
Fosforilazione ossidativa

La fosforilazione ossidativa è la sintesi di ATP guidata dal trasferimento di elettroni all'ossigeno.

Tutte le tappe enzimatiche della <u>degradazione ossidativa</u> <u>dei carboidrati, acidi grassi e amminoacidi</u> <u>nelle cellule</u> <u>aerobiche convergono</u> sulla tappa finale della **respirazione cellulare**, in cui gli elettroni passano dagli intermedi catabolici all'ossigeno, generando energia necessaria alla sintesi di ATP da ADP e Pi.

La fosforilazione ossidativa avviene nei mitocondri (membrana interna).

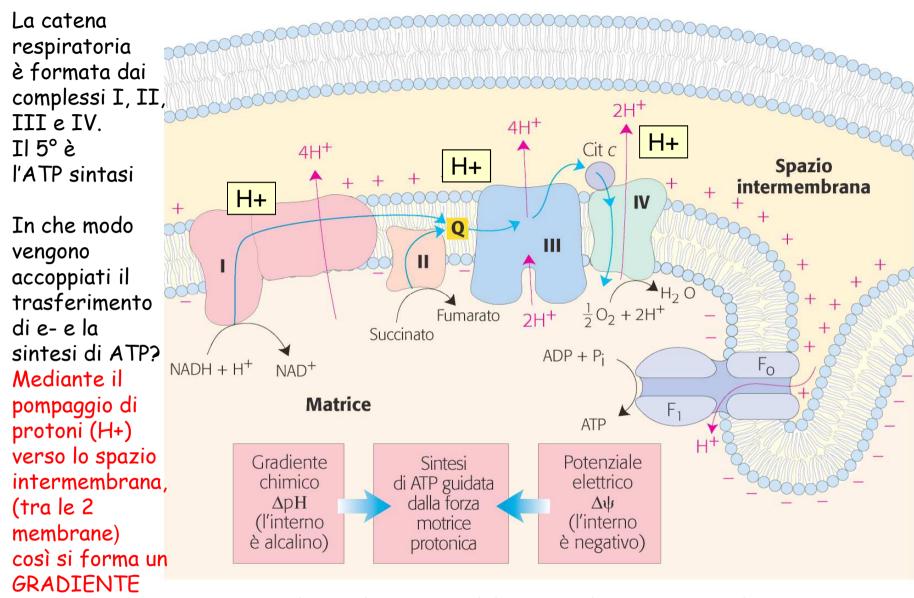
La membrana interna possiede le creste che ne aumentano la superficie

Catena di trasporto elettronica

- Trasferisce H⁺ ed e⁻ dai coenzimi NADH e FADH₂
- l'energia viene rilasciata lungo la catena per formare ATP

$$NADH + 2.5 ADP \longrightarrow NAD^{+} + 2.5 ATP$$

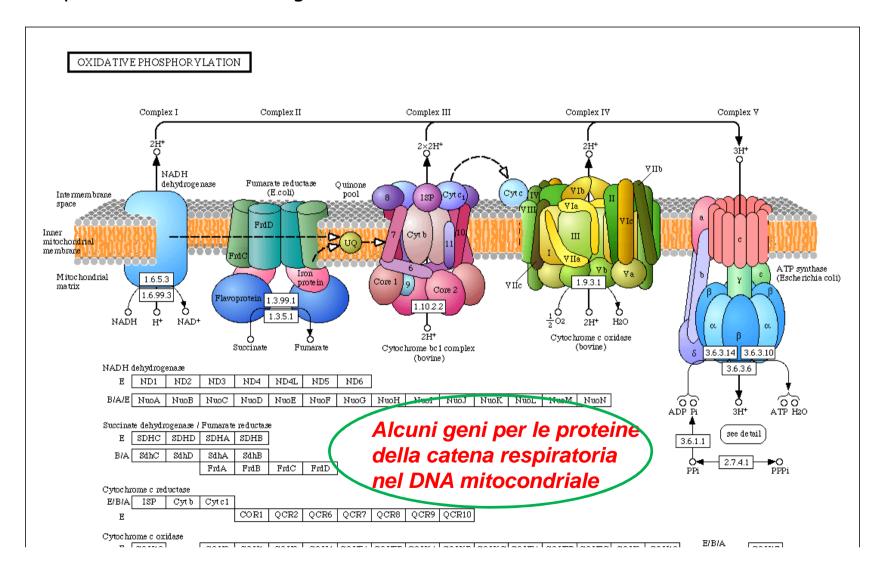
$$FADH_{2} + 1.5 ADP \longrightarrow FAD + 1.5 ATP$$


O₂ accettore finale degli elettroni

$$\frac{1}{2} O_2 + 2H^+ + 2 e^- \rightarrow H_2O$$

NADPH (NADH senza fosfato) =NicotinamideAdeninaDinucleotide

FAD =FlavinaAdeninaDinucleotide



che spinge gli H+ a tornare dentro la matrice del mitocondrio attraverso l'ATP sintasi

La proteina canale TERMOGENINA nella membrana mitocondriale interna del TESSUTO ADIPOSO BRUNO è un <u>disaccoppiante naturale</u>, che porta alla produzione di calore invece di ATP

<u>Tutti i complessi proteici sono formati da molte subunità</u> e contengono una serie di coenzimi redox legati alle proteine, le <u>flavine</u> (FMN e FAD nei complessi I e II rispettivamente), i <u>gruppi eme</u> e i <u>centri Fe/S</u> (Fe non eme).

