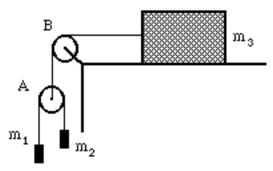


FISICA GENERALE I INGEGNERIA MECCANICA
Data

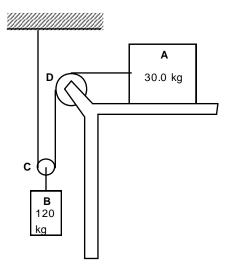
Problema 26 (vedi problema 24)


Una slitta di m=20.0 kg comincia a salire lungo una pendio avente pendenza α =30.0° con una velocità iniziale ν_0 =10.0 m/s. Il coefficiente di attrito dinamico vale μ_d =0.250

- (a) Quanto salirà in alto la slitta lungo il pendio?
- (b) Quali condizioni riguardo il coefficiente di attrito statico μ_s si devono presupporre affinché la slitta rimanga bloccata quando arriva nel punto specificato al punto precedente?
- (c) Se la slitta scivola indietro, quanto vale la sua velocità quando torna al punto di partenza?
- (d) Calcolare l'energia meccanica all'inizio del moto, quando la slitta arriva al punto di massima quota e al punto di ritorno.
- (e) Calcolare il tempo impiegato dalla slitta per salire fino alla massima altezza e quello impiegato per ritornare all'inizio del pendio.

Problema 27

Sia m_1 =1.00 kg, m_2 =2.00 kg, m_3 =5.00 kg, connesse attraverso due funi flessibili, inestensibili, di massa trascurabile e tramite due carrucole di massa trascurabile (vedi figura).


- (a) Determinare il minimo coefficiente di attrito tale che la massa m_3 non venga trascinata; si calcolino inoltre le accelerazioni delle altre due masse.
- (b) Calcolare la forza che la puleggia B esercita sulla fune.
- (c) Si consideri un coefficiente d'attrito pari alla metà del coefficiente calcolato al punto (a): si determinino le accelerazioni dei corpi.

Problema 28

Un sistema, formato da due blocchi A e B, rispettivamente di masse m_A =30.0 kg e m_B =120 kg, e due pulegge C e D, è mostrato in figura. La fune che collega i due blocchi A e B è inestensibile, perfettamente flessibile e di inerzia trascurabile. Sapendo che il coefficiente d'attrito fra il blocco A e il piano orizzontale su cui poggia è μ_d =300×10⁻³ e trascurando l'inerzia delle pulegge, calcolare:

- (a) l'accelerazione di ciascun blocco;
- (b) la tensione in ciascuna delle funi e la reazione del soffitto.
- (c) Siano i corpi inizialmente in quiete; si calcoli il lavoro svolto dalle forze di attrito nel primo secondo di moto.

FISICA GENERALE I INGEGNERIA MECCANICA	
Data	

Problema 29

Un carrello di massa m = 250 g si trova alla sommità di un piano inclinato (α =30.0°), sul quale può scorrere senza attrito. Alla fine del piano inclinato può scorrere per un certo tratto su un piano orizzontale e alla fine urta contro una molla fissata ad un muro verticale. La molla ha costante elastica k= 60.0 N/m, lunghezza a riposo l_0 =0.500 m e massa trascurabile. Sia L la distanza, misurata lungo il piano inclinato, tra il punto da cui parte il carrello e il punto in cui il piano inclinato incontra l'orizzontale. Si supponga che il carrello parta da fermo.

- (a) Trovare la velocità con la quale il carrello arriva ai piedi del piano inclinato.
- (b) Trovare il valore minimo di L occorrente affinché il carrello riesca a toccare il muro nell'urto con la molla.

Nelle condizioni precedenti, si supponga che il carrello scorra su un piano orizzontale scabro con coefficiente d'attrito dinamico $\mu = 0.250$. Supponendo che la distanza tra la fine del piano inclinato ed il muro verticale sia d=4.00 m, calcolare:

- (c) il valore minimo di L, occorrente affinché il carrello riesca a toccare il muro nell'urto con la molla;
- (d) la velocità finale con la quale il corpo arriva a terra considerando che sia scabra anche la superficie del piano inclinato ed avente lo stesso coefficiente di attrito dinamico del piano orizzontale.

Problema 30

Sul punto più alto di un sostegno fisso a forma di semisfera di raggio R, si pone un piccolo disco che può scivolare con attrito trascurabile sotto l'azione del suo peso. Si imprima al disco una piccola velocità iniziale.

- (a) Determinare l'angolo di distacco del disco dal sostegno.
- (b) Esprimere la reazione vincolare del sostegno in funzione della posizione del disco.
- (c) Che velocità iniziale deve avere il disco affinché abbandoni subito il sostegno?

Esercizio 17

Riconsiderare l'esercizio 14, utilizzando il teorema di conservazione dell'energia meccanica.

Esercizio 18

Dire se la seguente forza è conservativa: $\mathbf{F} = -\beta \mathbf{v}, \beta > 0$.

Esercizio 19

Dimostrare che le due proposizioni sono equivalenti:

- (a) il coefficiente di attrito di un pneumatico in frenata è $\mu=1$;
- (b) il modulo della massima decelerazione di uno pneumatico in frenata vale $|\mathbf{g}|$.