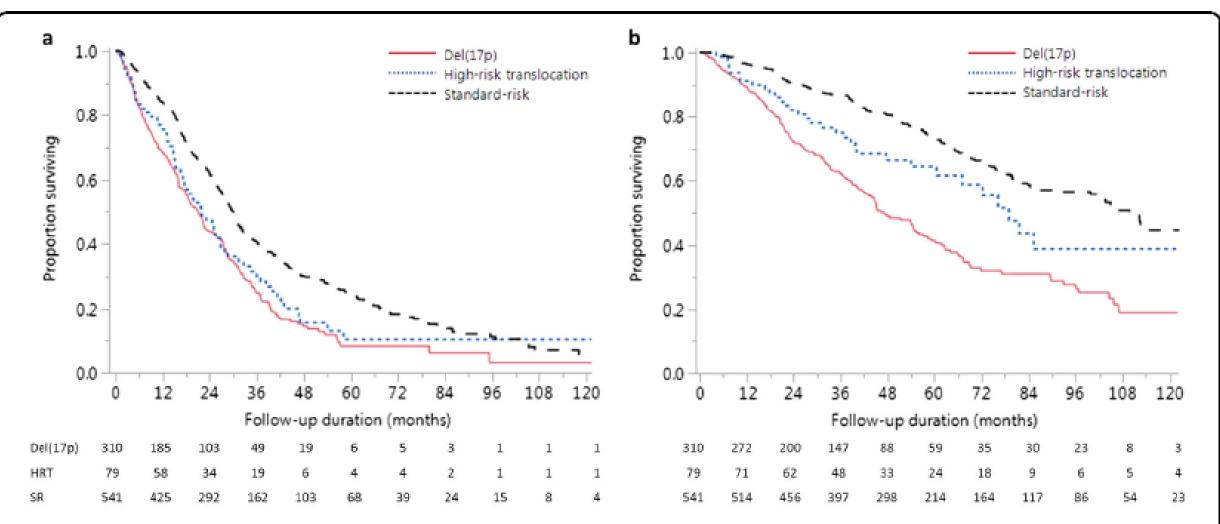
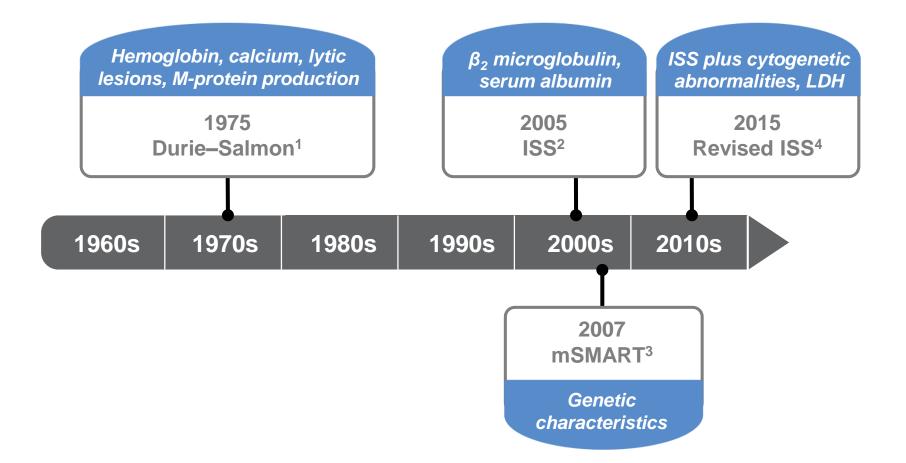



Fig. 2 Survival outcomes in the three groups. Kaplan–Meier survival curves showing comparison of a progression-free survival (PFS), b overall survival (OS) between patients with del(17p), high-risk translocation (HRT) and standard-risk (SR) FISH. For PFS, P = 0.437 for del(17p) vs. HRT and P < 0.001 for del(17p) vs. SR; and for OS, P = 0.007 for del(17p) vs. HRT and P < 0.001 for del(17p) vs. SR; and for OS, P = 0.007 for del(17p) vs. HRT and P < 0.001 for del(17p) vs. SR

Staging and risk stratification has evolved with improved understanding of disease biology

1. Durie. Cancer. 1975;36:842; 2. Greipp. J Clin Oncol. 2005;23:3412; 3. Kumar. Mayo Clin Proc. 2009;84:1095; 4. Palumbo. J Clin Oncol. 2015;33:2863.

ISS, International Staging System.

	Durie-Salmor	n[44]	ISS[45]	l.
Stage	Criteria	Measured Myeloma Cell Mass (Cells × 10 ¹² /m ²)	Criteria	Median Surviva
I	All of the following:	< 0.6 (low)	Serum β ₂ -microglobulin	62 mo
	1. Hb >10 g/100 mL		< 3.5 mg/dL and serum	
	2. Normal serum calcium value		albumin ≥ 3.5 g/dL	
	(≤ 12 mg/100 mL)			
	 Normal bone structure (scale 0) or solitary plasmacytoma on bone x-ray 			
	 Low M-component production rates: 			
	a. lgG value < 5 g/100 mL			
	b. IgA value < 3 g/100 mL			
	c. Urine light chain M component on electrophoresis < 4 g/24 h			
11	Fitting neither stage I nor stage III	0.6 - 1.2 (intermediate)	Not stage I or Ill ^a	44 mo
ш	One or more of the following:	> 1.2 (high)	Serum β_2 -microglobulin	29 mo
	1. Hb < 8.5 g/100 mL		≥ 5.5 mg/dL	
	 Serum calcium value > 12 mg/100 mL 			
	 Advanced lytic lesions (scale 3) on bone x-ray 			
	 High M-component production rates: 			
	a. lgG value > 7 g/100 mL			
	b. IgA value > 5 g/100 mL			
	 c. Urine light chain M component on electrophoresis >12 g/24 h 			

Revised International Staging System for Myeloma

Stage, %	Frequency in Patients	5-Yr Survival Rate
 Stage I Serum albumin > 3.5 Serum β₂-microglobulin < 3.5 No high-risk cytogenetics Normal LDH 	28	82
Stage II Neither stage I or III 	62	62
 Stage III Serum β₂-microglobulin > 5.5 and High-risk cytogenetics [t(4;14), t(14;16), or del(17p)] or elevated LDH 	10	40

