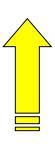

ASMA

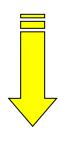
Malattia infiammatoria cronica delle vie aeree caratterizzata da:

- Episodi ricorrenti di dispnea, respiro sibilante, tosse e senso di costrizione toracica
- Ostruzione bronchiale (di solito reversibile spontaneamente o dopo trattamento farmacologico)
- Infiltrazione di cellule infiammatorie, rilascio di mediatori e rimodellamento strutturale delle vie aeree
- Iperreattività bronchiale

Distribuzione geografica della prevalenza dell'asma in atto (ECRHS: popolazione pediatrica)

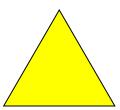
Vie Aeree


Controllo del tono broncomotore



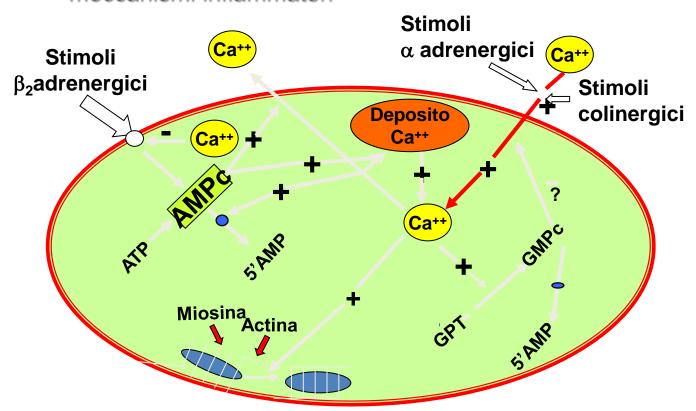
MECCANISMI DI REGOLAZIONE DEL TONO BRONCOMOTORE

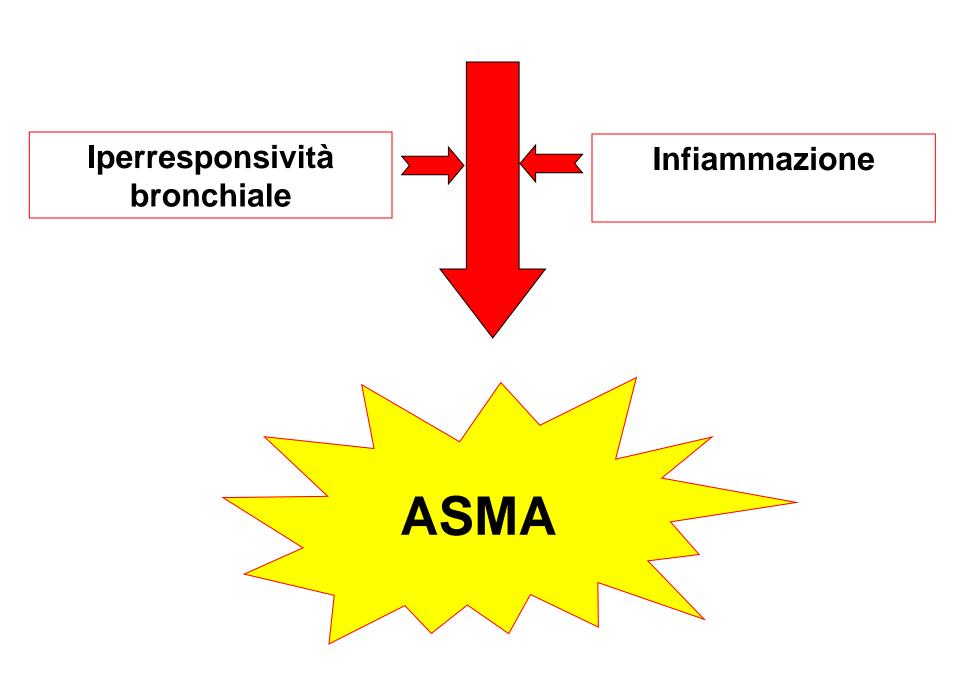
MECCANISMI ECCITATORI


colinergico α-adrenergico non colinergico eccitatorio (SP) neurokinine, CGRP endoteline

MECCANISMI INIBITORI

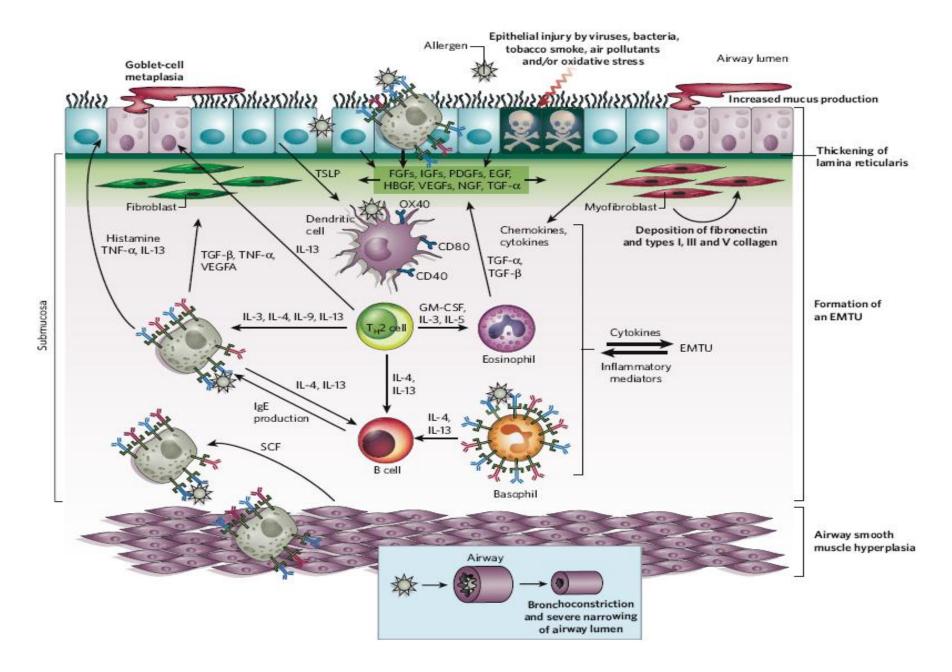
β-adrenergico non colinergico inibitorio (VIP) NO

