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The immune system recognizes and is poised to eliminate cancer but is held in check by inhibitory receptors
and ligands. These immune checkpoint pathways, which normally maintain self-tolerance and limit collateral
tissue damage during anti-microbial immune responses, can be co-opted by cancer to evade immune
destruction. Drugs interrupting immune checkpoints, such as anti-CTLA-4, anti-PD-1, anti-PD-L1, and others
in early development, can unleash anti-tumor immunity and mediate durable cancer regressions. The com-
plex biology of immune checkpoint pathways still contains many mysteries, and the full activity spectrum of
checkpoint-blocking drugs, used alone or in combination, is currently the subject of intense study.
In the current era in oncology emphasizing personalized therapy,

immune checkpoint blockade is distinguished by its ‘‘common

denominator’’ approach. Although the vast somatic mutational

diversity found in most human cancers creates challenges for

therapies targeting individual mutations, it exposes a panoply

of new antigens for potential immune recognition. However, cells

of the adaptive and innate immune systems that recognize and

are poised to attack cancer are held in check by molecular

pathways that suppress their activation and effector functions.

The seminal observation that blocking the prototypical immune

checkpoint receptor cytotoxic T lymphocyte antigen 4 (CTLA-4)

could mediate tumor regression in murine models (Leach et al.,

1996) led to the clinical development and approval of anti-

CTLA-4 as a treatment for patients with advanced melanoma

(Hodi et al., 2010). Subsequently, drugs blocking the distinct

checkpoints Programmed Death 1 (PD-1) and its major ligand

PD-L1 have showngreat promise in treatingmanydiverse cancer

types, fueling the intensive examination of a growing cohort of

unique checkpoint molecules as potential therapeutic targets.

This has revealed new treatment options for patients and has

revolutionized our approach to cancer therapy.

Biology of Immune Checkpoints: The Basics
The rapid-fire clinical successes fromblockingCTLA-4 andPD-1,

the first checkpoint receptors to be discovered, have opened

prospects for extending the potential of cancer immunotherapy

by inhibitingmore recently discovered checkpoint ligands and re-

ceptors. It is clear that, despite some commonalities, CTLA-4 and

PD-1 have distinct patterns of expression, signaling pathways,

and mechanisms of action. Although discovered over 20 years

ago, there are still many unanswered questions about their

biology, particularly in the context of cancer.

The CD28/CTLA-4 System of Immune Modulation

The conventional wisdom underlying our vision of how CTLA-4

blockade mediates tumor regression is that it systemically acti-

vates T cells that are encountering antigens. CTLA-4 represents

the paradigm for regulatory feedback inhibition. Its engagement
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down-modulates the amplitude of T cell responses, largely by in-

hibiting co-stimulation by CD28, with which it shares the ligands

CD80 (B7.1) and CD86 (B7.2) (Figure 1; Lenschow et al., 1996).

As a ‘‘master T cell co-stimulator,’’ CD28 engagement amplifies

TCR signaling when the T cell receptor (TCR) is also engaged

by cognate peptide-major histocompatibility complex (MHC)

(Schwartz, 1992). However, CTLA-4 has a much higher affinity

for both CD80 and CD86 compared with CD28 (Linsley et al.,

1994), so its expression on activated T cells dampens CD28

co-stimulation by out-competing CD28 binding and, possibly,

also via depletion of CD80 and CD86 via ‘‘trans-endocytosis’’

(Qureshi et al., 2011). Because CD80 and CD86 are expressed

on antigen-presenting cells (APCs; e.g., dendritic cells and

monocytes) but not on non-hematologic tumor cells, CTLA-4’s

suppression of anti-tumor immunity has been viewed to reside

primarily in secondary lymphoid organs where T cell activation

occurs rather than within the tumor microenvironment (TME).

Furthermore, CTLA-4 is predominantly expressed on CD4+

‘‘helper’’ and not CD8+ ‘‘killer’’ T cells. Therefore, heightened

CD8 responses in anti-CTLA-4-treated patients likely occur indi-

rectly through increased activation of CD4+ cells. Of note, a few

studies suggest that CTLA-4 can act as a direct inhibitory recep-

tor of CD8 T cells (Fallarino et al., 1998; Chambers et al., 1998),

although this role in down-modulating anti-tumor CD8 T cell re-

sponses remains to be directly demonstrated.

The specific signaling pathways by which CTLA-4 inhibits

T cell activation are still under investigation, although activation

of the phosphatases SHP2 and PP2A appears to be important

in counteracting both tyrosine and serine/threonine kinase sig-

nals induced by TCR and CD28 (Rudd et al., 2009). CTLA-4

engagement also interferes with the ‘‘TCR stop signal,’’ which

maintains the immunological synapse long enough for extended

or serial interactions between TCR and its peptide-MHC ligand

(Schneider et al., 2006). Naive and resting memory T cells ex-

press CD28, but not CTLA-4, on the cell surface, allowing co-

stimulation to dominate upon antigen recognition. However,

CTLA-4 is rapidly mobilized to the cell surface from intracellular
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Figure 1. Complex Interactions between the CTLA-4/CD28 and PD-1
Families of Receptors and Ligands
Shown are the defined interactions between the co-inhibitory (checkpoint)
receptors CTLA-4 and PD-1 and their ligands and related receptors. The two
known ligands for CTLA-4 are CD80 (B7.1) and CD86 (B7.2). CD86 can
‘‘backward-signal’’ into APCswhen engaged by CTLA-4, inducing the immune
inhibitory enzyme IDO. CD80 and CD86 also bind the co-stimulatory receptor
CD28 on T cells. Recently, another B7 family member, inducible costimulator
ligand (ICOS-L), which was discovered as the ligand for the co-stimulatory
receptor ICOS (not shown), has been reported to bind to CD28, leading to co-
stimulation independent of CD80 or CD86. The two defined ligands for PD-1,
PD-L1 (B7-H1) and PD-L2 (B7-DC), bind to additional molecules. PD-L1 binds
CD80 molecules expressed on activated T cells, mediating inhibition. Addi-
tionally, PD-L1 on APCs appears to provide inhibitory signals (backward
signaling) when it is engaged by PD-1. PD-L2 binds another molecule, RGMb,
which is expressed on macrophages and some epithelial cell types and ap-
pears to deliver an inhibitory immune signal through an as yet undefined
mechanism. Although not identified, genetic evidence from PD-1 knockout
T cells and knockout mice suggests the existence of another receptor for PD-
L2 that is co-stimulatory.

Cancer Cell

Perspective
protein stores, allowing feedback inhibition to occur within an

hour after antigen engagement. The central role of CTLA-4

in maintaining immune tolerance is dramatically demonstrated

by the rapidly lethal systemic immune hyperactivation pheno-

type of Ctla-4 knockout mice (Tivol et al., 1995; Waterhouse

et al., 1995). In humans, anti-CTLA-4 treatment induces ex-

pression of activation markers on circulating T cells (Maker

et al., 2005) and a high rate of inflammatory side effects (Phan

et al., 2003). However, because melanoma patients appear to

possess an unusually high proportion of tumor-reactive T cells,

anti-tumor responses balance autoimmune toxicity and provide

a clinical benefit to roughly 20%of patients with this disease (see

below).

PD-1: Similarities to and Differences from CTLA-4

The PD-1 system of immune modulation bears similarities to

CTLA-4 as well as key distinctions (Parry et al., 2005). Similar

to CTLA-4, PD-1 is absent on resting naive and memory T cells

and is expressed upon TCR engagement. However, in contrast

to CTLA-4, PD-1 expression on the surface of activated T cells

requires transcriptional activation and is therefore delayed

(6–12 hr). Also in contrast to CTLA-4, PD-1 contains a conven-

tional immunoreceptor tyrosine inhibitory motif (ITIM) as well as

an immunoreceptor tyrosine switch motif (ITSM). PD-1’s ITIM

and ITSM bind the inhibitory phosphatase SHP-2. PD-1 engage-

ment can also activate the inhibitory phosphatase PP2A. PD-1

engagement directly inhibits TCR-mediated effector functions

and increases T cell migration within tissues, thereby limiting

the time that a T cell has to survey the surface of interacting

cells for the presence of cognate peptide-MHC complexes.
Therefore, T cells may ‘‘pass over’’ target cells expressing lower

levels of peptide-MHC complexes (Honda et al., 2014).

In contrast to CTLA-4, PD-1 blockade is viewed to work

predominantly within the TME, where its ligands are commonly

overexpressed by tumor cells as well as infiltrating leukocytes

(Keir et al., 2008). This mechanism is thought to reflect its im-

portant physiologic role in restraining collateral tissue damage

during T cell responses to infection. In addition, tumor-infiltrating

lymphocytes (TILs) commonly express heightened levels of

PD-1 and are thought to be ‘‘exhausted’’ because of chronic

stimulation by tumor antigens, analogous to the exhausted

phenotype seen in murine models of chronic viral infection,

which is partially reversible by PD-1 pathway blockade (Barber

et al., 2006).