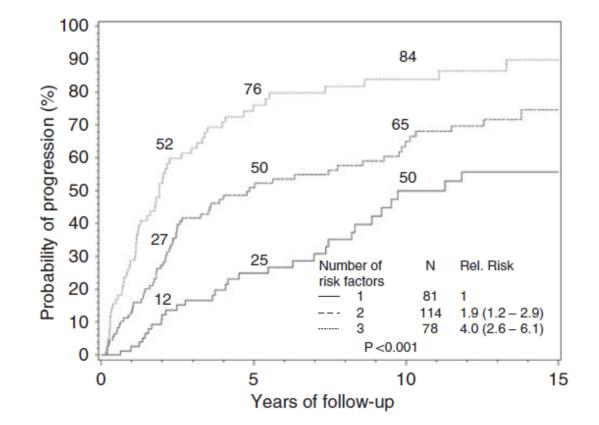
MM. Risk stratification

Other prognostic factors

- Circulating plasma cell numbers
- Extramedullary disease
- High plasma cell proliferative rate
- High-risk gene expression signatures (GEP70 and HOVON, among others)
- Presence of TP53 mutations
- Renal failure
- Poor performance status
- Immunoparesis
- Plasmablastic morphology

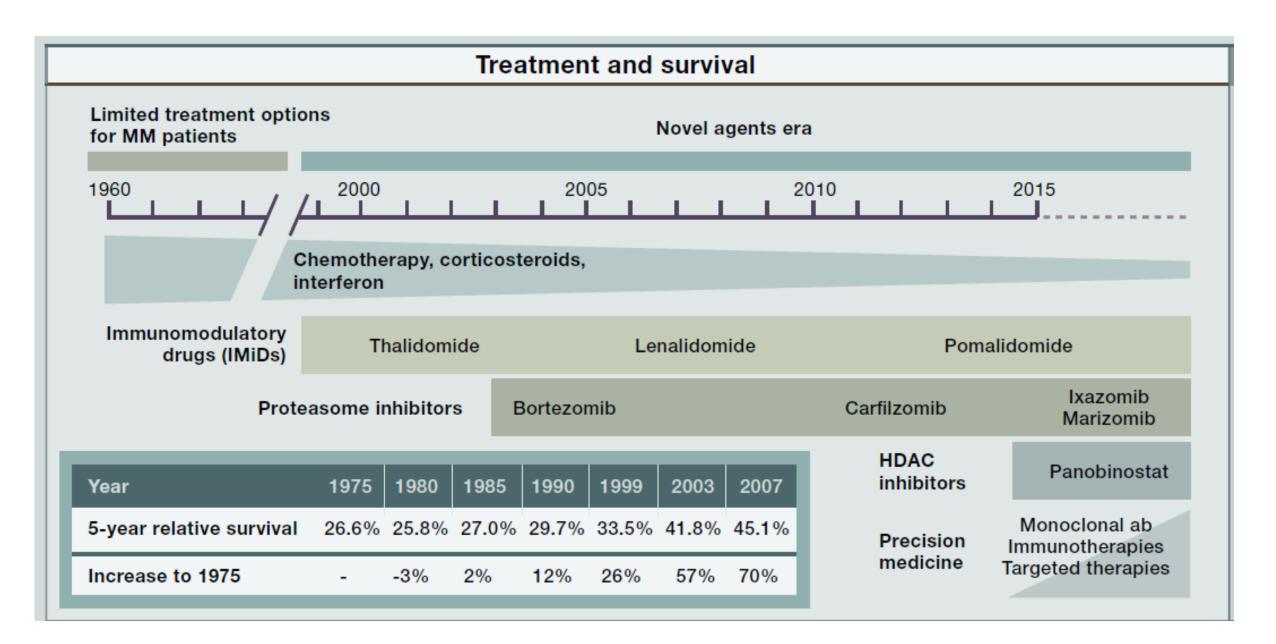
Disease management: Indication for treatment

- Patients with MGUS do not need treatment
- They do need regular follow-up because of the potential for progression to multiple myeloma;


• the risk of progression is only 1% per life-year.

Disease management: Indication for treatment

- Patients with SMM have no treatment indication
 - They should be monitored for disease progression because early treatment with conventional therapy has shown no benefit.
- The risk of progression is highest in the first 5 years and decreases subsequently.
 - The overall risk of progression is 10% per year for the first 5 years, about 3% per year for the next 5 years, and 1% per year for the next 10 years.
- Patients with high-risk SMM should be enrolled onto clinical trials


Risk stratification for smoldering multiple myeloma

- The model incorporates **3 risk factors**:
 - 1. abnormal FLC ratio
 - 2. Bone marrow plasma cells >10%
 - 3. serum M protein >3 g/dl.
- Patients with 1, 2 or 3 risk factors had
 5-year progression rates of 25, 51 and 76%, respectively.
- Corresponding median times to progression are 10, 5.1 and 1.9 years, respectively.

MM: Indication for treatment

- Development of end-organ damage is the indication for treatment.
 - End-organ damage is defined mainly by the CRAB criteria, which are related to a plasma cell proliferative disorder and **cannot be explained by another unrelated disease or disorder**.
- Progressive myeloma-induced renal insufficiency should trigger initiation of treatment even before the creatinine threshold of 2 mg/dL (177 μmol/L) has been reached.
 - Acute renal failure due to multiple myeloma can be reversible if treated early.
 - After the confirmation of an underlying cast nephropathy, appropriate treatment should be initiated without delay.
- Once patients with renal impairment have achieved a remission, their outcomes are similar to patients with no renal insufficiency.

