Programmazione Microcontrollori

Programmazione Microcontrollori

Cosa Serve

- PC with Windows (XP / Vista / 7 / 8 /...)
- Development **board (STM32-XX Discovery)**
- MINI USB cable
- Keil uVision IDE for ARM

• Download the product from:

http://www.keil.com/arm/mdk.asp

•Run the downloaded executable

•Follow the instructions displayed by the SETUP program

Install ST-Link Driver and update ST-Link Firmware

The MDK-ARM is a complete software development environment for Cortex[™]-M, Cortex-R4, ARM7[™] and ARM9[™] processor-based devices. MDK-ARM is specifically designed for microcontroller applications, it is easy to learn and use, yet powerful enough for the most demanding embedded applications.

6

PROGRAMMING

DUE OPZIONI:

-USB / UART / ... connection in **bootloader mode**

–JTAG and programmer **to write flash memory**

EXAMPLES: led

The STM32 is well served with general purpose IO pins, having up to 80 bidirectional IO pins. The IO pins are arranged as five ports each having 16 IO lines.

EXAMPLES: led – come usare i GPIO

Which bus GPIOs are connected to?

➡GPIO ports are always on the APB2 bus

Which port are we going to use?

- ➡Green LED is connected to the I/O Port C of STM32F100RB
- ➡Blue LED is connected to the I/O Port C of STM32F100RB

Which PINs the LEDs are connected to?

➡Green LED is connected to the pin 9 of Port C

⇒Blue LED is connected to the pin 8 of Port C

What do I need to do with this GPIO? (input, output, ...)

→I need to write (output)

Progettazione Sistemi Elettronici 2013/2014

04/04/2014

EXAMPLES: led – Informazioni sulle connessioni

➡The **datasheet** contains all the information we need

→Look at the UM0919 User Manual

https://www1.elfa.se/data1/wwwroot/assets/datasheets/STM32_discovery _eng_manual.pdf

EXAMPLES: led - Accensione

We need to enable the High Speed APB (APB2) peripheral.

➡void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState);

(Look at: stm32f10x_rcc.c)

We need to configure the GPIO Port

➡Fill up a GPIO_InitTypeDef structure (Look at: stm32f10x_ar

stm32f10x_gpio.h)

➡Init the GPIO Port with void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct);

(Look at: stm32f10x_gpio.c)

Turn ON the LED (Look at :stm32f10x_gpio.c)

➡void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

EXAMPLES: led

main.c (green LED)

#include "stm32f10x.h" #include "stm32f10x_conf.h"	must include stm32f10x_gpio.h
int main(void) { GPIO_InitTypeDef GPIO_InitStructure;	
/* Enable the GPIO_LED Clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIC	C, ENABLE); Enable APB2 bus Port C
/* Configure the GPIO_LED pin */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_F GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50N GPIO_Init(GPIOC, &GPIO_InitStructure);	Configuration for Pin 9 Port C as output
/* Turn ON */ GPIO_SetBits(GPIOC, GPIO_Pin_9);	"And light was made"
while(1); }	

SYSTick

SysTick is used to schedule **periodic** events When the SysTick expires an **IRQhandler** is called

How can I use SysTick?

We need to setup the SysTick (Look at core_cm3.h)

➡static __INLINE uint32_t SysTick_Config(uint32_t ticks) ticks: the number of ticks between two interrupts

→SystemCoreClock is the number of ticks in 1 sec

We need to setup the callback (Interrupt Service Routine)

- ➡The ISR is always define in stm32f10x_it.c
- ➡The name of the ISR for SysTick is void SysTick_Handler(void)

04/04/2014

SYSTick

main.c

}

....

#include "stm32f10x.h" #include "stm32f10x_conf.h"

int main(void)
{
 if (SysTick_Config(SystemCoreClock / 1000)) {
 /* Capture error */
 while (1);
 }
 while (1);
}

stm32f10x_it.c

void SysTick_Handler(void){
 /* Here goes the code to periodically execute */}

Progettazione Sistemi Elettronici 2013/2014

04/04/2014