
TECNOLOGIE INFORMATICHE MULTIMERIALI

«La perfezione non si ottiene quando non c'è più nulla da aggiungere, bensì quando non c'è più nulla da togliere»

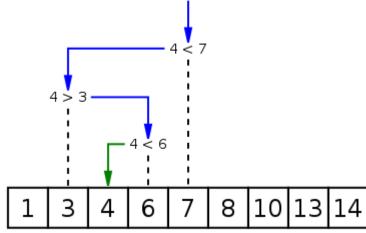
Prof. Giorgio Poletti giorgio.poletti@unife.it

ALGORITMI DI RICERCA SU BASI PATI

Struttura che permette una notevole flessibilità ed elasticità di gestione dei dati nel tempo

ALGORITMI DI RICERCA SU BASI DATI

Algoritmi di RICERCA (Esempi)


- RICERCA BINARIA (ricerca dicotomica)
- RICERCA SU ALBERI B-TREE

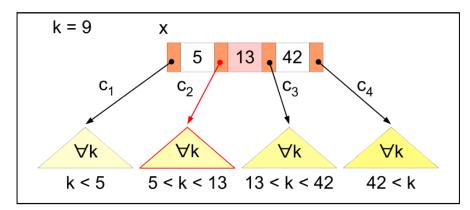
Individuare l'indice (la posizione) di un determinato elemento in un **INSIEME ORDINATO** di valori.

finalità

- 1. Confronto con l'elemento centrale
- 2. Elemento trovato OK, altrimenti
 - Elemento inferiore al cercato, ricerca metà «bassa» (scarta metà «alta») come passo 1
 - Elemento superiore al cercato, ricerca metà «alta» (scarta metà «bassa») come passo 1
- 3. Tutti gli elementi scartati, ricerca «FALLITA»

ALGORITMI DI RICERCA SU BASI DATI

Algoritmi di RICERCA (Esempi)


RICERCA BINARIA (ricerca dicotomica)

tecniche

RICERCA SU ALBERI B-TREE

vantaggi

- Efficienza e velocità con i nodi
- Con il bilanciamento e l'abbassamento della profondità si aumenta l'efficienza (massimizzazione di figli per nodo)
- Ottimizzazione delle operazioni su memorie di massa
- Ricerca per chiave
- Inserimento di una chiave (SPLITTING di un nodo)
- Cancellazione (MERGING sui nodi)

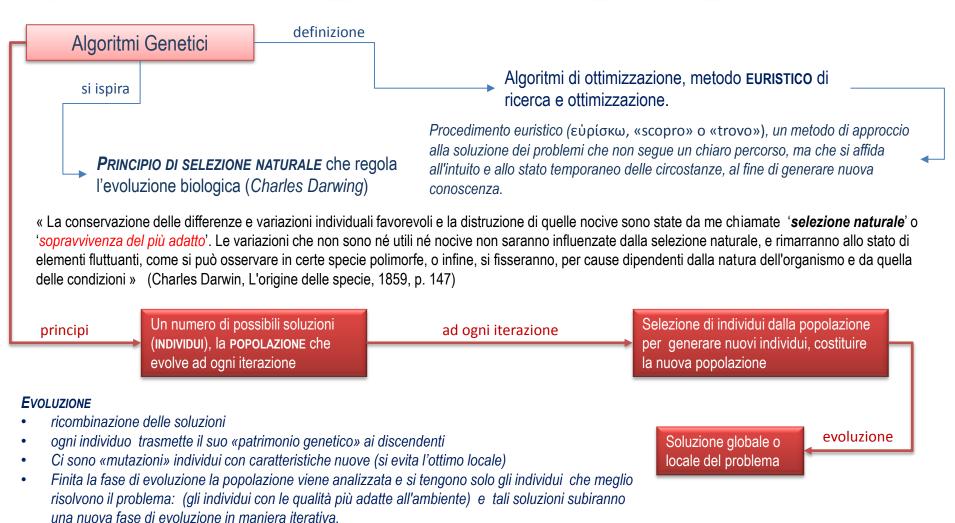
RICERCA DI K, B-TREE SEARCH

PREMESSA: se $\mathbf{n}(\mathbf{x})$ è il numero di figli del nodo x in un qualsiasi nodo x si hanno $\mathbf{n}(\mathbf{x})+1$ scelte (in un **B-Tree**)