Il complesso IV è bloccato dagli ioni CN- e dall'ossido di carbonio.

Trasportatori di elettroni

- Si trovano in quattro complessi proteici
- Sono parte della membrana interna dei mitocondri
- H⁺ si accumulano nello spazio intermembrana creando un gradiente protonico
- Gli H⁺ ritornano alla matrice mitocondriale attraverso la ATP sintetasi che usa l'energia per produrre ATP
- Fosforilazione ossidativa

- · Gli ormoni tiroidei stimolano la catena respiratoria
- · L'ADP è un regolatore della catena respiratoria

APPENDICE CHIMICA

Tabella 13.1 Alcuni potenziali redox di particolare interesse nei sistemi di ossidazione dei mammiferi

Gli elettroni vanno da sostanze a potenziale redox minore ad altre a potenziale redox maggiore, infatti è l'ossigeno l'accettore finale. Nella fosforilazione ossidativa

Sistemi	E' volt
H+/H ₂	-0,42
NAD+/NADH	-0,32
Lipoato; forma ossid./rid.	-0,29
Acetoacetato/3-idrossibutirrato	-0,27
Piruvato/lattato	-0,19
Ossalacetato/malato	-0,17
Fumarato/succinato	+0,03
Citocromo b; Fe3+/Fe2+	+0,08
Ubichinone; forma ossid./rid.	+0,10
Citocromo c ₁ ; Fe ^{3+/} Fe ²⁺	+0,22
Citocromo a; Fe ^{3+/} Fe ²⁺	+0,29
Ossigeno/acqua	+0,82

energia chimica (elettroni e H+) è trasformata in ATP (energia biochimica).

<u>Applicazioni pratiche utili delle reazioni redox</u> sono anche le PILE, anche chiamate <u>CELLE VOLTAICHE</u> o GALVANICHE, e sono uno dei 2 tipi di <u>celle elettrochimiche</u> (= sistemi in cui una reazione redox viene utilizzata per produrre o utilizzare energia elettrica).

LE PILE TRASFORMANO ENERGIA CHIMICA REDOX IN ENERGIA ELETTRICA

Riassumendo

nella catena respiratoria mitocondriale gli elettroni vanno da specie a

potenziale redox più basso a quelle con potenziale più alto,

contemporaneamente ioni H+ vengono pompati nello spazio

intermembrana, quando secondo gradiente tornano dentro il mitocondrio

viene sintetizzato ATP, che è energia per la cellula (per questo si chiama

FOSFORILAZIONE OSSIDATIVA)

Increasing potential to be reduced

La tendenza di un reagente a donare o acquistare e- può essere quantificata come potenziale di ossidoriduzione o redox (E⁰), che è un valore di riferimento al potenziale redox dell'H (=0 a pH 0).+ il valore è +, > è la tendenza ad acquistare e-.

Increasing activity

A pH 7 E⁰

La posizione relativa dei sistemi redox nella tabella permette di conoscere il senso del flusso di e- da una coppia redox a un'altra.

Table 9.2 Standard Reduction Potentials

Reduction Half-Reaction	E° (V)
$Au^{3+} + 3e^{-} \longrightarrow Au$	+1.42
$O_2 + 4H_3O^+ + 4e^- \longrightarrow 6H_2O$	+1.229
$Pt^{2+} + 2e^{-} \longrightarrow Pt$	+1.2
$Hg^{2+} + 2e^{-} \longrightarrow Hg$	+0.851
$Ag^+ + e^- \longrightarrow Ag$	+0.7996
$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$	+0.770
$O_2 + 2H_2O + 4e^- \longrightarrow 4OH^-$	+0.401
$Cu^{2+} + 2e^{-} \longrightarrow Cu$	+0.3402
$2H^+ + 2e^- \longrightarrow H_2$	0.000
$Pb^{2+} + 2e^{-} \longrightarrow Pb$	-0.1263
$Sn^{2+} + 2e^{-} \longrightarrow Sn$	-0.1364
$Ni^{2+} + 2e^{-} \longrightarrow Ni$	-0.23
$Cd^{2+} + 2e^{-} \longrightarrow Cd$	-0.4026
$Fe^{2+} + 2e^{-} \longrightarrow Fe$	-0.409
$Cr^{3+} + 3e^{-} \longrightarrow Cr$	-0.74
$Zn^{2+} + 2e^{-} \longrightarrow Zn$	-0.7628
$Al^{3+} + 3e^{-} \longrightarrow Al$	-1.706
$Mg^{2+} + 2e^{-} \longrightarrow Mg$	-2.375
$Na^+ + e^- \longrightarrow Na$	-2.709
$Ca^{2+} + 2e^{-} \longrightarrow Ca$	-2.76
$K^+ + e^- \longrightarrow K$	-2.924
$Li^+ + e^- \longrightarrow Li$	-3.045

I mitocondri e l'apoptosi

APOPTOSI = <u>Morte cellulare programmata</u>

può iniziare tramite la formazione di <u>pori</u> sulla membrana mitocondriale che rilasciano il citocromo C nel citosol, il quale,

in una sede diversa da quella in cui opera nella catena respiratoria, insieme ad altri fattori, attiva gli enzimi proteolitici caspasi