Box 6 | Currently used drugs in multiple myeloma

Proteasome inhibitors

- Bortezomib
- Carfilzomib
- Ixazomib

Immunomodulatory drugs

- Thalidomide
- Lenalidomide
- Pomalidomide

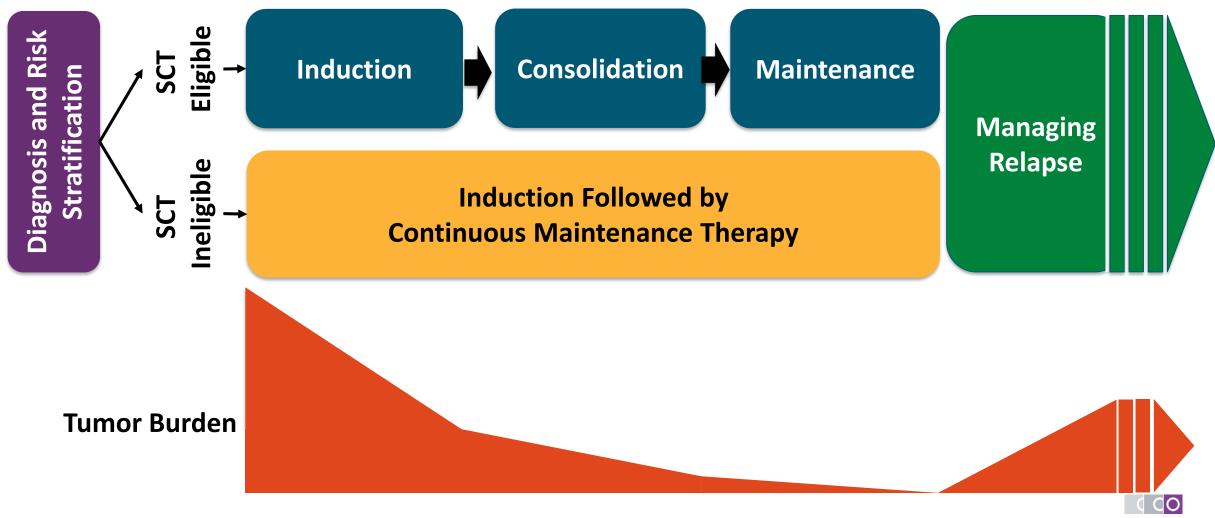
Monoclonal antibodies

- Daratumumab (anti-CD38)
- Elotuzumab (anti-SLAMF7 (signalling lymphocytic activation molecule family member 7))

Histone deacetylase inhibitor

Panobinostat

Alkylating agents

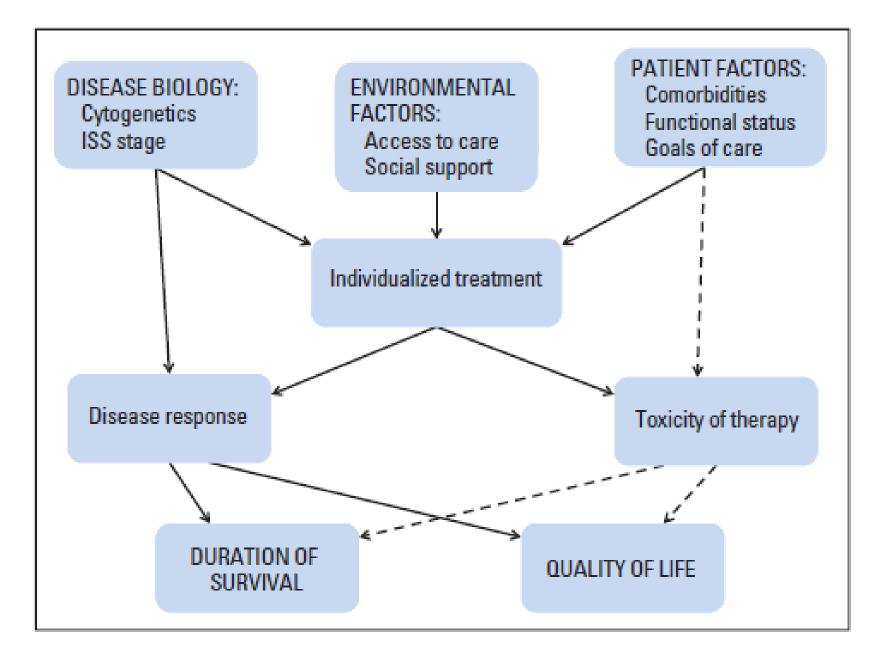

- Melphalan
- Cyclophosphamide
- Bendamustine

Others

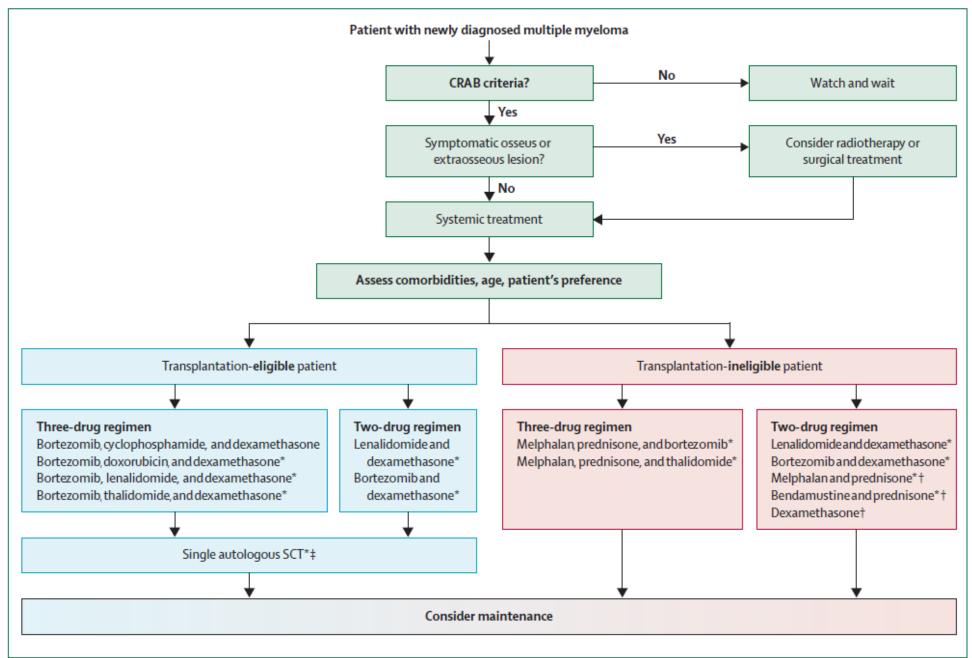
- Dexamethasone
- Prednisone
- Cisplatin
- Etoposide
- Doxorubicin