Importantly, the phenotypes of murine knockouts of PD-1 and

its two known ligands are very mild, consisting of late-onset

organ-specific inflammation, particularly when crossed to auto-

immune-prone mouse strains (Nishimura et al., 1999, 2001).

This contrasts sharply with the Ctla-4 knockout phenotype and

highlights the importance of the PD-1 pathway in restricting pe-

ripheral tissue inflammation. Furthermore, it is consistent with

clinical observations that autoimmune side effects of anti-PD-1

drugs are generally milder and less frequent than with anti-

CTLA-4.

Despite the conventional wisdom that CTLA-4 acts early in

T cell activation in secondary lymphoid tissues whereas PD-1 in-

hibits execution of effector T cell responses in tissue and tumors,

this distinction is not absolute. Beyond its role in dampening acti-

vation of effector T cells, CTLA-4 plays a major role in driving the

suppressive function of T regulatory (Treg) cells (Wing et al.,

2008; Peggs et al., 2009). Tregs, which broadly inhibit effector

T cell responses, are typically concentrated in tumor tissues

and are thought to locally inhibit anti-tumor immunity. Therefore,

CTLA-4 blockade may affect intratumoral immune responses by

inactivating tumor-infiltrating Treg cells. Recent evidence has

demonstrated anti-tumor effects from CTLA-4 blockade even

when S1P inhibitors block lymphocyte egress from lymph nodes

(Spranger et al., 2014), indicating that this checkpoint exerts at

least some effects directly in the TME as opposed to secondary

lymphoid tissues. Conversely, PD-1 has been shown to play a

role in early fate decisions of T cells recognizing antigens pre-

sented in the lymph node. In particular, PD-1 engagement limits

the initial ‘‘burst size’’ of T cells upon antigen exposure and can

partially convert T cell tolerance induction to effector differentia-

tion (Goldberg et al., 2007).

Complex Receptor-Ligand Interactions in the PD-1

Pathway: Links and Analogies to the CD28/CTLA-4

System

The receptor-ligand interactions of the PD-1 system appear to

be evenmore complex than the CD28/CTLA-4 system (Figure 1).

The two ligands for PD-1 are PD-L1 (B7-H1, CD274) and PD-L2

(B7-DC, CD273), which share 37% sequence homology and

arose via gene duplication (Dong et al., 1999, Latchman et al.,

2001; Tseng et al., 2001). However, their regulation is highly

divergent. PD-L1 is induced on activated hematopoietic cells

and on epithelial cells by the inflammatory cytokine interferon

(IFN)-g, which is produced by some activated T and natural killer

(NK) cells. PD-L2 has much more selective expression on acti-

vated dendritic cells and some macrophages. It is induced to a
Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc. 451



Figure 2. Two General Mechanisms for
Expression of Checkpoint Ligands
in the TME
The examples in this figure use the PD-1 ligand PD-
L1 for illustrative purposes, although the concept
likely applies to multiple checkpoint ligands. Top:
innate immune resistance. In some tumors, consti-
tutive oncogenic signaling, such as through activa-
tion of the AKT pathway or gene amplification, can
upregulate PD-L1 expression on tumor cells inde-
pendently of inflammatory signals in the TME. Bot-
tom: adaptive immune resistance refers to PD-L1
induction in tumors as an adaptation to the sensing
of an immune attack. In adaptive resistance, PD-L1
is not constitutively expressed but, rather, is
induced by inflammatory signals, such as IFN-g
produced by T cells attempting to execute an active
anti-tumor response. Expression of PD-L1 in a non-
uniform distribution associated with lymphocyte
infiltrates suggests adaptive induction in response
to immune reactivity within the TME. Adaptive
resistance can be generated by cytokine-induced
PD-L1 expression on either tumor cells themselves
or on leukocytes (macrophages, myeloid suppres-
sor cells, dendritic cells, or even lymphocytes) in
the TME. Inhibition of tumor-specific T cells by
PD-L1- or PD-L2-expressing leukocytes may in-
volve cross-presentation of tumor antigens so that
PD-1-dependent inhibition is in cis. Adaptive resis-
tance may be a common mechanism for the intra-
tumoral expression of multiple immune checkpoint
molecules.
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much greater extent by interleukin 4 (IL-4) than by IFN-g, further

emphasizing differences in regulation of expression of PD-L1

and PD-L2.

Beyond their role as ligands for PD-1, PD-L1 and PD–L2

appear to have additional partners, indicating additional layers

of immunemodulation. An unexpected molecular interaction be-

tween PD-L1 and CD80 has been discovered (Butte et al., 2007;

Park et al., 2010) whereby CD80 expressed on activated T cells

(and possibly APCs) can function as a receptor rather than a

ligand, delivering inhibitory signals when engaged by PD-L1.

The relevance of this interaction in tumor immune resistance

has not yet been determined. Recently, PD-L2 has been shown

to bind to repulsive guidance molecule b (RGMb), which itself

binds at least three other molecules in cis (neogenin and BMP

receptors type I and II) (Xiao et al., 2014). This interaction ap-

pears to be inhibitory independent of PD-1, as demonstrated in

a pulmonary tolerance model. Finally, evidence from murine

models suggests that PD-L2 and, possibly, PD-L1 may bind

to a co-stimulatory T cell receptor (Shin et al., 2003, 2005),

an arrangement reminiscent of the CD80/CD86 ligand pair for

the co-stimulatory CD28 and co-inhibitory CTLA-4 receptors.

Understanding the roles of these various interactions in cancer

is highly relevant for the development of immunomodulatory

drugs and the discovery of biomarkers predictive of therapeutic

response.

Mechanisms of PD-1 Ligand Induction: Implications for

Cancer Immunotherapy

A key finding that encouraged the development of drugs block-

ing the PD-1 pathway for cancer immunotherapy was that PD-1

ligands are upregulated in many human cancers (Dong et al.,

2002), whereas PD-1 is highly expressed on tumor-infiltrating

lymphocytes (Ahmadzadeh et al., 2009; Sfanos et al., 2009).
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Indeed, PD-L1 appears to be the major ligand expressed in solid

tumors, whereas PD-L2 (together with PD-L1) is highly ex-

pressed in certain subsets of B cell lymphomas (Ansell et al.,

2015). Exploration of this phenomenon as a central process by

which cancers resist elimination by endogenous tumor-specific

T cells revealed two mechanisms for PD-1 ligand upregulation

in cancer, known as intrinsic and adaptive immune resistance

(Figure 2). These mechanisms are not mutually exclusive and

may co-exist in the same TME. Intrinsic resistance refers to the

constitutive expression of PD-L1 by tumor cells because of ge-

netic alterations or activation of certain signaling pathways,

such as the AKT pathway and STAT3, which are commonly acti-

vated in many cancers (Parsa et al., 2007; Marzec et al., 2008).

Although PD-L1 induction by AKT and STAT3 signaling has

been demonstrated in some tumor cell lines, the importance of

this intrinsic pathway in PD-L1 expression by tumors in vivo re-

mains to be determined. Genetic alterations in B cell lymphoma

subtypes can drive expression of either or both PD-L1 and PD-

L2. Primary mediastinal lymphomas commonly display gene fu-

sions between MHC class II transactivator (CIITA) and PD-L1 or

PD-L2, placing PD-1 ligands under the transcriptional control of

the CIITA promoter, which is highly active in B cell lymphomas

(Steidl et al., 2011). A significant subset of Hodgkin’s lymphoma

has amplification of chromosome 9p23-24, where PD-L1 and

PD-L2 reside, resulting in overexpression of both ligands. Other

cancers, such as a subset of Epstein-Barr virus-induced gastric

cancers, also display gene amplification with consequent induc-

tion of PD-L1 and PD-L2.

