

Università degli Studi di Ferrara

Marco Peresani

Cronologie e culture del Paleolitico Lezione 12 – The Neanderthals and other humans and the appearance of the Anatomically Modern Humans

La migration Dessin de Benoît Clarys

The human story 100-30,000 yr ago

NeanderthalsModern humans

1

laeo

Denisovans

PalaeoChron project 2013-2019

Kennis & Kennis

http://www.sci-news.com/genetics/science-neanderthalsinterbred-eurasians-01837.html

When did Neanderthals disappear?

~200 new AMS dates related to Neanderthal occupation

- Neanderthal sites in Europe end ~41,000-39,300 cal BP.
- Variability in the age of final Mousterian sites in Europe.
- Overlap in modern humans and Neanderthals for 2,600-5,400 years (95% prob.)

LETTER

doi:10.1038/nature13621

The timing and spatiotemporal patterning of Neanderthal disappearance

Tom Higham¹, Katerina Douka¹, Rachel Wood^{1,2}, Christopher Bronk Ramsey¹, Fiona Brock¹, Laura Basell³, Marta Camps⁴, Alvaro Arrizabalaga⁵, Javier Baena⁶, Cecillio Barroso-Ruíz⁷, Christopher Bergman⁸, Coralie Boitard⁹, Paolo Boscato¹⁰, Miguel Caparrós¹¹, Nicholas J. Conard^{12,13}, Christelle Draily¹⁴, Alain Froment¹⁵, Bertila Galván¹⁶, Paolo Gambassini¹⁰, Alejandro Garcia-Moreno^{17,37}, Stefano Grimaldi¹⁸, Paul Haesaerts¹⁹, Brigitte Holt²⁰, Maria-Jose Iriarte-Chiapusso⁵, Arthur Jelinek²¹, Jesús F. Jordá Pardo²², José-Manuel Maíllo-Fernández²², Anat Marom^{1,23}, Julià Maroto²⁴, Mario Menéndez²², Laure Metz²⁵, Eugène Morin²⁶, Adriana Moroni¹⁰, Fabio Negrino²⁷, Eleni Panagopoulou²⁸, Marco Peresani²⁹, Stéphane Pirson³⁰, Marco de la Rasilla³¹, Julien Riel-Salvatore³², Annamaria Ronchitelli¹⁰, David Santamaria³¹, Patrick Semal³³, Ludovic Slimak²⁵, Joaquim Soler²⁴, Narcís Soler²⁴, Aritza Villaluenga¹⁷, Ron Pinhasi³⁴ & Roger Jacobi^{35,36}[‡]

Denisova Cave

Palaeo

Denisovans "The genome in search of a fossil"

New dating

Aims and objectives:

- Age of human remains
- Taphonomy of sequence, using ¹⁴C to test mixing
- Transition from Layer 11 to fully UpPal layer 9
- Age of type fossils (beads, bone points, etc)

New ¹⁴C dates

- 9.2 : 45,500 ± 2300
- 11.1 : 27,820 ± 340 *bead* 47,900 ± 3100
- 11.2: $35,400 \pm 900$ bead 41,300 ± 2400 bead 41,300 ± 900
 - > 48600 > 5<u>0100</u>
 - > 4040
- 11.3 : > 49400
- 11.4 : > 47900 >49900
 - >50000
 - >50000

Phalanx context (same layer, square & year of excav.)

Human remains

Denisova 4: Molar, South Gallery, Layer 11.1 – m. DENISOVAN

Denisova 3: Finger phalanx, East Gallery, Layer 11.2 – f. DENISOVAN

Denisova 5 ("Altai"): Toe phalanx, East gallery, Layer 11.4 – f. NEANDERTHAL

Denisova 8: Molar, East gallery, Layer 11. 4 – m. DENISOVAN

Denisova 9: Hand phalanx, East gallery, Layer 12.4 - m. NEANDERTHAL

Denisova 2: Molar, Central Gallery, Layer 22.1 – f. DENISOVAN

Reich et al. 2010, Krause et al. 2010; Sawyer et al. 2015, Slon et al. 2017

New ¹⁴C dates from the ORAU

All Neanderthal fossils — as well as Denisova 11, the daughter of a Neanderthal and a Denisovan — date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000–76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as ad 1950).

Homo floresiensis (Flores)

Liang Bua

100,000-60,000 ka

A new species of *Homo* from the Late Pleistocene of the Philippines

Florent Détroit¹*, Armand Salvador Mijares^{2,3}*, Julien Corny¹, Guillaume Daver⁴, Clément Zanolli^{5,6}, Eusebio Dizon³, Emil Robles², Rainer Grün^{7,8} & Philip J. Piper^{3,9}

Bone remains from three homin individuals discovered since 2007 in Callao Cave (Northern Luzon, the Philippines) and dated to 67 ky BP provide the earliest direct evidence of a human presence in the Philippines.