CAR T cells

Current Treatment Paradigm for Active Myeloma

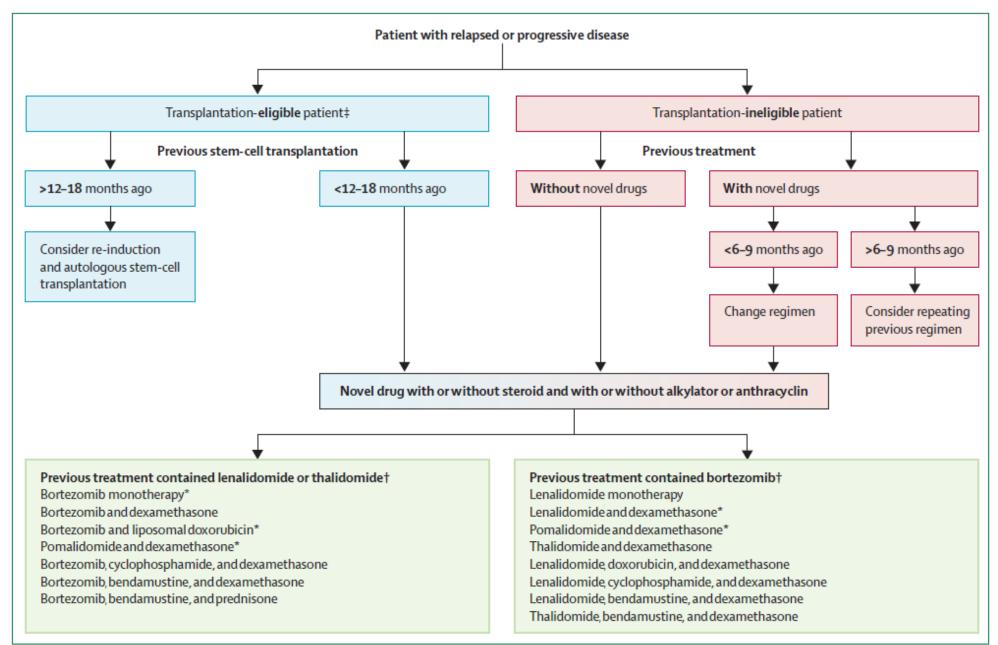


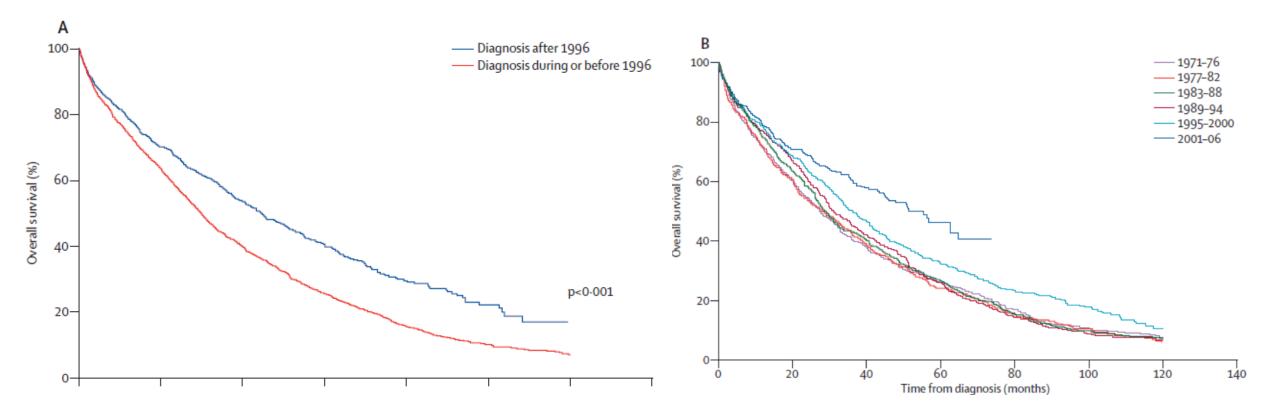
Slide credit: clinicaloptions.com


Table 5. Factors to consider in the clinical decision making for frail patients with MM

Factors	Aim
Age	To assess frailty
GA	
CRAB criteria	To start treatment
Hypercalcemia	
Renal failure	
Anemia	
Bone lesions	
Biomarkers of malignancy	
Clonal bone marrow plasma cell percentage ≥60%	
Involved/uninvolved serum free light-chain ratio ≥ 100	
>1 focal lesion (≥5 mm) on MRI studies	
Cardiovascular history	To choose treatment
History of diabetes	
Renal function	
Neuropathy	
Psychosocial status	
Preferences of the patient and the caregiver	

MRI, magnetic resonance imaging.