The second mechanism, adaptive resistance, refers to the

induction of PD-L1 expression on tumor cells in response to spe-

cific cytokines, in particular IFN-g. Because IFN-g is only pro-

duced by activated Th1-type helper CD4 cells, activated CD8
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cells, and NK cells, this mechanism represents an adaptation of

tumor cells upon ‘‘sensing’’ an inflammatory immune microenvi-

ronment that ‘‘threatens’’ the tumor. Indeed, human tumors

show significant correlations between PD-L1 expression, levels

of T cell infiltration, and IFN-g in the TME (Taube et al., 2012;

Spranger et al., 2013). Other inhibitory molecules in the TME,

such as indoleamine 2030 dioxygenase (IDO),which inhibits immu-

nity locally via conversion of tryptophan to kynurenines, are also

induced by IFN-g and coordinately upregulated with PD-L1. The

concept of adaptive resistance does not solely apply to induction

of PD-L1 on tumor cells. Early studies demonstrated that PD-L1

expression on myeloid cells, including dendritic cells, can signifi-

cantly impair activation of tumor-specific T cells. Inhibition of

T cell responses can be mediated by PD-L1+ suppressive

myeloid cells or dendritic cells (DCs) in the TME as well as in tu-

mor-draining lymph nodes (Curiel et al., 2003). In some tumors,

such as microsatellite instability (MSI) colon cancer, myeloid

rather than tumor cells are the major cell type expressing PD-L1

(Llosa et al., 2015). A recent report suggests that PD-L1 expres-

sion by infiltrating myeloid cells rather than tumor cells is more

predictive of response to PD-1 pathway blockade (Herbst et al.,

2014). The relative importanceofPD-L1expressionon leukocytes

in the TME, which would provide ‘‘third-party’’ inhibition, versus

direct expression by the tumor cells, remains to be determined.

Implications of Adaptive Immune Resistance

The adaptive resistance mechanism of intratumoral PD-L1 in-

duction, together with the broad therapeutic activity of PD-1

pathway blockade in human cancer, validates one of the most

important tenets underlying cancer immunology and immuno-

therapy, namely, that many cancer patients contain a significant

repertoire of tumor-specific T cells capable of killing their tumor

save for the adaptive induction of immune checkpoints in the

TME. It also implies that PD-L1 expression in the tumor repre-

sents a measure of the potential for a patient’s immune system

to recognize the tumor. One of the major unanswered questions

is this: what are the dominant antigenic targets that T cells recog-

nize when checkpoints are blocked? Circumstantial evidence

supports the notion that neoantigens created by the multiple

somatic mutations in cancers provide such targets. Indeed, a

recent report has demonstrated that melanomas with higher

mutational loads were more responsive to anti-CTLA-4 therapy

(Snyder et al., 2014). Also, the tumor types that have been shown

to respond to anti-PD-1/PD-L1 therapy tend to be those with

higher median mutational loads (i.e., carcinogen-induced can-

cers such as melanoma, lung, bladder, and head and neck can-

cers). However, there has been much evidence over the past 20

years that shared self-antigens upregulated in tumors by epige-

netic mechanisms (e.g., cancer-testis antigens) are also able

to provide selective tumor targeting. The relative importance

of mutation-dependent, tumor-specific neoantigens versus

tumor-associated self-antigens as T cell targets remains to be

determined.

Finally, the adaptive resistance mechanism has profound im-

plications for developing synergistic combinatorial cancer im-

munotherapies. One of the most promising general approaches

to immunotherapy utilizes positive drivers of anti-tumor immune

responses, such as vaccines, intratumoral injection of immune

activators, and co-stimulatory receptor agonists. These modal-

ities with the potential to enhance anti-tumor responses would
also be expected to enhance the adaptive induction of check-

points like PD-1 ligands. This has, in fact, been demonstrated

in animal models of vaccination (Fu et al., 2014). Therefore, pos-

itive drivers of anti-tumor immunity may be synergistic with PD-1

pathway inhibitors. Such approaches are just beginning to enter

the clinic.

Clinical Impact of Drugs Blocking CTLA-4 and PD-1
Anti-CTLA-4

The anti-CTLA-4 monoclonal antibodies (mAbs) ipilimumab, a

fully human IgG1 (Bristol-Myers Squibb), and tremelimumab, a

fully human IgG2 (Pfizer, MedImmune), were the first immune

checkpoint-blocking drugs to enter clinical testing in oncology.

Although designed as CTLA-4-blocking mAbs, these drugs

have recently been postulated to have unique functions en-

dowed by their specific isotypes, with evidence suggesting

that ipilimumab may deplete Tregs overexpressing CTLA-4

(Selby et al., 2013). In 2011, ipilimumab was approved in the

United States and Europe as therapy for advanced unresectable

melanoma based on results from two phase III trials showing

significant extensions in overall survival (OS) (Hodi et al., 2010;

Robert et al., 2011). Long-term follow-up in a pooled meta-anal-

ysis of 1,861 melanoma patients receiving ipilimumab in phase II

or III trials revealed durable survival in approximately 20%, in

some cases extending to 10 years (Schadendorf et al., 2015).

Interestingly, this survival rate is approximately double the

observed rate of tumor regressions measured by standard

oncologic criteria (�10% complete responses [CRs] and partial

responses [PRs]). Factors contributing to this phenomenon

may include prolonged disease stabilization, unconventional

‘‘immune-related’’ response patterns, or a heightened respon-

siveness of ipilimumab-refractory patients to subsequent thera-

pies. Although tremelimumab, a distinct CTLA-4-blocking mAb,

showed promise in early-phase melanoma trials, it did not meet

its designated endpoint when randomized against standard

chemotherapy in a first-line phase III melanoma trial (Ribas

et al., 2013).

Ipilimumab has so far shown only modest anti-tumor effects in

non-melanoma cancers, and tremelimumab is still in early testing

for these indications (reviewed in Weber, 2014). Kidney, lung,

and prostate cancer have been the most intensively studied.

In a phase II study of metastatic renal cell carcinoma (RCC,

n = 61), a partial response rate of 10%was observedwith ipilimu-

mab monotherapy (Yang et al., 2007). In lung cancer, treatment-

naive patients with non-small-cell lung cancer (NSCLC) (n = 204)

or extensive disease small-cell lung cancer (ED-SCLC) (n = 130)

received standard chemotherapy alone or combined with ipili-

mumab during initial (‘‘concurrent’’) or later (‘‘phased’’) chemo-

therapy cycles in a phase III trial (Lynch et al., 2012; Reck

et al., 2013). For both diseases, a brief but statistically significant

1-month extension of progression-free survival measured by im-

mune-related criteria (irPFS) was observed in patients receiving

phased ipilimumab plus chemotherapy compared with chemo-

therapy alone. In NSCLC, there was also a significant 1-month

extension of PFS measured by standard criteria in the phased

ipilimumab arm. Although ipilimumab did not have a significant

impact on OS in either NSCLC or ED-SCLC, a subset analysis

appeared to show improved activity in patients with squamous

NSCLC, providing the basis for an ongoing phase III trial of
Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc. 453



Table 1. Drugs in Clinical Development that Block PD-1 or PD-L1

Target Drug Name Other Names Source

Isotype and

Characteristics Clinical Testing Phase

PD-1 MEDI0680 AMP-514 MedImmune/ AstraZeneca information not available phase I

nivolumab Opdivo, BMS-936558,

MDX-1106, ONO-4538

Bristol-Myers Squibb, Ono

Pharmaceuticals

fully human IgG4a approved, treatment-

refractory unresectable

melanoma (Japan, United

States) and squamous

NSCLC (United States)

pembrolizumab Keytruda, MK-3475,

lambrolizumab

Merck humanized IgG4 approved, treatment-

refractory unresectable

melanoma (United States)

pidilizumab CT-011 CureTech humanized IgG1 phase I-II

PD-L1 BMS-936559 MDX-1105 Bristol-Myers Squibb fully human IgG4a phase I

MEDI4736 none MedImmune/ AstraZeneca Fc-modified human IgG1b phase I-III

MPDL3280A RG7446 Genentech/ Roche Fc-modified human IgG1b phase I-III

MSB0010718C none EMD Serono fully human IgG1a phase I-II
aFully human mAbs were produced in genetically engineered mice.
bFc-modified mAbs were engineered to abrogate ADCC and complement-dependent cytotoxicity (CDC).
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ipilimumab plus chemotherapy in this histology. Similarly, trials

of ipilimumab in metastatic castration-resistant prostate cancer

(mCRPC) have yielded weak but positive signals of activity. In

phase I/II trials in which patients received ipilimumab alone or

combined with systemic granulocyte-macrophage colony-stim-

ulating factor or focal radiotherapy, prostate-specific antigen re-

ductions ofR50%were observed in some patients, and isolated

examples of measurable tumor regression were reported (Fong

et al., 2009; Slovin et al., 2013), supporting further study. In a

phase III trial of ipilimumab versus placebo after bone-directed

radiotherapy in 799 patients with docetaxel-refractory mCRPC,

median OS was 11.2 versus 10.0 months, respectively (p =

0.053), failing to meet the trial’s primary endpoint (Kwon et al.,

2014). However, there was a statistically significant 1-month

improvement in PFS and a suggestion that OS was prolonged

in a subgroup of patients with favorable prognostic features. A

separate phase III trial of ipilimumab in chemotherapy-naive pa-

tients with asymptomatic or minimally symptomatic mCRPC

without visceral metastases has recently completed accrual.