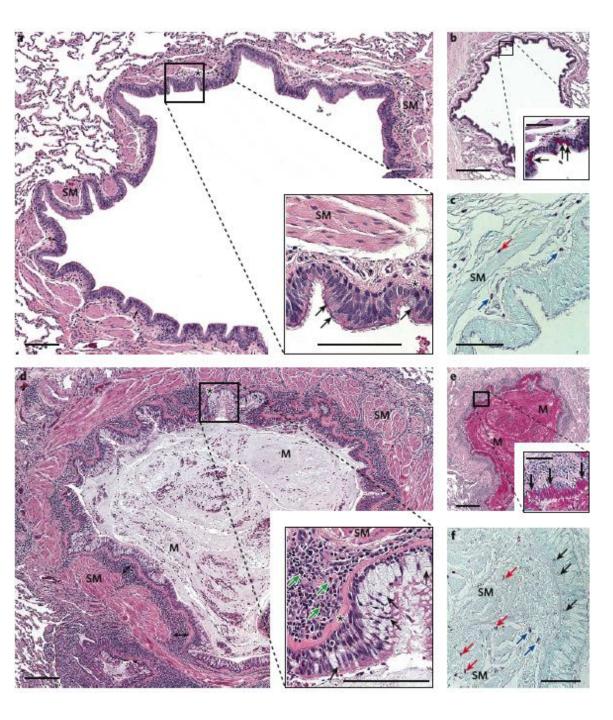



IPERRESPONSIVITA' BRONCHIALE

Iperreattività bronchiale

- ✓ prevalenza di alcune isoforme della miosina
- ✓ alterazione dei canali ionici della membrana cellulare
- ✓ meccanismi nervosi
- ✓ meccanismi infiammatori



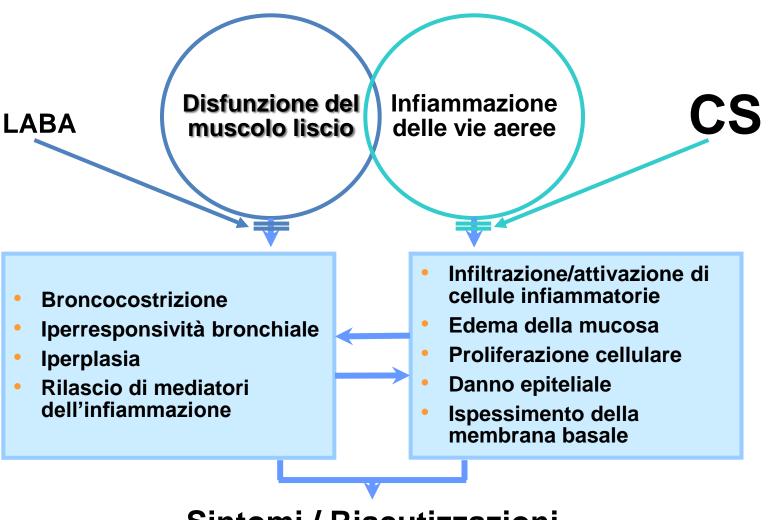

INFIAMMAZIONE

La flogosi cronica è caratterizzata dalla presenza di linfociti, mastociti e eosinofili, ed è sempre presente anche durante i periodi di remissione sintomatologica.

Cellula	Mediatori	Effetti
Eosinofilo	PBM, ECP, EDNT, LTC ₄ , IL-1, IL-6, GM-CSF, anione superossido	Sfaldamento epitelio, broncocostrizione, infiammazione
Linfocita T	Varie citochine	Stimolazione dell'infiammazione
Basofilo	Istamina, LTC ₄ , IL-4	Broncocostrizione, proliferazione mastcellule
Mastociti	Vasoattivi (istamina), chemiotattici (triptasi), Citochine (II-4, II-13).	Contrazione muscolatura liscia Danno tissutale
Macrofago	TNF-a, superossido, proteasi, LTB ₄ , PGD ₂	Danno tissutale, chemiotassi, broncocostrizione, secrezione mucosa
Epiteliale	Bradichinina	Stimolazione dell'infiammazione

Infiammazione allergica cronica

Infiammazione allergica cronica e rimodellamento tissutale


Sezioni di tessuto polmonare di soggetti non asmatici (pannello superiore) e pazienti con asma severa (pannello inferiore)

Classificazione della gravità

Caratteristiche cliniche in assenza di terapia						
	Sintomi	Sintomi notturni	FEV ₁			
STEP 4 Grave Persistente	Continui Attività fisica Iimitata	Frequenti	FEV1 < 60%			
STEP 3 Moderato Persistente	Quotidiani Attacchi che limitano L'attività	> 1 volta Alla settimana	FEV1 60 – 80%			
STEP 2 Lieve Persistente	> 1 volta/settimana ma < 1 volta / giorno	> 2 volte al mese	FEV1 < 80%			
STEP 1 Intermittente	< 1 volta/settimana	< 2 volte al mese	FEV1 < 80%			

La presenza di una caratteristica di un livello di gravità specifico è sufficiente per la classificazione del paziente in quella categoria.