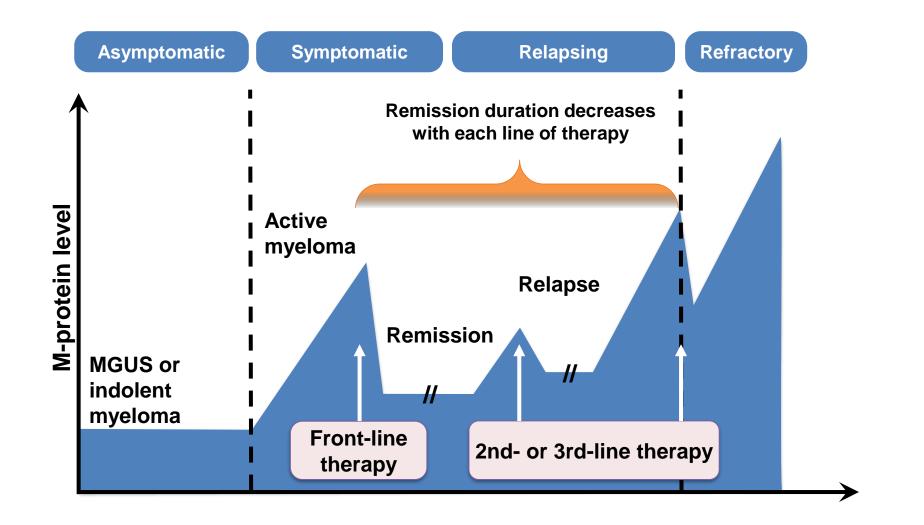

Clinical management of patients with newly diagnosed MM


Response	Criteria
CR	Negative immunofixation of serum and urine, disappearance of any soft tissue plasmacytomas, and < 5% plasma cells in bone marrow; in patients for whom only measurable disease is by serum FLC level, normal FLC ratio of 0.26 to 1.65 in addition to CR criteria is required; two consecutive assessments are needed
sCR	CR as defined plus normal FLC ratio and absence of clonal plasma cells by immunohistochemistry or two- to four-color flor cytometry; two consecutive assessments of laboratory parameters are needed
Immunophenotypic CR	sCR as defined plus absence of phenotypically aberrant plasma cells (clonal) in bone marrow with minimum of 1 million total bone marrow cells analyzed by multiparametric flow cytometry (with > four colors)
Molecular CR	CR as defined plus negative allele-specific oligonucleotide polymerase chain reaction (sensitivity 10 ⁻⁵)
VGPR	Serum and urine M component detectable by immunofixation but not on electrophoresis or ≥ 90% reduction in serum M component plus urine M component < 100 mg/24 h; in patients for whom only measurable disease is by serum FLC level, > 90% decrease in difference between involved and uninvolved FLC levels, in addition to VGPR criteria, is required; two consecutive assessments are needed
PR	≥ 50% reduction of serum M protein and reduction in 24-hour urinary M protein by ≥ 90% or to < 200 mg/24 h If serum and urine M protein are not measurable, ≥ 50% decrease in difference between involved and uninvolved FLC levels is required in place of M protein criteria
	If serum and urine M protein and serum FLC assay are not measurable, ≥ 50% reduction in bone marrow plasma cells is required in place of M protein, provided baseline percentage was ≥ 30%
	In addition, if present at baseline, \geq 50% reduction in size of soft tissue plasmacytomas is required
	Two consecutive assessments are needed; no known evidence of progressive or new bone lesions if radiographic studies were performed
MR for relapsed refractory myeloma only	\geq 25% but \leq 49% reduction of serum M protein and reduction in 24-hour urine M protein by 50% to 89% In addition, if present at baseline, 25% to 49% reduction in size of soft tissue plasmacytomas is also required No increase in size or number of lytic bone lesions (development of compression fracture does not exclude response)
SD	Not meeting criteria for CR, VGPR, PR, or PD; no known evidence of progressive or new bone lesions if radiographic studies were performed
PD	Increase of 25% from lowest response value in any of following:
	Serum M component with absolute increase ≥ 0.5 g/dL; serum M component increases ≥ 1 g/dL are sufficient to define relapse if starting M component is ≥ 5 g/dL and/or;
	Urine M component (absolute increase must be \geq 200 mg/24 h) and/or;
	Only in patients without measurable serum and urine M protein levels: difference between involved and uninvolved FLC levels (absolute increase must be > 10 mg/dL);
	Only in patients without measurable serum and urine M protein levels and without measurable disease by FLC level, bone marrow plasma cell percentage (absolute percentage must be ≥ 10%)
	Development of new or definite increase in size of existing bone lesions or soft tissue plasmacytomas
	Development of hypercalcemia that can be attributed solely to plasma cell proliferative disorder
	Two consecutive assessments before new therapy are needed

Palumbo A et al. JCO. 2014;32:587-600.

Clinical management of patients diagnosed with relapsed or progressive MM

Overall survival after diagnosis in patients with MM


Rollig C et al. Lancet 2015; 385: 2197–208

Supportive care

Symptom burden	Prevention/treatment strategy
Anemia	Blood transfusion, ESAs, iron supplementation
Thrombosis	Aspirin, LMWH, warfarin prophylaxis and treatment
Infection	Vaccination, prophylactic antivirals
Pain	Bisphosphonates, radiotherapy, surgery, pain medication
Peripheral neuropathy	Dose reduction or discontinuation, analgesics
Osteonecrosis of the jaw	Avoid invasive dental procedures during and around bisphosphonate therapy; good oral hygiene
Compression fractures	Kyphoplasty, vertebroplasty

ESA, erythropoiesis stimulating agent; LMWH, low molecular weight heparin.

Multiple myeloma is characterized by a pattern of remission and relapse

Durie. Concise Review of the Disease and Treatment Options: Multiple Myeloma. International Myeloma Foundation, 2011/2012 edition. Available at: www.myeloma.org/pdfs/CR2011-Eng_b1.pdf. Accessed March 2016; Kumar. Mayo Clin Proc. 2004;79:867.

amyloidosis

- Disorders such as
 - 1. nephrotic syndrome and heart failure,
 - 2. neuropathy in non-diabetic patients,
 - 3. left ventricular hypertrophy on echocardiography without consistent electro cardiographic evidence or low limb lead voltages,
 - 4. hepatomegaly with normal imaging,
 - 5. albuminuria
- should be assessed carefully to not overlook **light-chain amyloidosis** caused by free light-chain secretion.

amyloidoses

- a rare group of diseases that result from extracellular deposition of amyloid, a fibrillar material derived from various precursor proteins that self-assemble with highly ordered abnormal cross β-sheet conformation.
- Deposition of amyloid can occur
 - in the presence of an abnormal protein
 - (eg, hereditary amyloidosis and acquired systemic Ig light chain [AL] amyloidosis),
 - in association with prolonged excess abundance of a normal protein
 - (eg, reactive systemic [AA] amyloidosis and β2-microglobulin [β2M] dialysis-related amyloidosis),
 - for reasons unknown, accompanying the ageing process
 - (eg, wild-type transthyretin amyloidosis [ATTRwt; or senile systemic amyloidosis] and atrial natriuretic peptide amyloidosis).

