Nome, Cognome

Matricola

ANALISI MATEMATICA B - PROVA SCRITTA 14 GIUGNO 2021 - TURNO 1

CORSO DI LAUREA IN INGEGNERIA MECCANICA - A.A. 2020/2021

Libri, appunti e calcolatrici non ammessi

- Lo studente scriva solo la risposta, direttamente su un foglio bianco. Al termine della prova, dovrà inviarne una foto all'indirizzo lorenzo.brasco@unife.it

- Ogni esercizio vale 3 punti, in caso di risposta corretta
- Il voto massimo totalizzabile con la prova scritta è 25/30

Esercizio 1. Si dica quali tra i seguenti campi vettoriali sono conservativi sul loro insieme di definizione

$$\mathbf{B}(x,y,z) = (x,y,z) \qquad \mathbf{K}(x,y) = \left(-y\,x, \frac{x^2}{2} + y^2\right) \qquad \mathbf{H}(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) \ \ primore$$

Esercizio 2. Si trovino i punti critici della funzione $f(x,y) = x^3 + 2xy + y^2$ e si classifichino

$$(0,0)$$
 sella $\left(\frac{2}{3}, -\frac{2}{3}\right)$ minimo locale

Esercizio 3. Si calcoli la lunghezza del sostegno della curva $\gamma(t)=(t^2\cos t,t^2\sin t)\ con\ t\in[0,\pi]$

$$\ell(\gamma) = \frac{1}{3} \left[(4 + \pi^2)^{\frac{3}{2}} - 4^{\frac{3}{2}} \right]$$

Esercizio 4. Si scriva l'equazione del piano tangente al grafico di $f(x,y) = e^{x^2 y}$ nel punto (1,0,f(1,0))

$$z = 1 + y$$

Esercizio 5. Si dica quali tra le seguenti funzioni radialmente simmetriche sono differenziabili nell'origine

$$f(x,y) = \sqrt{x^2 + y^2}$$
 $g(x,y) = e^{x^2 + y^2}$ $h(x,y) = e^{\sqrt{x^2 + y^2}}$ $k(x,y) = (x^2 + y^2)^{\frac{3}{2}}$ seconda e quarta

Esercizio 6. Si calcoli il momento d'inerzia dell'insieme $E = \{(x,y) \in \mathbb{R}^2 : x \in [-1,1], |y| \leq 1 - x^2\}$ rispetto all'asse delle y

$$M = 4\left(\frac{1}{3} - \frac{1}{5}\right)$$

Esercizio 7. Si calcoli il lavoro del campo vettoriale $\mathbf{F}(x,y,z) = (2\,x,-2\,y,1)$ lungo il cammino $\gamma(t) = (\tan t, \sin t, t^2)$ con $t \in [0,\pi/4]$

$$L = \frac{1}{2} + \frac{\pi^2}{16}$$

Esercizio 8. Si calcoli il flusso del campo vettoriale $\mathbf{F}(x,y,z)=(x^3,y^3,z^3)$ attraverso l'insieme $\Sigma=\{(x,y,z)\in\mathbb{R}^3:x^2+y^2+z^2=1\}$

$$\Phi = \frac{12}{5} \pi$$

Esercizio 9. Si calcoli la derivata direzionale della funzione $f(x,y) = \arcsin(x-y)$ nel punto (1,1) lungo la direzione $\omega = (\sqrt{2}/2, \sqrt{2}/2)$

$$\frac{\partial f}{\partial \omega}(1,1) = 0$$

Esercizio 10. Sia $A = \{(x, y) \in \mathbb{R}^2 : 2x^4 + y^4 \le 1\}$, si calcolino

$$\max_{(x,y)\in A} (2\,x+y) = 3\,\sqrt[4]{\frac{1}{3}} \qquad \qquad \min_{(x,y)\in A} (2\,x+y) = -3\,\sqrt[4]{\frac{1}{3}}$$