Valuable clinical experience gained from studies of anti-

CTLA-4 mAbs paved a path for accelerated development of

other drugs in class by providing a framework for treatment strat-

egy, toxicity management, and efficacy evaluation. New princi-

ples emerged that distinguished immune checkpoint blockade

from traditional cancer therapies. First, a new category of side

effects, so-called ‘‘immune-related adverse events’’ (irAEs),

was recognized and characterized, leading to algorithm devel-

opment for early detection and management. Drug-related irAEs

were severe in 15%–30% of patients receiving anti-CTLA-4,

sometimes resulting in fatalities. These irAEs were associated

with inflammation in normal tissues such as the gut, skin, and

endocrine glands and resembled phenotypes observed in hu-

man CTLA-4 heterozygotes with reduced CTLA-4 expression

(Topalian and Sharpe, 2014). Their occurrence in individuals

with no prior history of autoimmunity validates the mechanism

of action of anti-CTLA-4 in ‘‘releasing the brakes’’ on immune re-

sponses and underscores the precarious balance that normally
454 Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc.
exists between self-tolerance and autoimmunity. Second, a

new category of clinical response termed ‘‘immune-related

response’’ was recognized in which major and durable tumor

regressions could occur after apparent initial disease progres-

sion on treatment (Wolchok et al., 2009). Tumor enlargement

measured by conventional radiologic scans may result from

drug-induced inflammation at tumor sites or could reflect actual

tumor growth followed by delayed regression. Such phenomena

pose challenges for the appropriate management of individual

patients and the selection of informative endpoints for trials of

immune checkpoint-blocking drugs.

Drugs Blocking the PD-1 Pathway

Information garnered from trials of anti-CTLA-4 agents fast-for-

warded the development of drugs blocking PD-1 or its major

ligand, PD-L1. As predicted by murine models, these drugs

have heightened tumor selectivity and reduced toxicity com-

pared with anti-CTLA-4, supporting their administration in an

outpatient setting. Furthermore, although they are effective

against advanced treatment-refractory melanoma, with recent

regulatory approvals for two anti-PD-1 drugs in this setting,

they also appear to have a much broader spectrum of anti-tumor

activity than anti-CTLA-4. Reproducible and durable regressions

of epithelial cancers (lung, head and neck, and bladder cancers,

among others) have catapulted the launching of hundreds of

ongoing clinical trials in diverse disease indications. Although

several different anti-PD-1/PD-L1-blocking mAbs are currently

in clinical testing (Table 1), the fact that anti-tumor activity has

been observed with all of them highlights the PD-1 pathway as

a dominant intratumoral immunosuppressive pathway and a

key target in cancer therapy.

The first-in-human trial of nivolumab anti-PD-1 provided sem-

inal evidence that this treatment approach could potentially

impact diverse cancer types, including common epithelial can-

cers, with objective responses reported in patients with mela-

noma, kidney, and colorectal cancer (Brahmer et al., 2010).

A transient tumor regression in one patient with NSCLC

provided the impetus for investigating a larger NSCLC cohort
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in a follow-up multi-dose trial of nivolumab in multiple cancer

types (Topalian et al., 2012). Results from this trial showed

notable objective response rates in patients with advanced treat-

ment-refractory NSCLC (17%, n = 129), RCC (27%, n = 34), and

melanoma (31%, n = 107). Importantly, responseswere quite du-

rable, with many persisting even after drug discontinuation, and

long-term follow-up revealed OS of 9.9, 22.4, and 16.8 months,

respectively (Topalian et al., 2014). These non-randomized data

compared favorably to historical response rates in similar patient

populations, spurring phase III testing of nivolumab in all three

cancers. A recent phase III report showed the superiority of

first-line nivolumab versus standard chemotherapy in patients

with advanced melanoma (Robert et al., 2015). These findings

have incentivized the aggressive clinical development of PD-1

pathway-blocking drugs by multiple pharmaceutical and bio-

technology companies (Table 1), and the clinical activity of these

drugs in melanoma, RCC, and NSCLC has been confirmed

(Brahmer et al., 2012; Hamid et al., 2013; Herbst et al., 2014;

Motzer et al., 2014). Nivolumab was recently approved by the

Food and Drug Administration for chemotherapy-refractory

squamous NSCLC. However, the full activity spectrum of PD-1

pathway-blocking drugs is not yet known, with recent evidence

of efficacy in advanced chemotherapy-refractory bladder cancer

(Powles et al., 2014), Hodgkin’s lymphoma (Ansell et al.,

2015), head and neck, gastric, triple-negative breast, and

ovarian cancers.

Combination Therapies Based on PD-1 Pathway

Blockade

Despite these promising results, the majority of patients treated

with anti-PD-1/PD-L1 monotherapies do not achieve objective

responses, and most tumor regressions are partial rather than

complete. Animal models suggest that treatment combina-

tions based on PD-1 pathway blockade may be synergistic,

including anti-CTLA-4 or other checkpoint inhibitors, chemo-

therapy, tyrosine kinase inhibitors, focal irradiation, cancer vac-

cines, or immune agonist mAbs. Appropriate preclinical models

are valuable in providing a basis for prioritizing clinical transla-

tion. A wide variety of treatment combinations are now under

clinical development in diverse cancer types. Early and

substantial tumor regressions observed with a combination

of anti-CTLA-4 (ipilimumab) and anti-PD-1 (nivolumab) in

advanced melanoma have garnered attention, although associ-

ated irAEs were also amplified (Wolchok et al., 2013). Results

from ongoing prospectively randomized trials will be needed

to define the role of this treatment combination in melanoma

and other cancers.

Biomarkers of Response

As mentioned earlier, studies of peripheral blood have yielded

pharmacodynamic evidence of global T cell activation in patients

receiving anti-CTLA-4 (Maker et al., 2006), although these

changes do not appear to correlate with clinical outcomes. Pe-

ripheral T cell activation does not occur to the same degree in

patients receiving anti-PD-1/PD-L1 (Brahmer et al., 2010), as

might be anticipated because the TME is thought to be the

main site of activity of this pathway. Accordingly, tumor tissue

has become the focal point for exploring potential biomarkers

of response to anti-PD-1 drugs. Early studies revealed a correla-

tion between pretreatment tumor cell expression of the ligand

PD-L1 by immunohistochemistry (IHC) and the likelihood of
response to anti-PD-1 (Brahmer et al., 2010; Topalian et al.,

2012). With the advent of several new automated PD-L1 IHC

tests and interrogation of hundreds of patients with a variety of

cancer types, a significant but not absolute relationship between

PD-L1 expression in the TME and responsiveness to PD-1

pathway blockade has been confirmed. The potential impor-

tance of PD-L1 expression by infiltrating immune cells (Herbst

et al., 2014), the presence and location of CD8+ tumor-infiltrating

lymphocytes (Tumeh et al., 2014), and other factors (Taube et al.,

2014) are currently under intense study individually and in com-

bination to discern more sensitive and specific predictors of clin-

ical outcomes.

On the Horizon: Targeting Novel Checkpoints
Although antibody blockers of CTLA-4 and PD-1 are the focus of

clinical attention at this time, it is likely that blockade of additional

checkpoints will result in even further clinical activity. This is

because multiple checkpoints appear to be co-expressed with

PD-L1 and PD-1 in tumors. We review here some of the most

actively studied ‘‘next-generation’’ checkpoint molecules for

which antibody blockers are already in the clinic or soon to be

tested in clinical trials, many in combination with anti-PD-1 or

anti-PD-L1.

Lymphocyte Activation Gene 3

Lymphocyte activation gene 3 (LAG-3, CD223) is an immune

checkpoint molecule expressed on activated T cells (Huard

et al., 1994), NK cells (Triebel et al., 1990), B cells (Kisielow

et al., 2005), and plasmacytoid dendritic cells (Workman et al.,

2009). Structurally, LAG-3 is highly homologous to the CD4

T cell co-receptor and lies proximal to the CD4 gene on human

chromosome 12, but, at the amino acid level, it is less than

20% homologous to CD4, indicating that the two genes likely

diverged early in evolution (Dijkstra et al., 2006). The only known

ligand for LAG-3 is MHC II (Huard et al., 1997), although its struc-

tural interactions with MHC II are more limited than those of CD4

(Fleury et al., 1991; Moebius et al., 1993). Early studies showed

that LAG-3 was selectively upregulated on CD4+ Tregs (Huang

et al., 2004). Here a LAG-3-blocking antibody mitigated Treg ac-

tivity in vivo, and transfection of antigen-specific CD4 T cells with

full length, but not truncated, LAG-3 could confer in vitro Treg

function. More recent studies have also suggest that LAG-3

blockade (or genetic knockout) affects the ability of conventional

T cells (Tconv) to be suppressed by Tregs (Sega et al., 2014;