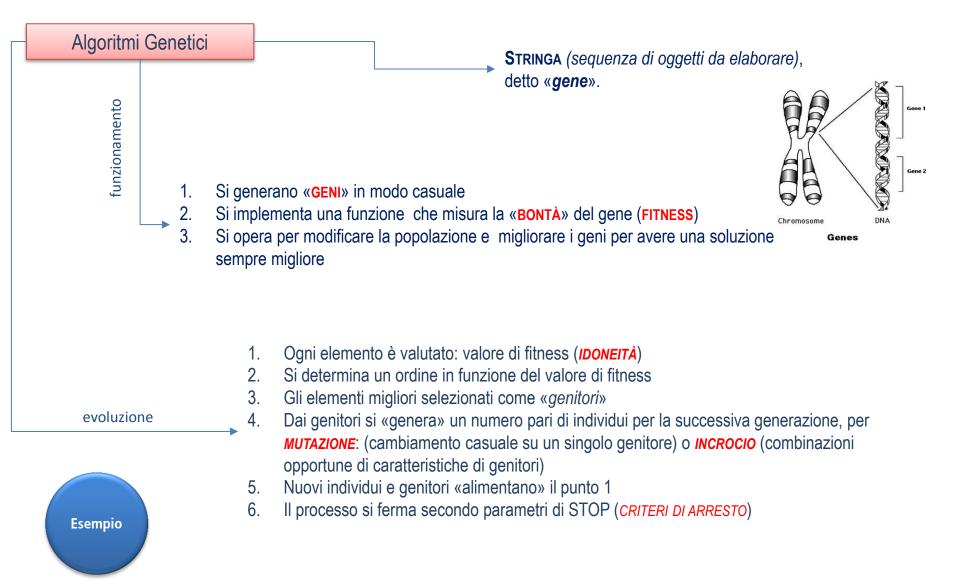
- 1. Si legge il nodo x (a partire dalla radice), se K c'è la ricerca è finita
- 2. se **K** è *minore della chiave* più a sinistra, lettura del nodo puntato dal puntatore di sinistra (se non è nullo);
- se K è maggiore della chiave più a destra allora lettura del nodo puntato dal puntatore più a destra (se non è nullo);
- 4. se è compreso tra due chiavi del nodo allora lettura del nodo puntato dal puntatore compreso tra le due chiavi (se non è nullo). Si riparte dal punto 1
- 5. Se il puntatore è nullo la chiave non c'è

Algoritmi di RICERCA (Esempi)

of the full child node.


Data 0 Data 1 ... Data N

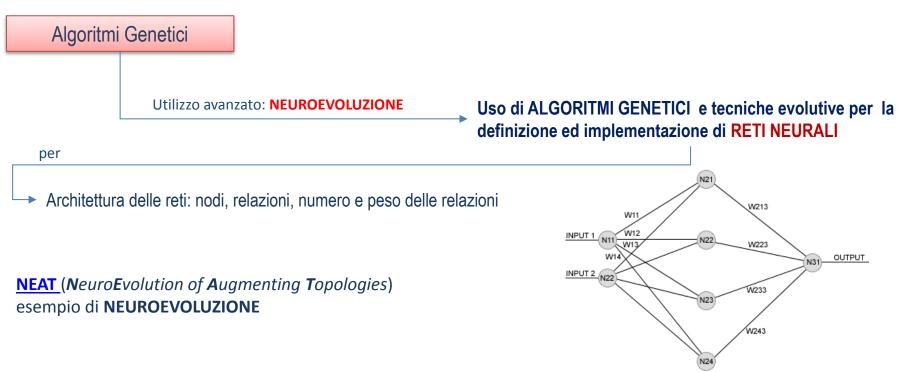
RICERCA BINARIA (ricerca dicotomica) A B+ Tree RICERCA SU ALBERI B-TREE B+TREE (variante più usata) Tutti i dati nelle foglie (tutti allo stesso livello) 23 31 43 varianti Nodi interni solo puntatori Tutti i nodi fogli collegati in lista, semplifica i reperimento dei dati 31 37 41 43 47 23 29 Maggior velocità di ricerca Foglie collegate da puntatori Direttorio organizzato ad albero: **B*TREE** Gestione di grandi masse di dati Composto da: DIRETTORIO (ELENCO) + ARCHIVIO foglie contengono gli indici(chiavepuntatore) per individuare i record Composizione di record: chiave-informazione B*Tree with CRCs nell'archivio parte superiore dell'albero permette solo individuare rapidamente l'indice Node Head CRC, check the block data contenente la chiave cercata. N Head Keyl Key2 KeyN PtrO Ptr1 Node Pointer contains the CRC


ALGORITMI DI RICERCA SU BASI PATI

Ci s i aspetta di trovare una soluzione ACCETTABILE, si applicano ai problemi con complessità non

nota (lineare o polinomiale)

ALGORITMI DI RICERCA SU BASI RATI


ALGORITMI DI RICERCA SU BASI PATI

ALGORITMO GENETICO RISPETTA LA RICERCA DELLE SOLUZIONI OTTIMALI SU UN FRONTE DI PARETO

ALGORITMI DI RICERCA SU BASI RATI

- Principio di **omologia** (ogni nodo codificato come un gene); i geni sono numerati e hanno uno storico evolutivo; viene valutato la compatibilità di geni omologhi in operazioni di crossover e per definire operatori di compatibilità;
- Principio di protezione dell'innovazio
 ne, con l'operatore di compatibilità si preservano le specie differenti, per
 farle evolvere in «nicchie» o aree protette;
- Principio di **minimizzazione topologica**, le modifiche strutturali vantaggiose tendono a vivere a lungo le «topologie» relative tendono ad essere minime.