Fisiopatologia dell'asma e ruolo dei CS nella terapia farmacologica

Sintomi / Riacutizzazioni

Terapia farmacologica

TRATTAMENTO ACUTO

Broncodilatatori:

- β_2 -stimolanti
- teofillinici
- antimuscarinici

TRATTAMENTO CRONICO

(di fondo)

Antinfiammatori:

- Glucocorticoidi
- Cromoni
- Chetotifene
- Antileucotrieni

Broncodilatatori

β₂ -stimolanti long-acting Teofillina a lento rilascio

APPROCCIO PROGRESSIVO ALLA TERAPIA DELL'ASMA

	STEP 1	STEP 2	STEP 3	STEP 4	
Opzione principale	β ₂ -agonisti a breve azione al bisogno	CSI a bassa dose	CSI a bassa dose + LABA	CSI a alta dose + LABA	
Altre opzioni (in ordine decrescent e di efficacia)		Anti- leucotrieni Cromoni	CSI a bassa dose + anti-leucotrieni CSI a dose medio- alta	aggiungere 1 o più: Anti-leucotrieni Teofilline-LR CS orali	
		$oldsymbol{eta}_2$ -agonisti a rapida azione al bisogno			
	Programma personalizzato di educazione				
	Controllo ambientale, Immunoterapia specifica, Trattamento delle comorbilità				

Glucocorticoidi per via inalatoria

Attualmente, i glucocorticoidi per via inalatoria sono i farmaci di fondo più efficaci e sono raccomandati per l'asma persistente ad ogni livello di gravità

Il trattamento a lungo termine con glucocorticoidi per via inalatoria riduce considerevolmente la frequenza e la gravità delle riacutizzazioni

CORTICOSTEROIDI INALATORI

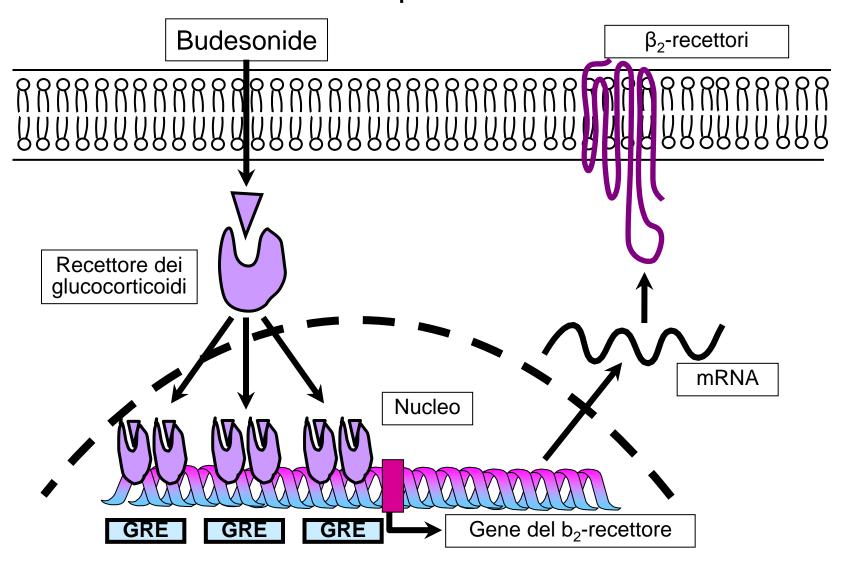
	•Emivita (ore)	•Volume di distribuzione (L/Kg)	•Clearance (L/min)
•Triamcinolone acetonide	1.5	2.1	1.2
•Beclometasone dipropionato	0.5	*	*
•Flunisolide	1.6	1.8	2
•Budesonide	2.8	4.3	1.4
•Fluticasone dipropionato	3.1	3.7	0.87

^{*} Non sono disponibili studi a riguardo

Glucocorticoidi per via inalatoria

Il dosaggio e la durata del trattamento non possono essere standardizzati, ma vanno adeguati alla gravità della forma ed al tipo di steroide utilizzato

La dose iniziale va mantenuta fino ad ottenere un controlo dei sintomi clinici per almeno 2-3 settimane, poi si può diminuire il dosaggio sino a raggiungere una dose di mantenimento o addirittura la sospensione


Metabolismo

La metabolizzazione avviene nel fegato, nel corticosurrene, nel tessuto muscolare, nel cervello e, in minore misura, in altri tessuti.

Subiscono processi di idrossilazione, ossidazione, riduzione dei doppi legami o di gruppi chetonici, degradazione delle catene laterali con formazione di metaboliti del tutto o pressoché inattivi.

Effetto di Budesonide sui β_2 -recettori

I corticosteroidi inalatori aumentano il numero di recettori β2 a livello della mucosa respiratoria

Glucocorticoidi per via inalatoria

Effetti collaterali:

Candidiasi orofaringea Disfonia

Alti dosaggi possono indurre eventi avversi sistemici:

insufficienza surrenalica

Fluticasone Furoato

Respiratory Research

Research

Open Access

Human receptor kinetics and lung tissue retention of the enhanced-affinity glucocorticoid fluticasone furoate Anagnostis Valotis and Petra Högger*

Address: Universität Würzburg, Institut für Pharmazie und Leb-mamittelchemie, Würzburg, Germany Email: Anagnostia Valotia - valotia@pale.uni-worzburg de; Petra Högger * - hogger@pale.uni-worzburg.de * Conceponding suibor

Published: 25 July 2007.

Received: 28 August 2006 Accepted: 25 lists 2007

Fluticasone propionato

Fluticasone Furoato

FF è altamente selettivo per i recettori glucocorticoidi rispetto ai mineralcorticoidi ed ai recettori per il b-progesterone

- Rispetto agli attuali INS:
 - FF ha la più grande affinità per i recettori glucocorticoidi
 - FF ha la più grande selettività
 - FF permane a lungo nel tessuto polmonare (lunga durata)
 - FF ha una bassa biodisponibilità orale
- FF possiede caratteristiche antiinfiammatorie migliori di fluticasone propionato