Durhamet al., 2014). Additionally, LAG-3 has aCD8T cell-intrinsic

role because LAG-3 blocking antibodies were found to augment

CD8 T cell function in vivo in the absence of CD4 T cells Grosso

et al., 2007). As described above, exhausted or dysfunctional

T cells can express multiple immune checkpoint molecules, and

LAG-3 and PD-1 are commonly co-expressed in models of

chronic infection Blackburn et al., 2009) as well as models of

self-antigen recognition (Grosso et al., 2009). These studies

have been extended to human tumors in that a significant fraction

of antigen-specific CD8 T cells in patients with ovarian cancer and

melanoma co-express LAG-3 and PD-1 (Matsuzaki et al., 2010;

Baitsch et al., 2012). Evidence for synergistic immunosuppression

mediated by LAG-3 and PD-1 comes from studies in which dou-

ble-knockout mice were generated. Although neither LAG-3 nor

PD-1 single knockout animals succumb to autoimmunity, com-

bined knockout results in multi-organ lymphocytic infiltration,
Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc. 455
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and early death (Woo et al., 2012). Nearly identical results were

obtained in models of autoimmunity (Okazaki et al., 2011), rein-

forcing the notion that LAG-3 and PD-1 are potentially synergistic

in regulating T cell function. A role for dual blockade of LAG-3 and

PD-1 in tumor immunity is suggested by studies in which most

tumors implanted in PD-1/LAG-3 double-knockout mice were

rejected, whereas PD-1 single-knockout mice showed delayed

tumor growth. Similarly, combined antibody-mediated blockade

of LAG-3 and PD-1 resulted in tumor rejection in several models

without any short-term evidence of autoimmune side effects. An

anti-LAG-3 blocking mAb has recently entered clinical testing in

cancer (clinical trial NCT01968109) in a phase I trial that includes

cohorts receiving anti-LAG-3 monotherapy or combination ther-

apy with anti-PD-1.

Killer Inhibitory Receptors

NK cells are a population of innate immune cells with well docu-

mented roles in infectious and tumor immunity (Marcus et al.,

2014). Like activated CD8 T cells, NK cells mediate target cell

apoptosis via secretion of preformed granules containing per-

forin and granzymes. However, unlike CD8 T cells, NK cells do

not recognize unique peptides in the context of classical MHC

I molecules. Instead, NK function is controlled by the complex

interplay of a series of activating receptors and killer inhibitory re-

ceptors (KIRs) and their ligands. In humans, KIR molecules are

polymorphic and bind to certain MHC I alleles, and not all KIR/

ligand pairs are equally capable of inhibiting NK cell function.

Indeed, bone marrow transplants in which donor NK cells lack

the ability to be inhibited by host KIR ligands have been shown

to result in lower relapse rates and improved OS, supporting

the importance of this cell type in cancer immunity (Benson

and Caligiuri, 2014). The relative importance of NK cells inmurine

models of cancer immunotherapy has been documented bymul-

tiple studies but is especially highlighted by studies in which NK

cell activation via IL-15 can eradicate fairly advanced tumors in

the absence of CD8 T cells (Liu et al., 2012). So, in a sense,

KIRs can be thought of as immune checkpoint molecules, and

blocking KIRs on NK cells could be exploited to augment anti-tu-

mor immunity. To that end, a fully human anti-KIR mAb has

entered clinical testing. This antibody (initially IPH-2101, Innate

Pharma; now lirilumab, Bristol-Myers Squibb) binds to the hu-

man KIR molecules KIR2DL-1, KIR2DL-2, and KIR2DL-3 as

well as to KIR2DS-1 and KIR2DA-2, preventing their binding to

HLA-C MHC I molecules (Romagné et al., 2009). A phase I trial

of anti-KIR in acute myelogenous leukemia has been completed.

Several studies in hematologic and solid cancers are ongoing,

but of particular interest are trials in which lirilumab is being com-

bined with anti-PD-1 (nivolumab, clinical trial NCT01714739) or

with anti-CTLA-4 (ipilimumab, clinical trial NCT01750580). These

trials are important in that each seeks to combine innate immune

activation via anti-KIR with activation of the adaptive immune

system, therefore offering the potential for additive or synergistic

anti-tumor efficacy.

B7-H3

B7-H3 (CD276) was initially identified using a bioinformatics

approach in which human genome databases were queried for

sequences with homology to previously identified B7 family

members (Chapoval et al., 2001). It is a type I transmembrane

protein with single variable and constant immunoglobulin do-

mains. B7-H3 mRNA is widely expressed in normal tissues
456 Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc.
(Sun et al., 2002), but protein expression is more restricted and

is controlled by post-transcriptional mechanisms. The under-

standing of B7-H3 biology is complicated by the fact that it

can be expressed on both immune and non-immune cells. On

immune cells, B7-H3 appears to exert a stimulatory role: down-

regulation of B7-H3 expression using anti-sense oligonucleo-

tides inhibits T cell production of IFN-g (Chapoval et al., 2001).

Therefore, B7-H3might be considered not as a classical immune

checkpoint molecule but, rather, as a co-stimulatory receptor

more analogous to CD28. Although this model is supported by

numerous studies (Yi and Chen, 2009), several studies suggest

an alternative model in which B7-H3 down-modulates T cell acti-

vation. These studies include the finding that B7-H3-blocking

antibodies exacerbate disease in the experimental autoimmune

encephalomyelitis (EAE) murine model as well as in several other

models (Suh et al., 2003). In terms of cancer immunity, there is a

similar lack of clarity in that the induction of expression of B7-H3

in tumor cell lines increases their immunogenicity and leads to

more rapid rejection (Luo et al., 2004). But in many human tu-

mors, expression of B7-H3 in situ has been associated with a

poor outcome. This is especially notable in RCC and prostate

cancer, where expression correlates with an increased risk of

death (Crispen et al., 2008; Chavin et al., 2009). Based on the

notion that B7-H3 protein is overexpressed in multiple tumor

types, a mAb with enhanced antibody-dependent cellular cyto-

toxicity (ADCC) function has been developed (Loo et al., 2012)

and has entered clinical trials (clinical trial NCT01391143). This

agent is not being deployed as an immune checkpoint-blocking

antibody. Rather, it is being tested as a traditional tumor-target-

ing antibody similar in concept to rituximab or trastuzumab.

T Cell Immunoglobulin and Mucin-3

T cell immunoglobulin and mucin-3 (TIM-3) is an immune

checkpoint molecule expressed on activated human T cells,

NK cells, and monocytes. TIM-3 knockout mice, similar to

LAG-3 knockouts, do not develop overt autoimmunity (Sán-

chez-Fueyo et al., 2003), suggesting that TIM-3 and LAG-3

may have similarly subtle effects in modulating immune cell

function. Consistent with this hypothesis, TIM-3 blockade

accelerates the disease phenotype in murine models prone to

developing autoimmunity, including non-obese diabetic (NOD)

(Sánchez-Fueyo et al., 2003) and EAE models (Monney et al.,

2002). Functionally, TIM-3 binds to galectin-9 (as well as several

other ligands), as supported by data showing that administration

of galectin-9 in vitro causes cell death of Th1 cells in a TIM-3-

dependent manner (Zhu et al., 2005). Recent studies showed

that TIM-3 is co-expressed with and binds to CECAM1 and

that this interaction is important in TIM-30s regulatory function

(Huang et al., 2015). In other work, the role of the TIM-3 immune

checkpoint was studied in several murine cancer models (Sa-

kuishi et al., 2010), including the CT26 colon carcinoma, 4T1

mammary carcinoma, and B16 melanoma. Interestingly, TIM-3

was nearly universally co-expressed with PD-1 on the majority

of TILs. Co-expression of both checkpoint molecules reflected

a more exhausted phenotype, functionally defined by a T cell’s

reduced ability to proliferate and secrete IFN-g, IL-2, and tumor

necrosis factor a (TNF-a). Combined blockade was more effec-

tive in controlling tumor growth than blocking either checkpoint

alone, confirming the notion that combined immune checkpoint

blockade offers a potential treatment strategy for a wide variety
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of cancers and that, besides CTLA-4 and LAG-3, other check-

points might synergize with PD-1 to down-modulate T cell

responses to tumors. Anti-human TIM-3 blocking antibodies

have not yet entered the clinic but are under development.