Specimens display a combination of primitive and derived morphological features that is different from the combination of features found in other species in the genus Homo (including *Homo floresiensis* and *Homo sapiens*) and warrants their attribution to a new species, which we name *Homo luzonensis*.

The presence of another and previously unknown hominin species east of the Wallace Line during the Late Pleistocene epoch underscores the importance of island Southeast Asia in the evolution of the genus Homo.

Fossil remains of *H. luzonensis*.

a, **Holotype** CCH6: postcanine maxillary teeth in occlusal (left) and buccal (right) aspects, with three-dimensional rendering of enamel (dark blue), dentine and cement (light brown), and pulp cavity (dark grey) for CCH6-b–CCH6-e.

Map showing the location of Callao Cave on Luzon Island (the Philippines), emerged lands at 50 and 120 m below present sea level and the major biogeographical boundaries recognized in the area.

A, Wallace's Line modified by Huxley;

B, Wallace's Line;

C, Lydekker's Line.

Luzon Island lies in between the original Wallace's Line and the Wallace's Line modified by Huxley and was never connected to mainland Asia during the Quaternary.

THE THIRD OUT OF AFRICA: HOMO SAPIENS

Some key early fossils of Homo sapiens and related species in Africa and Eurasia.

Homo sapiens hidaltu, 160K

LETTER

New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens Jean-Jacques Hublin^{1,2}, Abdelouabed Ben-Neer³, Shara E. Brieldine¹, Simon Neubauer¹, Matthew M. Skinner³, Inga Bergmann¹, Adeline Loached-, Stefano Benzar⁶, Katering Harrat¹, & Philipin Gunz¹

We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology.

In combination with an age of 315 ± 34 thousand years, this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the *H. sapiens* clade in which key features of modern morphology were established.

Furthermore, it shows that the evolutionary processes behind the emergence of *H. sapiens* involved the whole African continent.

First modern humans in Central Asia

Ust-ishim femura

LETTER

doi:10.1038/nature13422

Pleistocene cave art from Sulawesi, Indonesia

M. Aubert^{1,2}*, A. Brumm¹⁺*, M. Ramli³, T. Sutikna^{1,4}, E. W. Saptomo⁴, B. Hakim⁵, M. J. Morwood^{*}, G. D. van den Bergh¹, L. Kinsley⁶ & A. Dosseto^{7,8}

Genetic variability of african population

Whole-genome analyse reveal details of Africa's rich genetic heritage

(courtesy, Kenneth Kidd, Yale University)

Genetic drift of the first AMH populations out of Africa

Reduction of genetic variability of euroasiatic population

(courtesy, Kenneth Kidd, Yale University)

A connection between language and expansion?

Atkinson, Q. D. 2011. Science 332:346-349.

"Truly modern language, akin to languages spoken today, may thus have been the <u>key cultural</u> <u>innovation</u> that allowed the emergence of these and other hallmarks of behavioral modernity and ultimately led to <u>our</u> <u>colonization of the globe</u>"

"Language was central to human expansion across the globe. It was <u>our secret weapon</u>, and as soon we got language we became a <u>really dangerous species</u>"

(Mark Pagel, NYT, April 14, 2011)

"Close Encounters of the Prehistoric Kind"

Science, May 7, 2010

"The long-awaited sequence of the Neanderthal genome suggests that modern humans and Neanderthals interbred tens of thousands of years ago, perhaps in the Middle East"

Ancient DNA pinpoints Paleolithic liaison in Europe

Romanian fossil was the great-great-great-grandson of a Neandertal-but an evolutionary dead end

....that the Oase man had far more Neandertal DNA—composing 4.8% to 11.3% of his genome—than either the ancient modern humans from Russia or living Europeans and Asians...

An early modern human from the Peştera cu Oase, Romania

Erik Trinkaus*†, Oana Moldovan‡, Ştefan Milota[§], Adrian Bilgăr[¶], Laurențiu Sarcina[§], Sheela Athreya[∥], Shara E. Bailey**, Ricardo Rodrigo⁺†, Gherase Mircea[§], Thomas Higham⁺‡, Christopher Bronk Ramsey⁺‡, and Johannes van der Plicht^{§§}

Article

Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry

Unlike two previously studied H. sapiens individuals of similar ages from Romania and Siberia who did not contribute detectably to later populations, these individuals from Bacho Kiro are more closely related to present-day and ancient populations in East Asia and the Americas than to later west Eurasian populations. This indicates that they belonged to a modern human migration into Europe that was not previously known from the genetic record, and provides evidence that there was at least some continuity between the earliest modern humans in Europe and later people in Eurasia. Moreover, we find that all three individuals had Neanderthal ancestors a few generations back in their family history, confirming that the first European modern humans mixed with Neanderthals and suggesting that such mixing could have been common.