BRONCODILATATORI NELL'ASMA

<u>β</u>₂ARs Agonisti

/eloce

enta-

Rapida insorgenza, breve durata

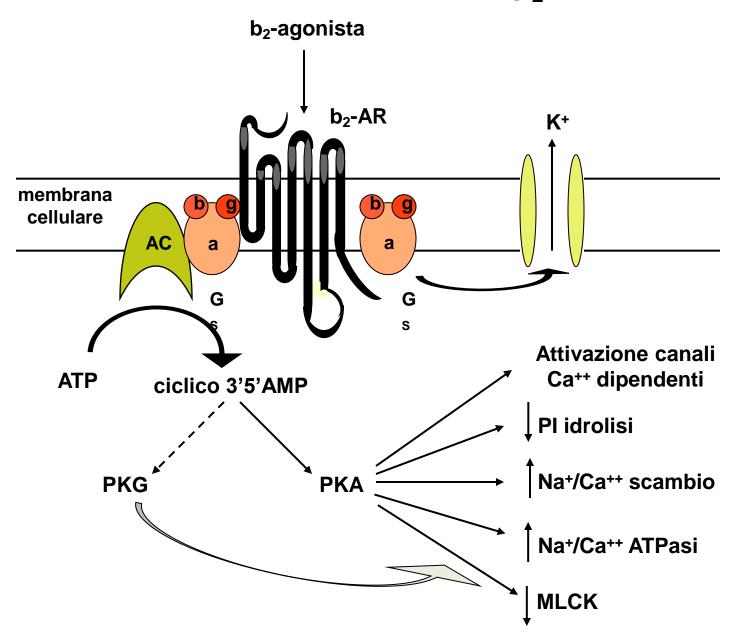
Terbutalina inalatoria Salbutamolo inalatorio

Lenta insorgenza, breve durata

Terbutalina orale Salbutamolo orale Formoterolo orale Rapida insorgenza, lunga durata

Formoterolo inalatorio

Lenta insorgenza, lunga durata


Salmeterolo inalatorio Bambuterolo orale

Breve

Lunga

Durata d'azione

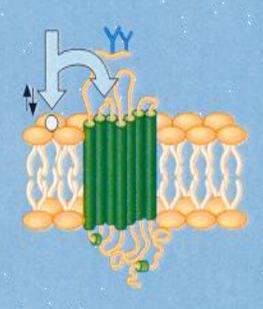
MECCANISMO D'AZIONE DEI β₂-AGONISTI

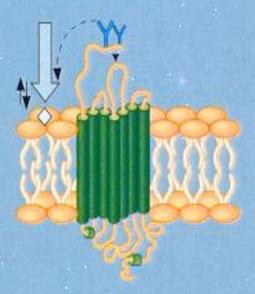
<u>β</u>2ARs Agonisti

Composti "Short-acting" (SABA)

(sintomatici)

- ✓ derivati catecolici: isoprenalina
- ✓ derivati resorcinolici: fenoterolo, terbutalina
- ✓ derivati saligeninici: salbutamolo
- ✓ profarmaci: bitolterolo, bambuterolo


Composti "Long acting" (LABA)


(profilassi)

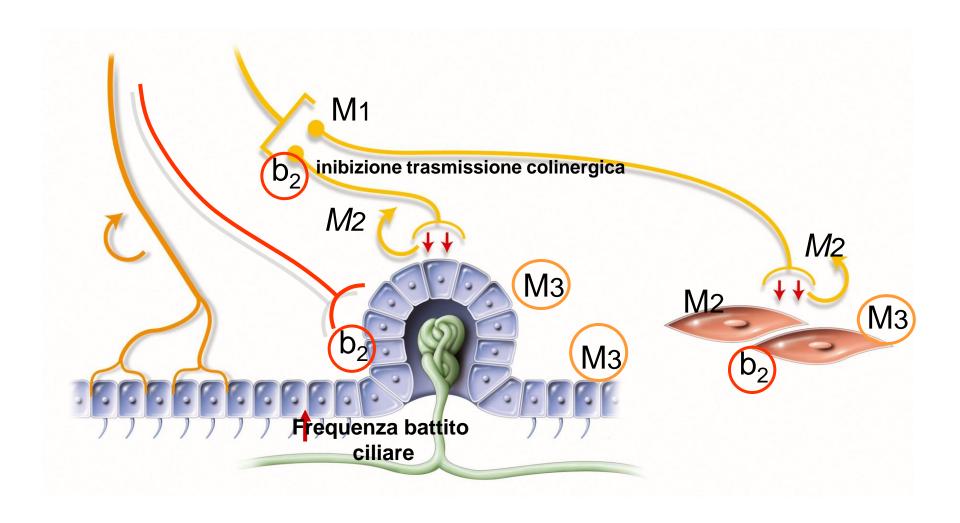
- √ formoterolo
- ✓ salmeterolo

Biofase acquosa

Membrana cellulare con recettori β₂

Salbutamolo

- > Idrofilo
- > Breve durata d'azione
- Rapida insorgenza dell'effetto


Formoterolo

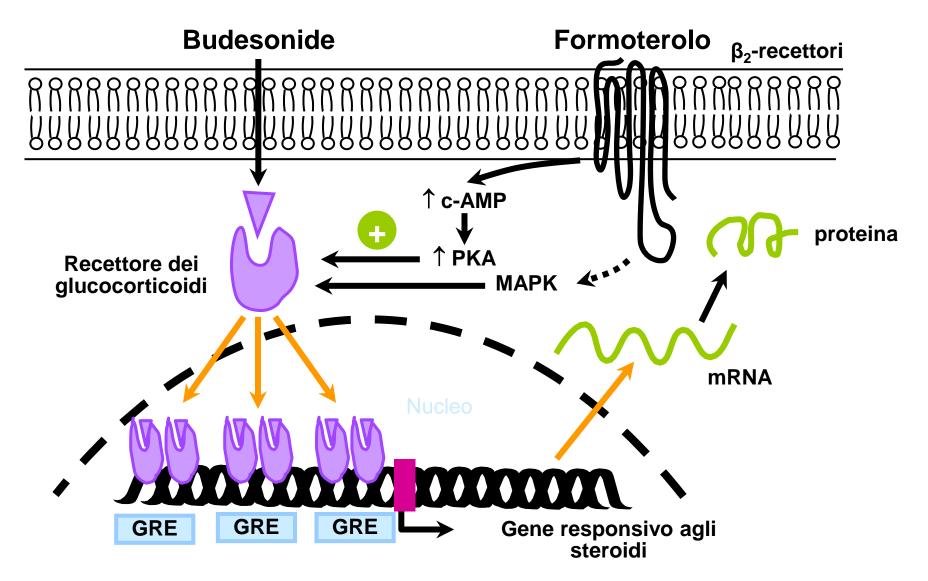
- > Lipofilia intermedia
- > Lunga durata d'azione
- Rapida insorgenza dell'effetto