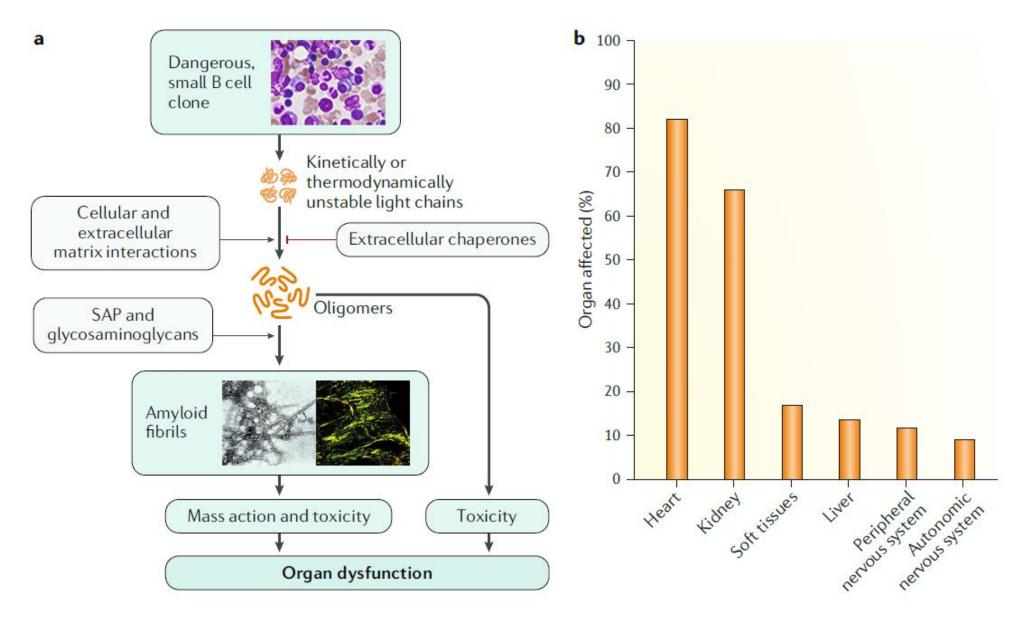
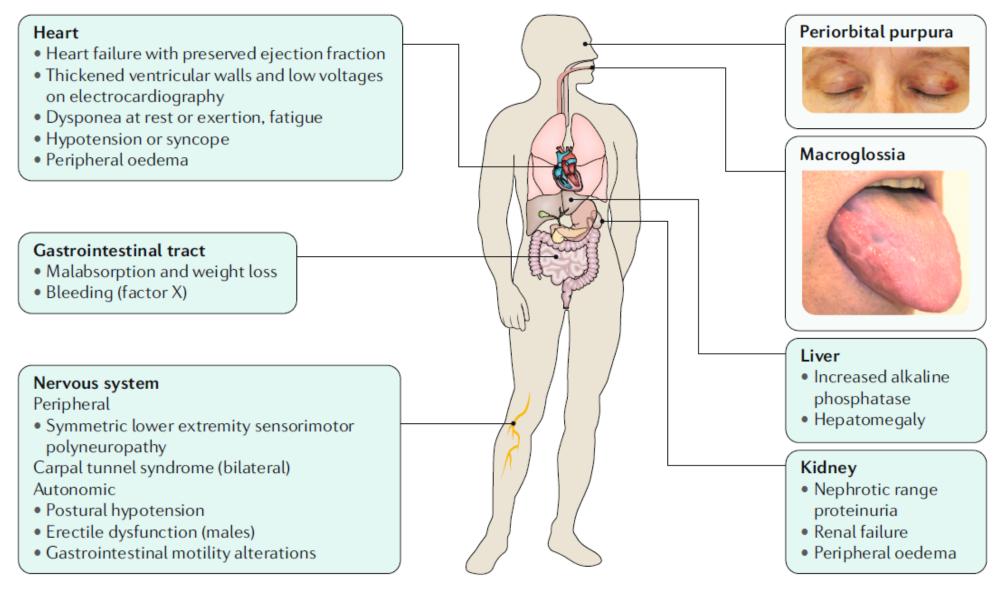
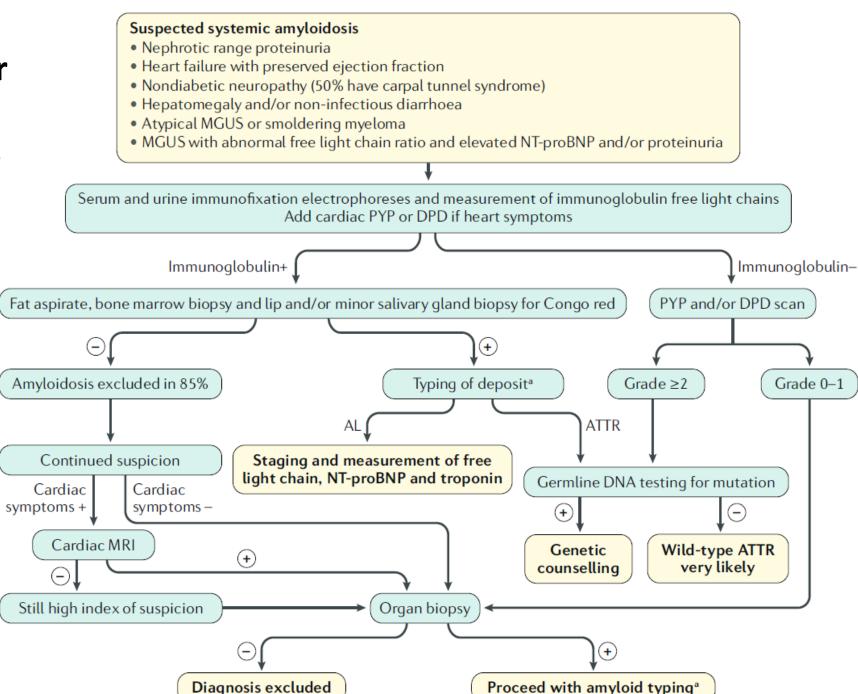

Designation ^a	Parent protein	Systemic and/or localized	Acquired or hereditary	Organs involved	
AL	Immunoglobulin light chain ^ь	Systemic or localized	Acquired (hereditary ^c)	Heart, kidney, liver, soft tissues, peripheral nervous system (including the autonomic nervous system) and gastrointestinal tract	
ATTR	Transthyretin	Systemic	Hereditary	Peripheral nervous system (including the autonomic nervous system), heart, eye, kidney and leptomeninges	
		Systemic	Acquired	Heart and ligaments	
AA	Serum amyloid A protein	Systemic	Acquired	Predominantly kidney, but may involve liver, gastrointestinal tract and occasionally heart, thyroid and autonomic nervous system	
ALECT2	Leukocyte chemotactic factor 2	Systemic	Acquired	Kidney, liver, spleen, adrenals and lungs	
AApoAl	Apolipoprotein Al	Systemic	Hereditary	Heart, liver, kidney, peripheral nervous system, testis, larynx and skin	
AFib	Fibrinogen α chain	Systemic	Hereditary	Kidney, primarily, with obliterative glomerular involvement	
$A\beta_2 m$	β_2 -microglobulin, wild type	Systemic	Acquired (haemodialysis related)	Musculoskeletal system	
	β_2 -microglobulin	Systemic	Hereditary	Autonomic nervous system	

Table 1 | Most common systemic amyloidoses

"The amyloid fibril protein is designated protein A and followed by a suffix that is an abbreviated form of the precursor protein name. For example, when amyloid (A) fibrils are derived from immunoglobulin light (L) chains, the amyloid fibril protein is AL. ^bRare cases of amyloidosis formed by immunoglobulin heavy chains (AH) and by heavy and light chains (AHL) have been reported. ^cOne family with mutation in the constant region of the *k* light chain, with cysteine replacing serine at amino acid residue 131, has been reported¹⁸⁵.