V-Domain Ig-Containing Suppressor of T Cell Activation

V-domain Ig-containing suppressor of T cell activation (VISTA) is

a relatively recently described negative regulator of T cell func-

tion (Wang et al., 2011). Unlike PD-1 and CTLA-4, VISTA is pre-

dominantly expressed on myeloid and granulocytic cells, with

only weak T cell expression in mice and humans (Lines et al.,

2014; Wang et al., 2011). Functionally, VISTA blockade attenu-

ates tumor outgrowth, especially when combined with a

cancer vaccine (Wang et al., 2011). In terms of human cancers,

VISTA expression has been described in colorectal tumors;

here expression appears to be confined to CD11b+ cells,

whereas expression on CD8 T cells was not detected (Lines

et al., 2014). These early studies are relatively limited in scope,

and a more comprehensive analysis of VISTA expression in

various human tumor types is warranted. In addition, the relative

efficacy of VISTA blockade compared with PD-1 or CTLA-4

blockade awaits the development of suitable reagents, but, as

is the case for the other checkpoint molecules discussed above,

the notion that VISTA expression so far appears to be selective

for the myeloid compartment of tumors suggests the possibility

of clinical effects distinct from those mediated by currently

available checkpoint blocking antibodies as well as the potential

for additive or synergistic benefits.

T Cell ITIM Domain: TIGIT

LikeB7-H3, TIGITwas initially identified throughagenomic search

for structures shared among regulatory receptors, including a

conserved ITIM motif (Yu et al., 2009). Initial studies suggested

that TIGIT functions by transmitting a negative signal to DCs,

decreasing IL-12 secretion while simultaneously enhancing IL-

10 levels. A more recent study, however, shows that TIGIT func-

tions as an immune checkpoint, downregulating proliferation of

both murine and human T cells (Johnston et al., 2014). The ligand

for TIGIT is the poliovirus receptor (PVR), but PVRalso binds to the

T cell surface molecule CD226. In this way, TIGIT biology is

perhaps reminiscent of the interaction between B7 molecules

andCTLA-4/CD28. Binding of PVR to TIGITmediates an inhibitory

signal, whereas binding of PVR to CD226 transmits a positive co-

stimulatory signal to T cells. Blocking TIGIT with a specific mAb

showed efficacy in both viral and tumor models, including an ad-

ditive anti-tumor effect when both PD-L1 and TIGIT were blocked

simultaneously. The relevance of these data to human cancer

awaits future clinical development, but it is worth noting that

genomic profiling studies showed that CD8a expression corre-

lates closely with TIGIT expression in tissue from lung cancer

patients (Johnston et al., 2014).

IDO

Although not an immune checkpoint in the classical sense,

several inhibitory pathways mediated by overexpression of IDO

in various tumor types play an important role in downregulating

anti-tumor immunity (Prendergast et al., 2014). As briefly men-

tioned above, IDO catabolizes the breakdown of tryptophan

to kynurenine (and other metabolites). T cells require adequate

tryptophan levels for survival and effector function, and, there-

fore, IDO-mediated tryptophan deficiency results in T cell toler-

ance and lack of effector function and promotes the differentia-
tion of naive CD4 T cells into Tregs (Fallarino et al., 2006). In

addition, IDO expression in a relatively small population of

tumor-associated DC allows the suppression of effector T cell

responses (Mellor andMunn, 2004). Both the IDO pathway inhib-

itor D-1MT and small-molecule enzymatic inhibitors of IDO1

(INCB024360 and NLG919) have entered clinical trials, and

phase I data from a trial combining D-1MT (indoximod) with

chemotherapy were published recently, demonstrating tolera-

bility for the combination as well as evidence of anti-tumor activ-

ity (Soliman et al., 2014).

Conclusions
Recent years have seen a rapid expansion of our knowledge of

immune regulation. Basic principles established in laboratory

models of infection, autoimmunity, and transplantation have

proved to be transportable to human cancer, supporting the

development of drugsmodulating anti-tumor immunity. The suc-

cessful application of the immune checkpoint blockers anti-

CTLA-4 in melanoma and anti-PD-1/PD-L1 in multiple cancer

types has established immunotherapy as a viable treatment op-

tion for patients with advanced cancers and has opened the

doors to developing a new generation of immune modulators

that may be most effective when employed in treatment combi-

nations. Armed with a new understanding and unprecedented

opportunities, the field of immunotherapy is now standing on

the threshold of great advances in the war against cancer.

AUTHOR CONTRIBUTIONS

All authors contributed to the design and writing of this manuscript.

ACKNOWLEDGMENTS

The authors thank Dr. Julie Brahmer (Johns Hopkins University) for helpful
discussions. This work was supported by research funding from Bristol-Myers
Squibb (to S.L.T., C.G.D., and D.M.P.), the Melanoma Research Alliance
(to S.L.T., C.G.D., and D.M.P.), the National Cancer Institute/NIH (R01
CA142779 [to S.L.T. and D.M.P.] and R01 CA154555 [to C.G.D.]), the Barney
Family Foundation (to S.L.T.), the Laverna Hahn Charitable Trust (to S.L.T.),
the Commonwealth Foundation (to D.M.P.), andMoving forMelanoma of Dela-
ware (to S.L.T. and D.M.P.). S.L.T. and D.M.P. were also supported by a Stand
Up To Cancer—Cancer Research Institute Cancer Immunology Translational
Cancer Research Grant (SU2C-AACR-DT1012). Stand Up To Cancer is a pro-
gram of the Entertainment Industry Foundation administered by the American
Association for Cancer Research. The authors have declared the following
financial relationships. S.L.T.: research grants from Bristol-Myers Squibb
and consulting for Five Prime Therapeutics, GlaxoSmithKline, and Jounce
Therapeutics; C.G.D.: research grants from Bristol-Myers Squibb and Jans-
sen; consulting for Bristol-Myers Squibb, Compugen, Janssen, Novartis,
and Roche/Genentech; stock options in Compugen, ImmuneXcite, NexIm-
mune, and Potenza Therapeutics; and patent royalties through his institution,
Bristol-Myers Squibb, and Potenza. D.M.P.: research grants from Bristol-
Myers Squibb; consulting for Five Prime Therapeutics, GlaxoSmithKline,
Jounce Therapeutics, MediImmune, Pfizer, Potenza Therapeutics, and Sanofi;
stock options in Jounce and Potenza; and patent royalties through his institu-
tion, Bristol-Myers Squibb and Potenza.

REFERENCES

Ahmadzadeh, M., Johnson, L.A., Heemskerk, B., Wunderlich, J.R., Dudley,
M.E., White, D.E., and Rosenberg, S.A. (2009). Tumor antigen-specific CD8
T cells infiltrating the tumor express high levels of PD-1 and are functionally
impaired. Blood 114, 1537–1544.

Ansell, S.M., Lesokhin, A.M., Borrello, I., Halwani, A., Scott, E.C., Gutierrez,M.,
Schuster, S.J., Millenson, M.M., Cattry, D., Freeman, G.J., et al. (2015). PD-1
Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc. 457



Cancer Cell

Perspective
blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma.
N. Engl. J. Med. 372, 311–319.

Baitsch, L., Legat, A., Barba, L., Fuertes Marraco, S.A., Rivals, J.P., Baum-
gaertner, P., Christiansen-Jucht, C., Bouzourene, H., Rimoldi, D., Pircher,
H., et al. (2012). Extended co-expression of inhibitory receptors by human
CD8 T-cells depending on differentiation, antigen-specificity and anatomical
localization. PLoS ONE 7, e30852.

Barber, D.L., Wherry, E.J., Masopust, D., Zhu, B., Allison, J.P., Sharpe, A.H.,
Freeman, G.J., and Ahmed, R. (2006). Restoring function in exhausted CD8
T cells during chronic viral infection. Nature 439, 682–687.

Benson, D.M., Jr., and Caligiuri, M.A. (2014). Killer immunoglobulin-like recep-
tors and tumor immunity. Cancer Immunol Res 2, 99–104.

Blackburn, S.D., Shin, H., Haining, W.N., Zou, T., Workman, C.J., Polley, A.,
Betts, M.R., Freeman, G.J., Vignali, D.A., andWherry, E.J. (2009). Coregulation
of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral
infection. Nat. Immunol. 10, 29–37.

Brahmer, J.R., Drake, C.G., Wollner, I., Powderly, J.D., Picus, J., Sharfman,
W.H., Stankevich, E., Pons, A., Salay, T.M., McMiller, T.L., et al. (2010). Phase
I study of single-agent anti-programmed death-1 (MDX-1106) in refractory
solid tumors: safety, clinical activity, pharmacodynamics, and immunologic
correlates. J. Clin. Oncol. 28, 3167–3175.

Brahmer, J.R., Tykodi, S.S., Chow, L.Q.M., Hwu,W.J., Topalian, S.L., Hwu, P.,
Drake, C.G., Camacho, L.H., Kauh, J., Odunsi, K., et al. (2012). Safety and ac-
tivity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med.
366, 2455–2465.

Butte, M.J., Keir, M.E., Phamduy, T.B., Sharpe, A.H., and Freeman, G.J.
(2007). Programmed death-1 ligand 1 interacts specifically with the B7-1 cos-
timulatory molecule to inhibit T cell responses. Immunity 27, 111–122.