Salmeterolo

- > Lipofilo
- > Lunga durata d'azione
- Lenta insorgenza dell'effetto

EFFETTI FARMACOLOGICI DEI β2-AGONISTI

β₂ Agonisti


Stimolazione dei recettori β₂ adrenergici a livello della muscolatura liscia delle vie aeree

Inibizione del rilascio di mediatori della broncocostrizione da parte di cellule infiammatorie e di neurotrasmettitori liberati dalle fibre nervose

EFFETTI FARMACOLOGICI DEI β₂-AGONISTI

- •Broncodilatazione per attivazione diretta dei recettori β₂-adrenergici sulla muscolatura liscia.
- Prevenzione del rilascio di mediatori da parte dei mastociti.
 - Riduzione della permeabilità capillare
- •Riduzione della comparsa di edema della mucosa bronchiale dopo esposizione a mediatori come l'istamina.
 - Aumento clearance muco-ciliare.
 - Riduzione neurotrasmissione colinergica per attivazione recettori presinaptici β_2 .

Effetto di Formoterolo sui recettori dei glucocorticoidi

Vie di somministrazione

VIA INALATORIA

- inalatori pressurizzati
- inalatori di polvere
- nebulizzatori

VIA PARENTERALE (ev, im, sc)

VIA ORALE (azione meno pronta, maggiori effetti collaterali, minore broncoprotezione)

Farmacocinetica

SABA

Durata d'azione dalle 3 alle 6 ore

Ben assorbiti a livello polmonare

Eliminati nelle urine in forma immodificata o coniugata.

LABA

Effetti che si prolungano nell'arco delle 12 ore

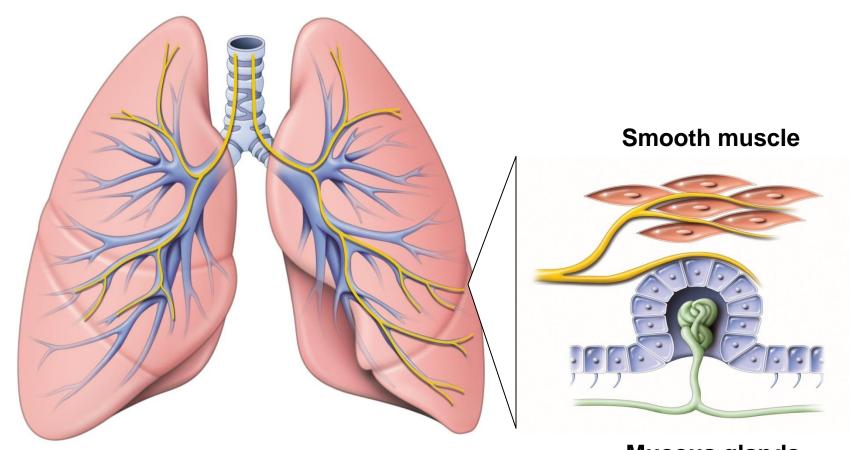
Ben assorbiti a livello polmonare ed intestinale

Dopo somministrazione orale, il formoterolo viene maggiormente eliminato con le urine, mentre il salmeterolo nelle feci.

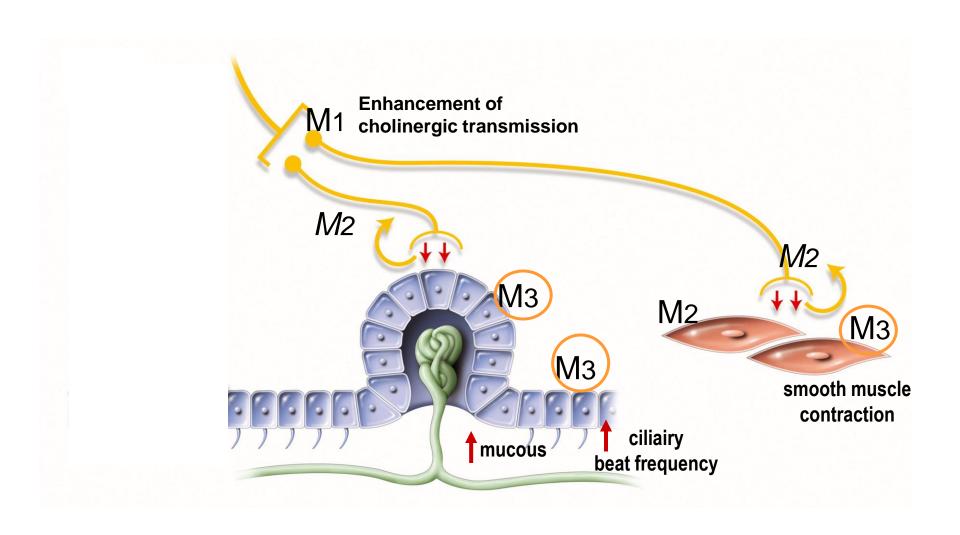
EFFETTI COLLATERALI DEI β_2 -AGONISTI

- Cardiovascolari: tachicardia e palpitazioni.
- •Tremore muscolare per attivazione dei recettori β_2 sulla muscolatura scheletrica.
 - •Effetti metabolici:
 - ✓ ipokaliemia (aritmie);
 - √ iperglicemia;
 - ✓ aumento corpi chetonici e lattati nel plasma.