Merlini et al. Nature Reviews Disease Primers 2018;4:38

Schematic pathways involved in AL amyloid fibril formation.


Merlini et al. Nature Reviews Disease Primers 2018;4:38

Organ involvement in systemic AL amyloidosis.

Merlini et al. Nature Reviews Disease Primers 2018;4:38

Diagnostic algorithm for systemic AL amyloidosis.

Diagnostic workup of systemic AL amyloidosis.

Signs or symptoms of systemic amyloidosis

- Heart failure; myocardial wall thickening on echocardiography with normal or low limb lead voltages on ECG; late gadolinium enhancement, ECV, pre contrast T1 on MRI
- Nephrotic syndrome
- Fatigue, weight loss
- Peripheral (ascending, symmetric, small fibers/axonal) neuropathy in non diabetic patients
- Autonomic neuropathy (postural hypotension, "resolution" of preexisting hypertension, erectile/bladder/bowel dysfunction)
- Hepatomegaly with normal imaging
- Purpura, macroglossia, carpal tunnel syndrome, claudication of the jaw, articular deposits

Positive biomarker-based screening in patients at risk (MGUS with abnormal FLC ratio)

- Elevated NT-proBNP in the absence of other causes
- Albuminuria

Diagnostic workup of systemic AL amyloidosis

Tissue blopsy

- Abdominal fat aspirate, and if negative
- Sallvary gland blopsy, or
- Organ blopsy (beware of hemorrhagic risk, transjugular approach preferred for liver biopsy)

Identification of the plasma cell clone by serum and urine immunofixation electrophoresis and FLC measurement Bone marrow studies including iFISH of plasma cells and skeletal survey

Unequivocal identification of amyloid type

- Tissue typing by mass spectrometry, immuno electron microscopy, or immunohistochemistry
- Gene sequencing when clinical presentation requires to rule out hereditary amyloidosis; for example transthyretin
 amyloidosis in patients with isolated or combined heart and peripheral nervous system involvement; apolipoprotein Al in
 subjects with mild liver, renal, or cardiac involvement; fibrinogen amyloidosis in patients with isolated renal involvement
- Cardlac scintigraphy with ^{99m}Tc-DPD or PYP can differentiate AL (mild or no uptake) from transthyretin amyloidosis (strong uptake)

Assessment of organ Involvement and staging • Heart: Echocardiography (with assessment of strain or MCF),	NT-proBNP, troponins, ECG, Holter ECG, MRI
• Kidney: 24-hour urinary protein loss, eGFR	

• Liver: Liver function tests, liver imaging (CT, US scan, MRI)

Validated staging systems for AL amyloidosis

Staging systems	Markers and thresholds	Stages	Outcomes
Standard Mayo Clinic ³⁷	NT-proBNP > 332 ng/L	I. No markers above the cutoff	 Median survival 26 mo-not reached
	cTnT > 0.035 ng/mL (or $cTnI > 0.01 ng/mL$)	II. One marker above the cutoff	II. Median survival 11-49 mo
		III. Both markers above the cutoff	III. Median survival 4-6 mo
European staging of advanced	Standard Mayo Clinic stage III plus	a. No high-risk factors	a. Median survival 26 mo
cardiac involvement ³⁸	Systolic blood pressure < 100 mm Hg	 b. One high-risk factor 	b. Median survival 6 mo
	NT-proBNP > 8500 ng/L	c. Two high-risk factors	c. Median survival 3 mo
Revised Mayo Clinic ⁴⁸	NT-proBNP > 1800 ng/L	 No markers above the cutoff 	I. Median survival 94 mo
	cTnT > 0.025 ng/mL	II. One marker above the cutoff	II. Median survival 40 mo
	dFLC > 180 mg/L*	III. Two markers above the cutoff	III. Median survival 14 mo
		IV. Three markers above the cutoff	IV. Median survival 6 mo
Renal ³⁶	eGFR < 50 mL/min per 1.73 m ²	I. Both eGFR above and proteinuria	I. 0%-3% risk for dialysis
		below the cutoffs	at 2 y
	Proteinuria > 5 g/24h	II. Either eGFR below or proteinuria	II. 11%-25% risk for dialysis
		above the cutoffs	at 2 y
		III. Both eGFR below and proteinuria	III. 60%-75% risk for dialysis
		above the cutoffs	at 2 y

cTn, cardiac troponin.

*In this study, FLC were measured with the Freelite immunonephelometric assay based on polyclonal antibodies. A novel assay, based on monoclonal antibodies (N latex FLC) has been marketed in Europe and Australia. Available data indicate that the Freelite and N latex FLC assays have comparable diagnostic sensitivity and prognostic relevance. However, the 2 tests are not interchangeable, and N latex FLC results cannot be used in the staging system.