Chambers, C.A., Sullivan, T.J., Truong, T., and Allison, J.P. (1998). Secondary
but not primary T cell responses are enhanced in CTLA-4-deficient CD8+
T cells. Eur. J. Immunol. 28, 3137–3143.

Chapoval, A.I., Ni, J., Lau, J.S., Wilcox, R.A., Flies, D.B., Liu, D., Dong, H., Sica,
G.L., Zhu, G., Tamada, K., and Chen, L. (2001). B7-H3: a costimulatory mole-
cule for T cell activation and IFN-gamma production. Nat. Immunol. 2,
269–274.

Chavin, G., Sheinin, Y., Crispen, P.L., Boorjian, S.A., Roth, T.J., Rangel, L.,
Blute, M.L., Sebo, T.J., Tindall, D.J., Kwon, E.D., and Karnes, R.J. (2009).
Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate
cancer tumors and metastases. Clin. Cancer Res. 15, 2174–2180.

Crispen, P.L., Sheinin, Y., Roth, T.J., Lohse, C.M., Kuntz, S.M., Frigola, X.,
Thompson, R.H., Boorjian, S.A., Dong, H., Leibovich, B.C., et al. (2008). Tumor
cell and tumor vasculature expression of B7-H3 predict survival in clear cell
renal cell carcinoma. Clin. Cancer Res. 14, 5150–5157.

Curiel, T.J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., Krzysiek, R.,
Knutson, K.L., Daniel, B., Zimmermann, M.C., et al. (2003). Blockade of B7-H1
improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9,
562–567.

Dijkstra, J.M., Somamoto, T., Moore, L., Hordvik, I., Ototake, M., and Fischer,
U. (2006). Identification and characterization of a second CD4-like gene in
teleost fish. Mol. Immunol. 43, 410–419.

Dong, H., Zhu, G., Tamada, K., and Chen, L. (1999). B7-H1, a third member of
the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion.
Nat. Med. 5, 1365–1369.

Dong, H., Strome, S.E., Salomao, D.R., Tamura, H., Hirano, F., Flies, D.B.,
Roche, P.C., Lu, J., Zhu, G., Tamada, K., et al. (2002). Tumor-associated
B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion.
Nat. Med. 8, 793–800.

Durham, N.M., Nirschl, C.J., Jackson, C.M., Elias, J., Kochel, C.M., Anders,
R.A., and Drake, C.G. (2014). Lymphocyte Activation Gene 3 (LAG-3) modu-
lates the ability of CD4 T-cells to be suppressed in vivo. PLoSONE 9, e109080.

Fallarino, F., Fields, P.E., and Gajewski, T.F. (1998). B7-1 engagement of cyto-
toxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28.
J. Exp. Med. 188, 205–210.

Fallarino, F., Grohmann, U., You, S., McGrath, B.C., Cavener, D.R., Vacca, C.,
Orabona, C., Bianchi, R., Belladonna, M.L., Volpi, C., et al. (2006). The
458 Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc.
combined effects of tryptophan starvation and tryptophan catabolites down-
regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive
T cells. J. Immunol. 176, 6752–6761.

Fleury, S., Lamarre, D., Meloche, S., Ryu, S.E., Cantin, C., Hendrickson, W.A.,
and Sekaly, R.P. (1991). Mutational analysis of the interaction between CD4
and class II MHC: class II antigens contact CD4 on a surface opposite the
gp120-binding site. Cell 66, 1037–1049.

Fong, L., Kwek, S.S., O’Brien, S., Kavanagh, B., McNeel, D.G., Weinberg, V.,
Lin, A.M., Rosenberg, J., Ryan, C.J., Rini, B.I., and Small, E.J. (2009). Potenti-
ating endogenous antitumor immunity to prostate cancer through combination
immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res. 69,
609–615.

Fu, J., Malm, I.J., Kadayakkara, D.K., Levitsky, H., Pardoll, D., and Kim, Y.J.
(2014). Preclinical evidence that PD1 blockade cooperates with cancer vac-
cine TEGVAX to elicit regression of established tumors. Cancer Res. 74,
4042–4052.

Goldberg, M.V., Maris, C.H., Hipkiss, E.L., Flies, A.S., Zhen, L., Tuder, R.M.,
Grosso, J.F., Harris, T.J., Getnet, D., Whartenby, K.A., et al. (2007). Role of
PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood 110,
186–192.

Grosso, J.F., Kelleher, C.C., Harris, T.J., Maris, C.H., Hipkiss, E.L., De Marzo,
A., Anders, R., Netto, G., Getnet, D., Bruno, T.C., et al. (2007). LAG-3 regulates
CD8+ T cell accumulation and effector function inmurine self- and tumor-toler-
ance systems. J. Clin. Invest. 117, 3383–3392.

Grosso, J.F., Goldberg, M.V., Getnet, D., Bruno, T.C., Yen, H.R., Pyle, K.J.,
Hipkiss, E., Vignali, D.A., Pardoll, D.M., and Drake, C.G. (2009). Functionally
distinct LAG-3 and PD-1 subsets on activated and chronically stimulated
CD8 T cells. J. Immunol. 182, 6659–6669.

Hamid, O., Robert, C., Daud, A., Hodi, F.S., Hwu, W.J., Kefford, R., Wolchok,
J.D., Hersey, P., Joseph, R.W., Weber, J.S., et al. (2013). Safety and tumor re-
sponses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369,
134–144.

Herbst, R.S., Soria, J.C., Kowanetz, M., Fine, G.D., Hamid, O., Gordon, M.S.,
Sosman, J.A., McDermott, D.F., Powderly, J.D., Gettinger, S.N., et al. (2014).
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in
cancer patients. Nature 515, 563–567.

Hodi, F.S., O’Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen,
J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010).
Improved survival with ipilimumab in patients with metastatic melanoma.
N. Engl. J. Med. 363, 711–723.
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Maigret, B., Dréano, M., and Triebel, F. (1997). Characterization of the major
histocompatibility complex class II binding site on LAG-3 protein. Proc. Natl.
Acad. Sci. USA 94, 5744–5749.

Johnston, R.J., Comps-Agrar, L., Hackney, J., Yu, X., Huseni, M., Yang, Y.,
Park, S., Javinal, V., Chiu, H., Irving, B., et al. (2014). The immunoreceptor TI-
GIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer
Cell 26, 923–937.

Keir, M.E., Butte, M.J., Freeman, G.J., and Sharpe, A.H. (2008). PD-1 and its
ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704.

Kisielow, M., Kisielow, J., Capoferri-Sollami, G., and Karjalainen, K. (2005).
Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by
T cells. Eur. J. Immunol. 35, 2081–2088.



Cancer Cell

Perspective
Kwon, E.D., Drake, C.G., Scher, H.I., Fizazi, K., Bossi, A., van den Eertwegh,
A.J.M., Krainer, M., Houede, N., Santos, R., Mahammedi, H., et al.; CA184-
043 Investigators (2014). Ipilimumab versus placebo after radiotherapy in
patients with metastatic castration-resistant prostate cancer that had pro-
gressed after docetaxel chemotherapy (CA184-043): a multicentre, rando-
mised, double-blind, phase 3 trial. Lancet Oncol. 15, 700–712.

Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova,
I., Iwai, Y., Long, A.J., Brown, J.A., Nunes, R., et al. (2001). PD-L2 is a second
ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268.

Leach, D.R., Krummel, M.F., and Allison, J.P. (1996). Enhancement of anti-
tumor immunity by CTLA-4 blockade. Science 271, 1734–1736.

Lenschow, D.J., Walunas, T.L., and Bluestone, J.A. (1996). CD28/B7 system of
T cell costimulation. Annu. Rev. Immunol. 14, 233–258.

Lines, J.L., Pantazi, E., Mak, J., Sempere, L.F., Wang, L., O’Connell, S.,
Ceeraz, S., Suriawinata, A.A., Yan, S., Ernstoff, M.S., and Noelle, R. (2014).
VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 74,
1924–1932.

Linsley, P.S., Greene, J.L., Brady, W., Bajorath, J., Ledbetter, J.A., and Peach,
R. (1994). Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but
distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801.

Liu, R.B., Engels, B., Arina, A., Schreiber, K., Hyjek, E., Schietinger, A., Binder,
D.C., Butz, E., Krausz, T., Rowley, D.A., et al. (2012). Densely granulated mu-
rine NK cells eradicate large solid tumors. Cancer Res. 72, 1964–1974.

Llosa, N.J., Cruise, M., Tam, A., Wicks, E.C., Hechenbleikner, E.M., Taube,
J.M., Blosser, R.L., Fan, H., Wang, H., Luber, B.S., et al. (2015). The vigorous
immune microenvironment of microsatellite instable colon cancer is balanced
by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51.