β₂-AGONISTI E TOLLERANZA


LA TERAPIA CRONICA CON UN AGONISTA β₂ ADRENERGICO CONDUCE SPESSO AD ABITUDINE O SUBSENSIVITÀ, DOVUTA A DOWN-REGULATION RECETTORIALE

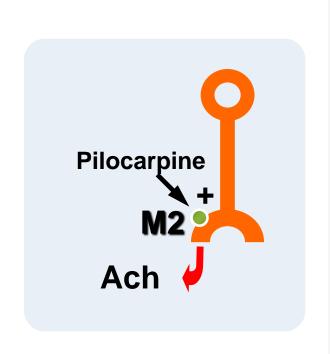
- ➤ Tolleranza nell'adulto, minima nel bambino
- Riduzione affinità recettoriali
- ➤ Favorisce conversione beta → alfa

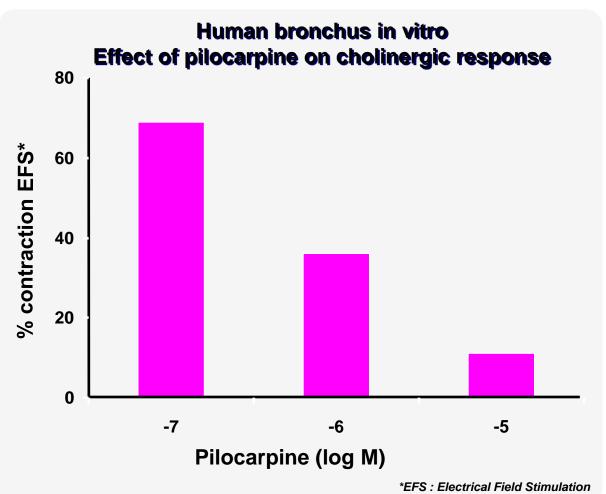

Fibre Colinergiche

Cholinergic nerves from large bronchi to peripheral small airways

Mucous glands

Recettori Muscarinici

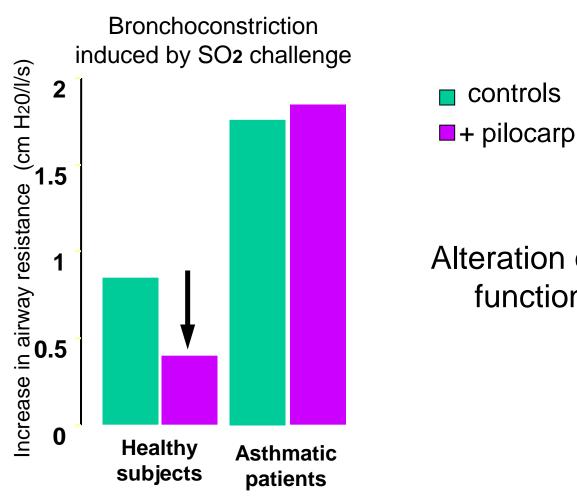



Localizzazione polmonare

Receptors	Localisation	Function
M 3	Smooth muscle Mucous gland Epithelial cells	Contraction Mucous ciliary beating
<u>M1</u>	Ganglia	↑ Cholinergic tone
M2	Cholinergic fibers	♥ cholinergic tone

Controllo del tono colinergico

Prejunctional inhibitory muscarinic M2 receptors on cholinergic nerves

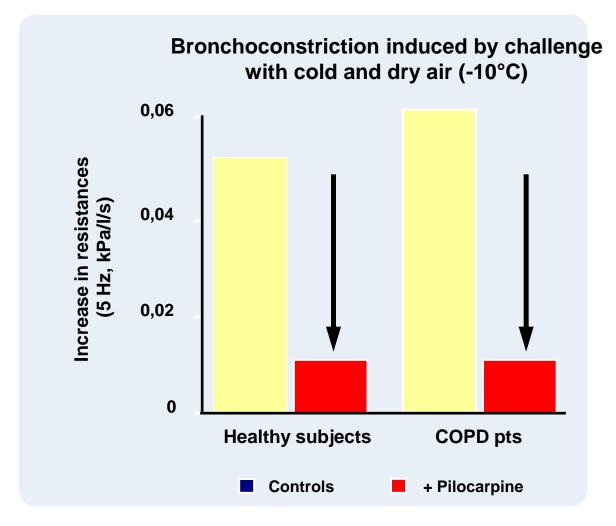


7. Minette PA, Barnes PJ. Prejunctional inhibitory muscarinic receptors on cholinergic nerves in human and guinea pig airways.

J Appl Physiol 1988; 64: 2532-7.

