Es02(op.matrici)

Esercizi 2 Operazioni su vettori e matrici Es02(op.matrici)

Esercizio 1

 Eseguire il calcolo per la soluzione delle equazioni di secondo grado, dato il vettore di coefficienti A=[1 -5 6]

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Verificare il risultato con la funzione roots

2

Es02(op.matrici)

Esercizio 2

Dato un vettore x, ricavare due vettori x_pari e x_dispari, che contengano rispettivamente gli elementi in posizione pari e quelli in posizione dispari.

Esempio:

Esercizio 3

Creare matrici 4x6, utilizzando sottomatrici generate dalle funzioni ones e zeros, rappresentanti l'immagine di bandiere (italia, germania, inghilterra).

Esempio:

Italia	1	1	0	0	2	2
	1	1	0	0	2	2
					2	
	1	1	Ω	Π	2	- 2

Esercizio 4

- Abbiamo un portfolio con le azioni di tre società. Possediamo rispettivamente 100, 20 e 50 azioni. Creare un vettore colonna.
- Vendiamo 50 azioni della prima società e ne compriamo 100 della seconda.
- I prezzi delle azioni sono rispettivamente 150, 400 e 200 euro, calcolare il valore totale del portfolio.

Esercizio 4 (Continuo)

- Aggiungiamo un secondo portfolio (40,70, 120):calcolare il valore di entrambi.
- Abbiamo il valore delle azioni per 5 mesi, valutare l'evoluzione del valore dei due portfolii.

Gen	150	400	200
Feb	160	380	200
Mar	180	380	210
Apr	175	428	209
Mag	180	420	210

Es02(op.matrici)

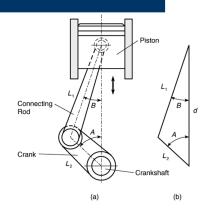
Esercizio 5

	op1	op2	ор3	op4	op5
Paga oraria	5	5.50	6.50	6	6.25
Ore settimanali	40	43	37	50	45
Pezzi prodotti	1000	1100	1000	1200	1100

- Quanto guadagna ogni operaio?
- Qual è il salario totale di tutti gli operai?
- Quanti pezzi vengono prodotti?
- Qual è il costo medio di un pezzo?
- Quante ore occorrono in media per un pezzo?
- Qual è l'operaio più efficiente?

Es02(op.matrici)

Es. 6: Pistone e cilindro


Calcolare e disegnare la lunghezza d (posizione del cilindro) in funzione dell'angolo A.

L1=1

L2=0.5

Considerare due giri dell'albero motore

A=0:0.01:4*pi

Esercizio 7

Disegnare la Tavola Pitagorica

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

9

Esempio:

Esercizio 8

 17
 24
 1
 8
 15
 1
 2
 3
 4
 5

 23
 5
 7
 14
 16
 6
 7
 8
 9
 10

 4
 6
 13
 20
 22

 10
 12
 19
 21
 3

 16
 17
 18
 19
 20

 21
 22
 23
 24
 25

Porre in ordine crescente gli elementi di

una matrice qualsiasi.

10

Es02(op.matrici)

Esercizio 9

- Calcolare la distanza euclidea tra due punti del piano (vettori 1x2).
- Calcolare la distanza euclidea tra due punti dello spazio (vettori 1x3).

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Es02(op.matrici)

Esercizio 10

• Consideriamo la serie:

$$\sum_{i=0}^{n} x^{n} \xrightarrow[n \to \infty]{} \frac{1}{1-x} \quad se |x| < 1$$

- Calcolare la somma per un numero finito di termini e confrontarla con il valore limite
- Provare con x=0.63 e n=11
 Suggerimento: Creare un vettore di interi da usare come esponenti.
- Provare anche con n=51 e n=101
- Ripetere i punti precedenti con x=-0.63

Esercizio 11

Consideriamo la serie:

$$4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots\right) \rightarrow \pi$$

 Calcolare la somma per un numero finito di termini (10, 100, ...) e confrontarla con il valore limite

Esercizio 12

- Graficare la funzione y=sen(θ), con θ a piacere.
- Graficare la funzione z=arcsen(y)
- Commentare i risultati ottenuti (aiutarsi con l'help di matlab)

14

Es02(op.matrici)

Esercizio 13

• Serie di Fourier: la formula

$$\frac{4}{\pi} \left(\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \frac{\sin 7x}{7} + \dots \right)$$

• Tende alla funzione

$$f(x) = \begin{cases} 1 & 0 < x < \pi \\ -1 & -\pi < x < 0 \end{cases}$$

• Evidenziarlo con un grafico

13