Loo, D., Alderson, R.F., Chen, F.Z., Huang, L., Zhang, W., Gorlatov, S., Burke,
S., Ciccarone, V., Li, H., Yang, Y., et al. (2012). Development of an Fc-
enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity.
Clin. Cancer Res. 18, 3834–3845.

Luo, L., Chapoval, A.I., Flies, D.B., Zhu, G., Hirano, F., Wang, S., Lau, J.S.,
Dong, H., Tamada, K., Flies, A.S., et al. (2004). B7-H3 enhances tumor immu-
nity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+
cytolytic T cells. J. Immunol. 173, 5445–5450.

Lynch, T.J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R.,
Sebastian, M., Neal, J., Lu, H., Cuillerot, J.M., and Reck, M. (2012). Ipilimumab
in combination with paclitaxel and carboplatin as first-line treatment in stage
IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind,
multicenter phase II study. J. Clin. Oncol. 30, 2046–2054.

Maker, A.V., Attia, P., and Rosenberg, S.A. (2005). Analysis of the cellular
mechanism of antitumor responses and autoimmunity in patients treated
with CTLA-4 blockade. J. Immunol. 175, 7746–7754.

Maker, A.V., Yang, J.C., Sherry, R.M., Topalian, S.L., Kammula, U.S., Royal,
R.E., Hughes, M., Yellin, M.J., Haworth, L.R., Levy, C., et al. (2006). Intrapatient
dose escalation of anti-CTLA-4 antibody in patients with metastatic mela-
noma. J. Immunother. 29, 455–463.

Marcus, A., Gowen, B.G., Thompson, T.W., Iannello, A., Ardolino, M., Deng,
W., Wang, L., Shifrin, N., and Raulet, D.H. (2014). Recognition of tumors by
the innate immune system and natural killer cells. Adv. Immunol. 122, 91–128.

Marzec, M., Zhang, Q., Goradia, A., Raghunath, P.N., Liu, X., Paessler, M.,
Wang, H.Y., Wysocka, M., Cheng, M., Ruggeri, B.A., and Wasik, M.A.
(2008). Oncogenic kinase NPM/ALK induces through STAT3 expression of
immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl. Acad. Sci.
USA 105, 20852–20857.

Matsuzaki, J., Gnjatic, S., Mhawech-Fauceglia, P., Beck, A., Miller, A., Tsuji, T.,
Eppolito, C., Qian, F., Lele, S., Shrikant, P., et al. (2010). Tumor-infiltrating NY-
ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in
human ovarian cancer. Proc. Natl. Acad. Sci. USA 107, 7875–7880.

Mellor, A.L., and Munn, D.H. (2004). IDO expression by dendritic cells: toler-
ance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774.

Moebius, U., Pallai, P., Harrison, S.C., and Reinherz, E.L. (1993). Delineation of
an extended surface contact area on human CD4 involved in class II major his-
tocompatibility complex binding. Proc. Natl. Acad. Sci. USA 90, 8259–8263.
Monney, L., Sabatos, C.A., Gaglia, J.L., Ryu, A., Waldner, H., Chernova, T.,
Manning, S., Greenfield, E.A., Coyle, A.J., Sobel, R.A., et al. (2002). Th1-spe-
cific cell surface protein Tim-3 regulatesmacrophage activation and severity of
an autoimmune disease. Nature 415, 536–541.

Motzer, R.J., Rini, B.I., McDermott, D.F., Redman, B.G., Kuzel, T.M., Harrison,
M.R., Vaishampayan, U.N., Drabkin, H.A., George, S., Logan, T.F., et al.
(2014). Nivolumab for metastatic renal cell carcinoma: results of a randomized
phase II trial. J. Clin. Oncol. Published online December 1, 2014. http://dx.doi.
org/10.1200/JCO.2014.59.0703.

Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999). Develop-
ment of lupus-like autoimmune diseases by disruption of the PD-1 gene en-
coding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151.

Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A.,
Sasayama, S., Mizoguchi, A., Hiai, H., Minato, N., and Honjo, T. (2001). Auto-
immune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science
291, 319–322.

Okazaki, T., Okazaki, I.M., Wang, J., Sugiura, D., Nakaki, F., Yoshida, T., Kato,
Y., Fagarasan, S., Muramatsu, M., Eto, T., et al. (2011). PD-1 and LAG-3 inhib-
itory co-receptors act synergistically to prevent autoimmunity in mice. J. Exp.
Med. 208, 395–407.

Park, J.J., Omiya, R., Matsumura, Y., Sakoda, Y., Kuramasu, A., Augustine,
M.M., Yao, S., Tsushima, F., Narazaki, H., Anand, S., et al. (2010). B7-H1/
CD80 interaction is required for the induction and maintenance of peripheral
T-cell tolerance. Blood 116, 1291–1298.

Parry, R.V., Chemnitz, J.M., Frauwirth, K.A., Lanfranco, A.R., Braunstein, I.,
Kobayashi, S.V., Linsley, P.S., Thompson, C.B., and Riley, J.L. (2005).
CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms.
Mol. Cell. Biol. 25, 9543–9553.

Parsa, A.T.,Waldron, J.S., Panner, A., Crane, C.A., Parney, I.F., Barry, J.J., Ca-
chola, K.E., Murray, J.C., Tihan, T., Jensen, M.C., et al. (2007). Loss of tumor
suppressor PTEN function increases B7-H1 expression and immunoresist-
ance in glioma. Nat. Med. 13, 84–88.

Peggs, K.S., Quezada, S.A., Chambers, C.A., Korman, A.J., and Allison, J.P.
(2009). Blockade of CTLA-4 on both effector and regulatory T cell compart-
ments contributes to the antitumor activity of anti-CTLA-4 antibodies.
J. Exp. Med. 206, 1717–1725.

Phan, G.Q., Yang, J.C., Sherry, R.M., Hwu, P., Topalian, S.L., Schwartzen-
truber, D.J., Restifo, N.P., Haworth, L.R., Seipp, C.A., Freezer, L.J., et al.
(2003). Cancer regression and autoimmunity induced by cytotoxic T lympho-
cyte-associated antigen 4 blockade in patients with metastatic melanoma.
Proc. Natl. Acad. Sci. USA 100, 8372–8377.

Powles, T., Eder, J.P., Fine, G.D., Braiteh, F.S., Loriot, Y., Cruz, C., Bellmunt,
J., Burris, H.A., Petrylak, D.P., Teng, S.L., et al. (2014). MPDL3280A (anti-PD-
L1) treatment leads to clinical activity in metastatic bladder cancer. Nature
515, 558–562.

Prendergast, G.C., Smith, C., Thomas, S., Mandik-Nayak, L., Laury-Kleintop,
L., Metz, R., andMuller, A.J. (2014). Indoleamine 2,3-dioxygenase pathways of
pathogenic inflammation and immune escape in cancer. Cancer Immunol. Im-
munother. 63, 721–735.

Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt,
E.M., Baker, J., Jeffery, L.E., Kaur, S., Briggs, Z., et al. (2011). Trans-endocy-
tosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of
CTLA-4. Science 332, 600–603.

Reck, M., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R.,
Sebastian, M., Lu, H., Cuillerot, J.M., and Lynch, T.J. (2013). Ipilimumab in
combination with paclitaxel and carboplatin as first-line therapy in exten-
sive-disease-small-cell lung cancer: results from a randomized, double-blind,
multicenter phase 2 trial. Ann. Oncol. 24, 75–83.

Ribas, A., Kefford, R., Marshall, M.A., Punt, C.J.A., Haanen, J.B., Marmol, M.,
Garbe, C., Gogas, H., Schachter, J., Linette, G., et al. (2013). Phase III random-
ized clinical trial comparing tremelimumab with standard-of-care chemo-
therapy in patients with advanced melanoma. J. Clin. Oncol. 31, 616–622.

Robert, C., Thomas, L., Bondarenko, I., O’Day, S., Weber, J., Garbe, C.,
Lebbe, C., Baurain, J.F., Testori, A., Grob, J.J., et al. (2011). Ipilimumab plus
dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med.
364, 2517–2526.
Cancer Cell 27, April 13, 2015 ª2015 Elsevier Inc. 459

http://dx.doi.org/10.1200/JCO.2014.59.0703
http://dx.doi.org/10.1200/JCO.2014.59.0703


Cancer Cell

Perspective
Robert, C., Long, G.V., Brady, B., Dutriaux, C., Maio, M., Mortier, L., Hassel,
J.C., Rutkowski, P., McNeil, C., Kalinka-Warzocha, E., et al. (2015). Nivolumab
in previously untreated melanoma without BRAF mutation. N. Engl. J. Med.
372, 320–330.
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