Controllo del tono colinergico

No inhibitory effect of pilocarpine in asthmatic patients

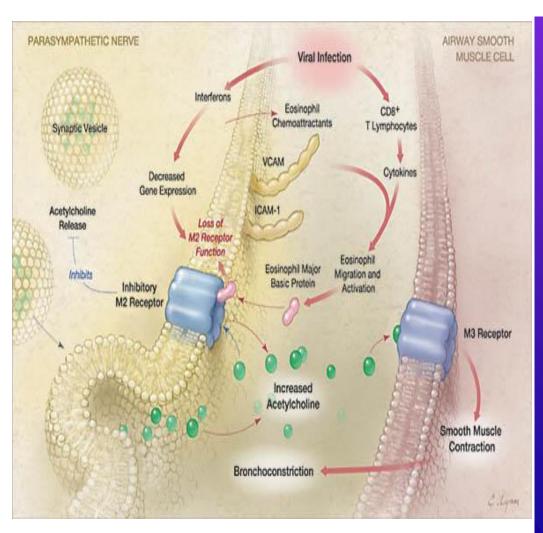


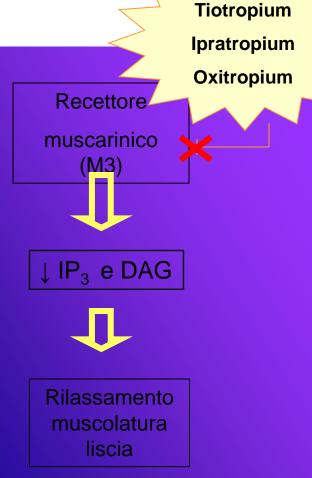
-+ pilocarpine

Alteration of M2 receptor function in asthma

Controllo del tono colinergico

Inhibitory effect of pilocarpine in COPD patients

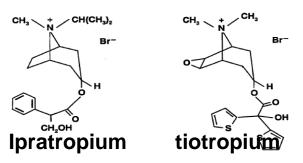

No alteration of M₂ receptor function in COPD


Farmaci antimuscarinici

Gli antimuscarinici agiscono sui recettori

- •M3, presenti sulla muscolatura bronchiale ma taluni anche sulle ghiandole mucose
- •M1, situati a livello gangliare e in minima parte sulle vie aeree terminali
- M2, situati a livello delle sinapsi, dove svolgono il ruolo di autorecettori

Farmaci antimuscarinici Meccanismo d'azione

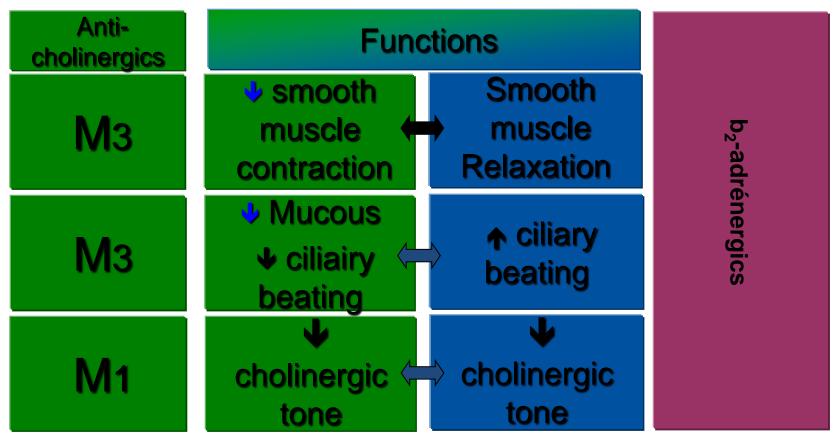

Pharmacological rationale for an optimal anti-cholinergic effect

Blockade of M3 and M1 receptors

Anti-cholinergics:

Binding properties on muscarinic receptors

Muscarinic hu	uman receptors	expressed in	CHO cells
---------------	----------------	--------------	-----------


	Dissociation	Dissociation constant (K _D , nM)		
	M1	M2	М3	
Ipratropium	0,18	0,19	0,20	
Tiotropium	0,04	0,02	0,01	
	Dissociation kinetics (half-life, h)			
[³ H]-ipratropium	0,11	0,03	0,26	
[³ H]-tiotropium	14,6	3,6	34,7	

Tiotropium = long-acting and relatively selective antagonist M3 > M1 >> M2

BRONCODILATAZIONE INDOTTA DAI FARMACI ANTIMUSCARINICI

COMPOSTO	DOSI	INIZIO	PICCO	DURATA
	ABITUALI	D'AZIONE	D'AZIONE	D'AZIONE
Ipratropium	20-40 μg	5-10 min	0,5-1 ore	3-8 ore
Oxitropium	100-200 μg	5-10 min	0,5-1 ore	10-12 ore
Tiotropium	20 μg	5-10 min	1-4 ore	24-48 ore

Anti-colinergici e \(\beta 2-agonisti: \) azioni complementari

VIE DI SOMMINASTRIZIONE

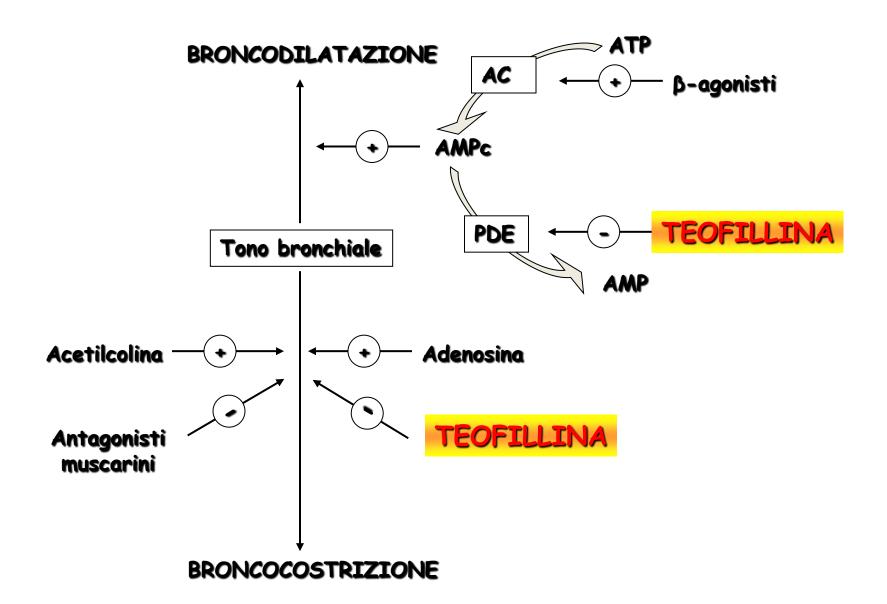
Vengono utilizzati esclusivamente per **via inalatoria**, da soli o, più frequentemente, in preparati di associazione con β2-stimolanti, con i quali dimostrano un significativo sinergismo.

Farmacocinetica

Assorbimento sistemico dopo inalazione è minimo.

L'ipratropio e l'ossitropio vengono somministrati come aerosol o come soluzione per inalazione, mentre il tiotropio viene somministrato sotto forma di polvere.