Archaeological sites that have yielded genetic data and/or IUP assemblages

13, Yana RHS; 14, 15, Dolní Věstonice and Pavlov; 16, Grotta del Cavallo; 17, Kents Cavern; 18, Grotta di Fumane; 19, Brno-Bohunice; 20, Stánska Skála III; 21, Temnata; 22, Kulychivka; 23, Korolevo 1 and 2; 24, Shlyakh; 25, 26, Üçagizli and Kanal Cave; 27, Um el'Tlel; 28, Jerf Ajlah;

29, Yabrud II; 30–32, Antelias; Abou Halka and Ksar Akil; 33–35, Emireh, El Wad and Ragefet; 36, Boker Tachtit; 37, Denisova Cave;

38, Kara-Bom; 39, Ust-Karakol 1; 40, Kara-Tenesh; 41, Makarvo IV; 42, Kamenka A–C; 43, Khotyk; 44, Podzvonkaya; 45, 46, Tolbor4 and Tolbor16;

47, Tsangan-Agui; 48-50, Suindonggou1, 2 and 9

Ghosts in the cave

A mysterious group of ancient humans known as Denisovans is helping to rewrite our understanding of human evolution. Who were they?

Current Biology

The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans

Highlights

- Denisovan admixture into modern humans occurred after Neanderthal admixture
- There is more Denisovan ancestry in South Asians than expected from current models
- Denisovan ancestry has been subject to positive and negative selection after admixture
- Male infertility most likely occurred after modern human interbreeding with Denisovans

Authors

Sriram Sankararaman, Swapan Mallick, Nick Patterson, David Reich

Correspondence

sriram@cs.ucla.edu (S.S.), reich@genetics.med.harvard.edu (D.R.)

In Brief

Sankararaman et al. present a map of

Multiregional model about the appearance of Modern Humans

Substitution model about the appearance of Modern Humans

Neanderthals, possible descendants of *H. erectus,* died out about 27,000 years ago in Europe.

According to the theory, modern humans—Homo sapiens evolved only in Africa about 200,000 years ago. About 100,000 years ago, H. sapiens (red arrows) spread across the Old World. These geographically isolated groups evolved the characteristics of the modern races. *H. erectus* began to die out about 300,000 years ago, but may have existed as late as 27,000 years ago in Southeast Asia.

Multiple ibridizations? Out of Africa + partial interbreeding

Schematic diagram of the **Assimilation Model**. The strong majority of modern human biology is clearly of **African origin**, but genomic and morphological data both demonstrate relatively small, but significant, archaic contributions from Neandertals, Denisovans and possibly other archaic human groups (dark arrows). It is possible that the Denisovans are archaic East Asians rather than Australasians. Also, while the arrows are shown as the same size, it is certainly the case that the extent of contribution varied among Eurasian regions.

Not only one sapiens..

The genetic history of Ice Age Europe

Qiaomei Fu^{1,2,3}, Cosimo Posth^{4,5}*, Mateja Hajdinjak³*, Martin Petr³, Swapan Mallick^{2,6,7}, Daniel Fernandes^{8,9},

Decreasing Neandertal DNA in Palaeolithic euroasiatic humanity

Grotta di Fumane - Pech de l'Aré musteriano

Grotta de Fumane Avrignaziano Fogliazza 2014 Liv. A2R

Human specis : polimorphic and politypic Polimorphic>members are genotipically different Politypic>groups characterized by «genetic pools»

Differences between human, similitudes, equalities....

RESEARCH ARTICLES

PALEOECOLOGY

Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover

Alan Cooper,^{1*} Chris Turney,^{2*} Konrad A. Hughen,³ Barry W. Brook,⁴/ H. Gregory McDonald,⁶ Corey J. A. Bradshaw⁴

Megafaunal transition events and Late Pleistocene climate records

The presence of many cryptic biotic transitions before the Pleistocene/Holocene boundary revealed by ancient DNA confirms the importance of climate change in megafaunal population extinctions and suggests that metapopulation structures necessary to survive such repeated and rapid climatic shifts were susceptible to human impacts.

