

FISICA GENERALE I INGEGNERIA MECCANICA
Data

Problema 40

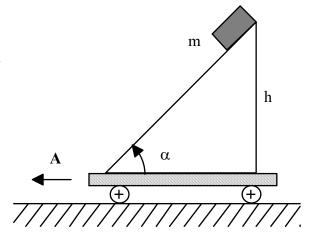
Un carrello di massa M=180 kg può scorrere senza attrito lungo un piano orizzontale; sopra il suo ripiano si trova una persona di massa m=60.0 kg; inizialmente il sistema è in quiete. Ad un certo istante la persona si mette a camminare sul carrello tenendo, rispetto a questo, accelerazione costante \mathbf{a}_R , di modulo $a_R=1.00$ m/s².

- (a) Quanto valgono rispetto a terra i moduli delle accelerazioni del carrello e della persona?
- (b) Nell'istante in cui la persona risulta spostata di δ_R =4.00 m, rispetto alla posizione iniziale, quanto vale lo spostamento rispetto a terra?

Problema 41

Un pendolo conico è costituito da un punto materiale di massa m=6.00 g, legato all'estremità di un filo di lunghezza L=25.0 cm e fissato all'altro estremo. Il filo è di massa trascurabile, inestensibile e perfettamente flessibile e si trascuri ogni forma di attrito. Il pendolo descrive una circonferenza su un piano orizzontale con velocità angolare ω =7.00 rad/s.

- (a) Determinare il valore della tensione τ della fune.
- (b) Calcolare il raggio R della circonferenza.
- (c) Il carico di rottura, ovvero la massima tensione sostenibile dal filo, vale τ_{max} =1.18 N; in corrispondenza a questo valore, si determini la massima apertura α_{max} del pendolo e la corrispondente velocità angolare ω_{max} .


Esercizio 26

Riconsiderare il problema 22 utilizzando il concetto di forza centrifuga.

Problema 42

Un piano inclinato è posto sopra un carrello che si muove con accelerazione costante **A** sopra una superficie orizzontale; il piano ha inclinazione $\alpha = \pi/4$ rad rispetto all'orizzontale e altezza h=50 cm. Un corpo di massa m=1 kg è in quiete al culmine del piano inclinato.

- (a) Trovare quale accelerazione A deve avere il carrello affinché il corpo m resti in quiete.
- (b) Il corpo di massa m parte con velocità nulla dal culmine del piano inclinato e scivola lungo
 - esso incontrando attrito trascurabile. Calcolare il tempo t impiegato dal corpo a raggiungere il pavimento del carrello nel caso in cui l'accelerazione del carrello abbia modulo pari a $A=1 \text{ m/s}^2$ e sia diretta come in figura.
- (c) Si calcoli la reazione vincolare **R** con i dati del caso (b).

FISICA GENERALE I INGEGNERIA MECCANICA
Data

Problema 43

Un ascensore alto h=2.20 m sale con un'accelerazione costante di 3.00 m/s². Nell'istante in cui l'ascensore ha una velocità di 4.00 m/s, dal pavimento viene lanciata una pallina con una certa velocità v_0 . Determinare la minima velocità v_0 con cui deve essere lanciata la pallina affinché urti il soffitto dell'ascensore.

Problema 44

Si vuole attraversare un fiume, largo L=100 m con un motoscafo. Il motore del motoscafo consente una velocità costante $v_0=10.0$ m/s (ovviamente rispetto all'acqua). La velocità dell'acqua nel fiume, assunta uniforme, vale $v_{cor}=2.00$ m/s.

- (a) Determinare il tempo necessario e lo spazio percorso quando il motoscafo viaggia perpendicolarmente alla corrente del fiume.
- (b) Qual è il tragitto che minimizza il tempo?

Problema 45

- (a) Determinare il momento delle forze agenti su di un pendolo semplice e il momento angolare dello stesso.
- (b) Scrivere l'equazione del moto.
- (c) Calcolare la potenza prodotta dalla forza peso ed esprimerla in funzione di M.

Problema 46

Un punto materiale di massa m si muove nel piano xy sotto l'azione della forza

$$\mathbf{F} = -kx\mathbf{i} - ky\mathbf{j}, \qquad k > 0$$

Si dimostri che il campo è centrale e si calcoli l'energia potenziale.

Problema 47

Quattro punti materiali di masse m, 2m, 4m e 8m sono disposte sui vertici di un quadrato, giacente nel piano xy, rispettivamente nelle posizioni $P_1 \equiv (0,0)$, $P_2 \equiv (L,0)$, $P_3 \equiv (L,L)$, $P_4 \equiv (0,L)$. Determinare le coordinate del centro di massa.