Circa il 90% della dose somministrata per via aerosolica viene deglutita e la maggior parte si riscontra nelle feci.


Farmacocinetica

Dopo 30-60 minuti dall'inalazione di ipratropio o di ossitropio si ottiene la massima risposta, mentre il tiotropio ha un'insorgenza d'azione più lenta.

La durata dell'azione dell'ipratropio e dell'ossitropio non supera le 6-8 ore richiedendo 4 somministrazioni al giorno, mentre gli effetti del tiotropio persistono per 24 ore, il che consente di somministrarlo una sola volta al giorno, migliorando l'aderenza del paziente alla terapia

Effetti collaterali

Dato il loro scarso assorbimento gli effetti collaterali sono minimi: secchezza delle fauci ↓ della quantità di espettorato

Teofillina

- Inibizione fosfodiesterasi ↑ AMPc ↓ Ca**
- Aumento efficienza dei muscoli respiratori
- Antagonismo con recettori dell'adenosina
 - Attivazione cascata ac. Arachidonico
- Inibizione rilascio sostanza P e Tachichinine
 - Aumento clearance muco-ciliare

Altri effetti

Azione analettica cardiaca e vasodilatante

Aumento della diuresi

Eccitazione del S.N.C.

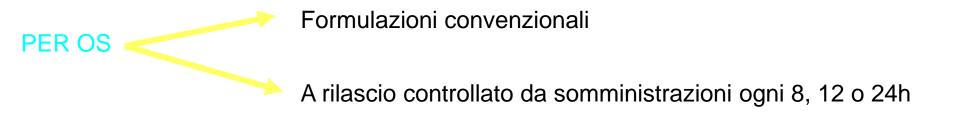
TIPI DI TEOFILLINICI

- Teofillina
- Aminofillina (teofillina + etilendiamina)
- Difillina (diidrossipropilteofillina)
- Teofillina andidra
- Teofillinato di lisina
- Emprofillina
- Bamifillina

Meccanismo d'azione della teofillina

Antagonismo recettore per l'adenosina

Effetti sul trasporto intracellulare del calcio


Meccanismo d'azione della teofillina

Immunomodulazione.

Meccanismi non broncodilatanti

Aumentata secrezione di interleuchina-10 (IL-10)

Vie di somministrazione

Via inalatoria inefficace

Via intramuscolare impossibile per l'effetto irritante nel sito d'iniezione

Farmacocinetica

Assorbimento rapido e completo quando somministrata sotto forma di formulazioni liquide orali e di compresse a rilascio immediato;

Non subisce metabolismo di primo passaggio;

Legame alle proteine plasmatiche 60%;

Vd tra 0.4 e 0.6l/kg;

Metabolismo epatico (CYP 1A2) (variazioni individuali);

15% è escreta inalterata nelle urine;

Emivita: da 3,5 nei bambini a 9h nell'adulto;

Fattori che modificano la farmacocinetica della teofillina sono:

- Dieta
- Fumo di sigaretta
- Stati patologici (epatopatie, nefropatie, ipertiroidismo)
- Interferenze farmacocinetiche

Teofillina: usi terapeutici

(concentrazione ematica compresa tra 8-15mg/l)

- Farmaci antiasmatici di fondo
- Asma lieve-moderato
- In associazione con terapia ICS
- Asma notturna

Effetti collaterali

Livelli sierici > 20- 30 mcg/ml → Cefalea

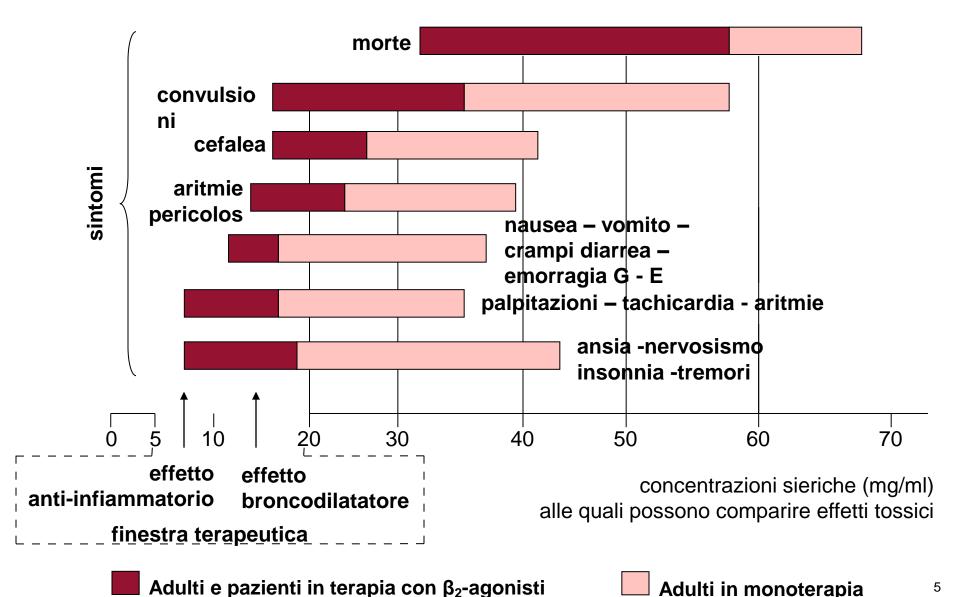
Vomito

Diarrea

Nausea

Insonnia

Irritabilità


Livelli sierici > 30-40 mcg/ml

→ Iperglicemia Ipotensione Ipokaliemia Aritmia

Livelli sierici > 40 mcg/ml → Attacchi epilettici morte

Gli effetti collaterali cardiovascolari aumentano in caso di concomitante impiego di beta 2 agonisti

LO SPETTRO DELLE REAZIONI AVVERSE ALLA TEOFILLINA IN FUNZIONE DELLA CONCENTRAZIONE PLASMATICA E DELL'ASSUNZIONE DI β₂-AGONISTI