	Number of patients	Response (%)		Median progression- free survival (years*)	Median overall survival (years)
		Clonal, % of responders (% with complete response)	Organ		
Standard chemotherapy					
Oral melphalan-dexamethasone ^{81,82}	46	67% (33%)	48%	3.8	5.1
Cyclophosphamide-thalidomide-dexamethasone ⁸³	75	74% (21%)	27%	1.7	3.4
Bortezomib ⁸⁴	70	69% (38%)	29%	At 12 months: 75%	84%
Lenalidomide-dexamethasone ⁸⁵	22	41% (-)	23%	1.6	
ASCT					
ASCT ⁸⁶	37	67% (41%)	45%	2.7	1.8
ASCT ⁸⁷	421	·· (43%)	53%	3.4	8-4
Risk-adapted ASCT (followed by bortezomib consolidation) ⁸⁸	40	79% (58%)	70%	At 2 years: 69%	At 2 years: 82%
Novel chemotherapy combinations					
Cyclophosphamide-bortezomib-dexamethasone ⁸⁹	43	81% (65%)	46%	At 2 years: 53%	At 2 years: 98%
Cyclophosphamide-lenalidomide-dexamethasone90	35	60% (11%)	31%	2.4	3.1
Melphalan-lenalidomide-dexamethasone ⁹¹	26	58% (23%)	50%	At 2 years: 54%	At 2 years: 81%
Pomalidomide-dexamethasone ⁹²	33	48% (3%)	15%	1-2	2.3
Ixazomib ⁹³	16	42% (8%)			

Table 2: Treatment regimens for patients with AL amyloidosis

Wechalekar AD et al. Lancet 2016; 387: 2641–54

Therapeutic approach to systemic AL amyloidosis. Risk-adapted treatment possibly in the framework of clinical trials Frequent assessment of response based on FLC and biomarkers of organ function

Low-risk, transplant-eligible (NT-proBNP < 5000 ng/L, cTnT < 0.06 ng/mL, age < 65 years, PS 0–2, eGFR > 50 mL/min per 1.73 m² unless on dialysis, NYHA class < III, EF > 45%, sBP > 90 mm Hg (standing), DLCO > 50%)

- ASCT with MEL 200 mg/m²
- Consider induction with CyBorD if BMPC > 10% or if patient refuses upfront transplant
- Consider BDex if < CR after ASCT

Intermediate-risk (ineligible for ASCT, stages I-IIIa)

- MDex, preferred in case of neuropathy and in patients with t(11;14)
- CyBorD, stem cell sparing, preferred in renal failure and in patients with gain 1q21
- BMDex, preferred if dFLC > 180 mg/L

High-risk (stage IIIb, NYHA class ≥ III)

• Low-dose combination regimens

• Bortezomib can be preferred because of the rapidity of action

Treatment of relapsed/refractory patients

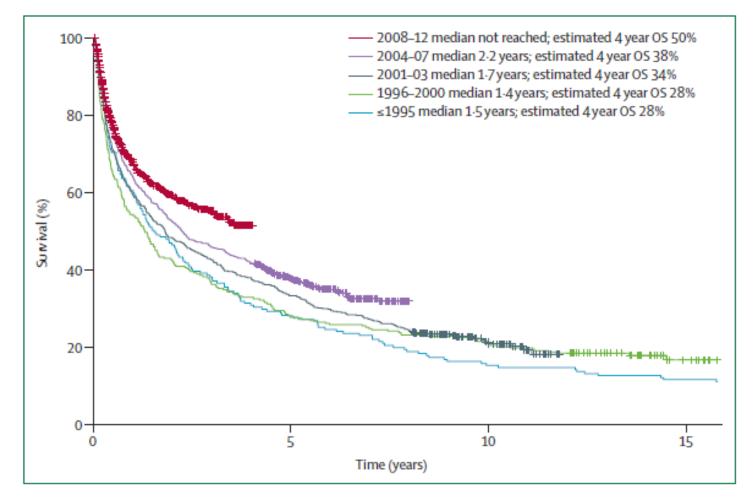
- Repeat frontline therapy in relapsing patients if possible
- Bortezomib-naïve: Bortezomib, ixazomib
- Alkylators-naïve: MDex, ASCT if eligible
- Bortezomib-refractory: Lenalidomide, pomalidomide, bendamustine

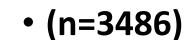
Outcome of AL amyloidosis treated with a selection of common upfront regimens, according to disease severity

Treatment	Disease severity	Patients	HR (CR, VGPR)	OR	Survival
ASCT ⁵⁷	Transplant eligible	1536	After 2007 71% (37%, —)	After 2007, kidney, 32%	68% at 5 y
ASCT ⁶¹	Transplant eligible	629	— (35%, —)	_	Median, 7.6 y
MDex ⁶³	Treated with full-dose dexamethasone (stage IIIb 10%)	119	76% (31%, 29%)	Heart, 37%; kidney, 24%	Median, 7.3 y
	Treated with low-dose dexamethasone (stage IIIb 36%)	140	51% (12%, 20%)	Heart, 20%; kidney, 17%	Median, 1.7 y (median, 7 mo in stage IIIb)
CTD ⁷⁰	Stage IIIb 22%	69	72% (19%, 16%)	Heart, 19%; kidney, 39%	>50% at 5 y (median, 4 mo in stage IIIb)
BMDex ⁷¹	Stage IIIb 22%	87	69% (42%, 13%)	Heart, 16%; kidney, 16%	53% at 5 y
CyBorD ⁷³	Stage I	30	77% (33%, 23%)	Heart, 22%	100% at 5 y
	Stages II and IIIa	128	67% (21%, 27%)	Heart, 4%	50% at 5 y
	Stage IIIb	43	42% (14%, 9%)	Overall renal response, 25%	20% at 5 y; median, 7 mo (overall, 55% at 5 y)

Larger and more recent studies were selected. Intent-to-treat responses are reported.

CR, complete response; HR, hematologic response; OR, organ response; VGPR, very good partial response; ---, not available.


Supportive therapy in systemic amyloidosis


Supportive therapy

- Salt restriction.
- Diuretics (cardiac function is preload-dependent: Avoid reduction of intravascular volume).
- Patients with recurrent arrhythmic syncope may benefit from pacemaker implantation; the use of implantable ICD is controversial.
- ACE inhibitors are generally poorly tolerated because of hypotension; Use at lowest tolerated dose.
- Fitted elastic leotards and midodrine for hypotension.
- Gabapentin or pregabalin for neuropathic pain.
- Octreotide can control diarrhea.
- Nutritional support.

Organ transplant can be proposed in patients with irreversible, end-stage organ dysfunction despite CR. In young patients with isolated cardiac involvement and severe heart failure, heart transplant followed by ASCT can be considered. Left ventricular assist devices may represent a bridge to cardiac transplant.

Kaplan–Meier survival curve showing improvement over time in overall survival of patients with systemic AL amyloidosis seen at the National Amyloidosis Centre in the UK

Wechalekar AD et al. Lancet 2016; 387: 2641-54